资料分析公式
资料分析公式汇总
资料分析公式汇总在进行资料分析时,掌握一些关键的公式可以帮助我们更高效、准确地处理和解读数据。
以下是为大家汇总的一些常用公式:一、增长相关公式1、增长量=现期量基期量增长量用于衡量数据在一定时期内的绝对增长幅度。
2、增长率=增长量÷基期量×100%这个公式反映了数据增长的相对速度。
3、基期量=现期量÷(1 +增长率)当我们已知现期量和增长率,要求出之前某个时期的量时,就会用到这个公式。
4、现期量=基期量×(1 +增长率)通过基期量和增长率来计算当前时期的量。
二、比重相关公式1、比重=部分÷整体×100%比重表示部分在整体中所占的比例。
2、整体=部分÷比重已知部分和其占整体的比重,可求出整体的量。
3、部分=整体×比重根据整体的量和部分所占的比重,能计算出部分的量。
三、平均数相关公式1、平均数=总数÷个数这是计算平均数最基本的公式。
2、总数=平均数×个数当已知平均数和个数时,可求出总数。
四、倍数相关公式1、 A 是 B 的几倍:A÷B直接用 A 的数值除以 B 的数值,得到 A 是 B 的倍数。
2、 A 比 B 多几倍:(A B)÷B先计算 A 与 B 的差值,再除以 B 的数值。
五、隔年增长相关公式1、隔年增长率=现期增长率+间期增长率+现期增长率×间期增长率例如,今年的增长率为 r1,去年的增长率为 r2,那么隔年增长率就是 r1 + r2 + r1×r2 。
2、隔年基期量=现期量÷(1 +隔年增长率)六、年均增长相关公式1、年均增长量=(末期量初期量)÷年份差用于计算在一定年份内平均每年的增长量。
2、年均增长率=(末期量÷初期量)^(1÷年份差) 1七、混合增长率相关公式整体增长率介于部分增长率之间,且偏向于基期量大的部分增长率。
(完整版)资料分析计算公式
资料分析计算公式
基本概念:
基期:统计中计算指数或变化情况等动态指标时,作为参照标准的时期。
(参照物)现期:相对基期而言,是与基期相比较的后一时期。
同比增长:与上一年同一时期相比的增长情况。
环比增长:与之紧紧相邻的上一个统计周期相比较的增长情况。
贸易顺差与贸易逆差
贸易顺差:进口额< 出口额
贸易顺差= 出口额—进口额
贸易逆差:进口额> 出口额
贸易逆差= 进口额—出口额
年均增长率、年均增长量:
现期量= 基期量()N
⨯,其中n为相差年数;
+
1年均增长率
年均增长量= ()n÷
现期量,其中n为相差年数;
-基期量。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析常用公式
资料分析常用公式1. 平均数公式平均数(Mean)是表示一组数据集中趋势的量数,计算公式为:$$\text{平均数} = \frac{\sum_{i=1}^{n} x_i}{n}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ n $ 表示数据总数。
平均数适用于描述一组数据的总体水平,常用于市场调研、人口统计等领域。
2. 中位数公式中位数(Median)是将一组数据按大小顺序排列后位于中间位置的数,计算公式为:$$\text{中位数} =\begin{cases}\frac{x_{\frac{n+1}{2}} + x_{\frac{n}{2}}}{2} & \text{当 } n \text{ 为偶数时} \\x_{\frac{n+1}{2}} & \text{当 } n \text{ 为奇数时}\end{cases}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ n $ 表示数据总数。
中位数适用于描述一组数据的中间水平,常用于描述收入、房价等分布不均的数据。
3. 标准差公式标准差(Standard Deviation)是衡量一组数据离散程度的量数,计算公式为:$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i \mu)^2}{n}}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ \mu $ 表示平均数,$ n $ 表示数据总数。
标准差适用于描述一组数据的波动程度,常用于质量控制、风险评估等领域。
4. 相关系数公式相关系数(Correlation Coefficient)用于衡量两个变量之间的线性关系程度,计算公式为:$$r = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i\bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i \bar{x})^2}\sqrt{\sum_{i=1}^{n} (y_i \bar{y})^2}}$$其中,$ x_i $ 和 $ y_i $ 分别表示两个变量中的第 $ i $ 个数据,$ \bar{x} $ 和 $ \bar{y} $ 分别表示两个变量的平均数,$ n $ 表示数据总数。
资料分析公式
现期量:已知基期量和增长率r 求现期量=基期量*(1+r)
基期量:已知现期量和增长量求基期量=现期量-增长量
已知现期量和增长率r 求基期量=现期量/(1+增长率)
增长率:已知增长量和基期量求增长率=增长量/基期量
已知增长量和现期量求增长率=增长量/(现期量-增长量)
已知基期量和现期量求增长率=(现期量-基期量)/基期量
增长量:已知基期量和现期量求增长量=现期量-基期量
已知基期量和增长率r 求增长量=基期量*r
已知现期量和增长率r 求增长量=[现期量/(1+r)]*r
已知现期量增长率比较增长量大小:大大则大。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析速算必背公式
资料分析速算必背公式资料分析速算必背公式主要包括以下11个:1.平均数(arithmetic mean):用于表示一组数据的总体特征,表示为x=X1+X2……Xn/n。
2.方差(variance):用于表示一组数据的离散程度,表示为s²=1/n-1Σ(Xi-x)²。
3.标准差(standard deviation):用于表示一组数据的离散程度,表示为s=√s2。
4.四分位数(quartile value):将原始数据从低到高排序,然后将所有数据划分为4等分,将相应等分数据的中位数称为“四分位数”,表示为Q1、Q2、Q3。
5.百分位数(percentile value):将原始数据从低到高排序,然后将所有数据划分为100等分,将相应等分数据的中位数称为“百分位数”,表示为P1、P2、P3 (99)6.众数(mode):即原始数据中出现次数最多的数据为众数,如果有多个众数,则将其依次列出。
7.几何平均数(geometric mean):将所有原始数据乘积开方得到几何平均数,表示为XG=(X1xX2……Xn)^1/n。
8.几何标准差(geometric standard deviation):用于表示一组数据的离散程度,表示为Sg=(X1X2⋯Xn)^1/n / X的开平方。
9.协方差(covariance):用于衡量两组数据之间的关联性,表示为Cov(X,Y)=1/n-1Σ[(X-x)(Y-y)]。
10.相关系数(correlation coefficient):用于衡量两组数据之间的关联性,表示为r=Cov(X,Y)/sxsz。
11.线性回归(linear regression):是一种用来寻找两变量之间关系的方法,模型表达式为Y=aX+b,其中a为斜率,b为截距。
资料分析公式汇总
资料分析公式汇总考点已知条件计算公式方法与技巧备注基期量计算已知现期量,增长率x%基期量=截位直除法,特殊分数法已知现期量,相对基期量增加M倍基期量=截位直除法已知现期量,相对基期量的增长量N基期量=现期量-N尾数法,估算法基期量比较已知现期量,增长率x%比较:基期量=1.截位直除法2.化同法(分数大小比较)3.直除法(首位判断或差量比较)4.差分法如果现期量差距较大,增长率相差不大,可直接比较现期量现期量计算已知基期量,增长率x%现期量=基期量+基期量×x%=基期量×特殊分数法,估算法(1+x%)已知基期量,相对基期量增加M倍现期量=基期量+基期量×M=基期量×(1+M)估算法已知基期量,增长量N 现期量=基期量+N尾数法,估算法增长量计算已知基期量,现期量增长量=现期量-基期量尾数法已知基期量,增长率x%增长量=基期量×x%特殊分数法已知现期量,增长率x%增长量=×x% 1.特殊分数法,当x%可以被视为时,公式可被简化为:增长量=2.估算法(倍数估算)或分数的近似计算(看大则大,看小则小)如果基期量为A,经N期变为B,平均增长量为xx=直除法增长量比较已知现期量,增长率x%增长量=×x% 1.特殊分数法,当x%可以被视为时,公式可被简化为:增长量=2.公式可变换为:增长量=现期量×,其中为增函数,所以现期量大,增长率大的情况下,增长量一定大增长率计算已知基期量,增长量增长率=截位直除法,插值法已知现期量,基期量增长率=截位直除法求平均增长率:如果基期量为A,第n+1期(或经n期)变为B,平均增长率为x%x%=-1代入法,公式法B=A(1+X%)n当x%较小时可简化为B=A(1+nx%)求两期混合增长率:如果第一期和第二期增长率分别为r1和r2,那么第三期相对第一期增长率为r3r3= r1+r2+r1r2简单记忆口诀:连续增长,最终增长大于增长率之和;连续下降,最终下降小于增长率之和(正负号带进公式计算)求总体增长率:整体分为A,B两个部分,分别增长a%与b%,整体增长率x%x%=x%=a%+已知总体增长率和其中一个部分的增长率,求另一部分的增长率求混合增长率:整体为A,增长率为a%,分为两个部分B,C,增长率为b%和c%混合增长率a%介于b%和c%之间混合增长率大小居中增长率比较已知现期量与增长量比较增长率=代替增长率进行大小比较相当于分数大小比较发展速度已知现期量与基期量发展速度==1+增长率截位直除法,插值法增长贡献率已知部分增长量与整体增长量增长贡献量=截位直除法,插值法贡献率贡献率%=贡献率是指有效或有用成果数量与资源消耗及占用量之比,即投入量与产出量之比拉动增长求B拉动A增长几个百分点:如果B是A的一部分,B拉动A增长x%x%=截位直除法,插值法比重计算某部分现期量为A,整体现期量为为B现期比重=截位直除法,插值法某部分基期量为A,增长率a%,整体基期量为B,增长率b%现期比重=一般先计算,然后根据a和b的大小判断大小某部分现期量为A,增长率a%,整体现期量为B,增长基期比重=×一般先计算,然后根据a和b的大小判断大小率b%求基期比重-现期比重:某部分现期量为A增长率a%,整体现期量为B,增长率b%两期比重差值计算:现期比重-基期比重=-×=×(1-)=×1.先根据a与b的大小判断差值计算结果是正数还是负数;2.答案小于|a-b|3.估算法(近似取整估算)4.直除法比重比较某部分现期量为A,整体现期量为B现期比重=相当于分数大小比较,同上述做法基期比重与现期比重比较:某部分现期量为A,增长率a%,整体现期量为B,增长率b%基期比重=×直除法,当部分增长率大于整体增长率,则现期比重大于基期比重。
(完整版)资料分析公式汇总
资料分析公式汇总考点已知条件计算公式方法与技巧备注已知现期量,增长率x%基期量=现期量1+x%截位直除法,特殊分数法已知现期量,相对基期量增加M 倍基期量=现期量1+M截位直除法基期量计算已知现期量,相对基期量的增长量N基期量=现期量-N尾数法,估算法基期量比较已知现期量,增长率x%比较:基期量=现期量1+x%1.截位直除法2.化同法(分数大小比较)3.直除法(首位判断或差量比较)4.差分法如果现期量差距较大,增长率相差不大,可直接比较现期量已知基期量,增长率x%现期量=基期量+基期量×x%=基期量×(1+x%)特殊分数法,估算法已知基期量,相对基期量增加M 倍现期量=基期量+基期量×M =基期量×(1+M )估算法现期量计算已知基期量,增长量N现期量=基期量+N 尾数法,估算法已知基期量,现期量增长量=现期量-基期量尾数法已知基期量,增长率x%增长量=基期量×x%特殊分数法已知现期量,增长率x%增长量=×x%现期量1+x% 1.特殊分数法,当x%可以被视为时,公式可1n 被简化为:增长量=现期量1+n2.估算法(倍数估算)或分数的近似计算(看大则大,看小则小)增长量计算如果基期量为A ,经N 期变为B ,平均增长量为xx=B ‒A N直除法增长量比较已知现期量,增长率x%增长量=×x%现期量1+x%1.特殊分数法,当x%可以被视为时,公式可1n被简化为:增长量=现期量1+n2.公式可变换为:增长量=现期量×,其中为x%1+x%x%1+x%增函数,所以现期量大,增长率大的情况下,增长量一定大已知基期量,增长量增长率=增长量基期量截位直除法,插值法已知现期量,基期量增长率=现期量‒基期量基期量截位直除法求平均增长率:如果基期量为A,第n+1期(或经n期)变为B,平均增长率为x%x%=-1nBA代入法,公式法B=A(1+X%)n当x%较小时可简化为B=A(1+nx%)求两期混合增长率:如果第一期和第二期增长率分别为r1和r2,那么第三期相对第一期增长率为r3r3= r1+r2+r1r2简单记忆口诀:连续增长,最终增长大于增长率之和;连续下降,最终下降小于增长率之和(正负号带进公式计算)求总体增长率:整体分为A,B两个部分,分别增长a%与b%,整体增长率x%x%=A×a%+B×b%A+B x%=a%+B(b%-a%)A+B已知总体增长率和其中一个部分的增长率,求另一部分的增长率增长率计算求混合增长率:整体为A,增长率为a%,分为两个部分B,C,增长率为b%和c%混合增长率a%介于b%和c%之间混合增长率大小居中增长率比较已知现期量与增长量比较增长率=代替增现期量基期量长率进行大小比较相当于分数大小比较发展速度已知现期量与基期量发展速度==1+增长率现期量基期量截位直除法,插值法已知部分增长量与整体增长量增长贡献量=部分增长量整体增长量截位直除法,插值法增长贡献率贡献率贡献率%=贡献量(产出量,所得量)投入量(消耗量,占用量)贡献率是指有效或有用成果数量与资源消耗及占用量之比,即投入量与产出量之比拉动增长求B拉动A增长几个百分点:如果B是A的一部分,B拉动A增长x%x%=B的增长量A的基期量截位直除法,插值法某部分现期量为A,整体现期量为为B现期比重=AB截位直除法,插值法某部分基期量为A,增长率a%,整体基期量为B,增长率b%现期比重=AB×1+a%1+b%一般先计算,然后AB根据a和b的大小判断大小某部分现期量为A,增长率a%,整体现期量为B,增长率b%基期比重=×AB1+b%1+a%一般先计算,然后AB根据a和b的大小判断大小比重计算求基期比重-现期比重:某部分现期量为A增长率a%,整体现期量为B,增长率b%两期比重差值计算:现期比重-基期比重=-×ABAB1+b%1+a%=×(1-)AB1+b%1+a%=×ABa%‒b%1+a%1.先根据a与b的大小判断差值计算结果是正数还是负数;2.答案小于|a-b|3.估算法(近似取整估算)4.直除法某部分现期量为A,整体现期量为B 现期比重=AB相当于分数大小比较,同上述做法比重比较基期比重与现期比重比较:某部分现期量为A,增长率a%,整体现期量为B,增长率b%基期比重=×AB1+b%1+a%直除法,当部分增长率大于整体增长率,则现期比重大于基期比重。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A ﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A ﹥B,C ﹥D,则有A+C ﹥B+D ;A-D ﹥B-C ;2. A ﹥B ﹥0,C ﹥D ﹥0,则有A ×C ﹥B ×D ;A ÷D ﹥B ÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析公式汇总
考点已知条件计算公式方法与技巧备注基期量计算已知现期量,增长率x%基期量=截位直除法,特殊分数法已知现期量,相对基期量增加M倍基期量=截位直除法已知现期量,相对基期量的增长量N基期量=现期量-N尾数法,估算法基期量比较已知现期量,增长率x%比较:基期量=1.截位直除法2.化同法(分数大小比较)3.直除法(首位判断或差量比较)4.差分法如果现期量差距较大,增长率相差不大,可直接比较现期量现期量计算已知基期量,增长率x%现期量=基期量+基期量×x%=基期量×(1+x%)特殊分数法,估算法已知基期量,相对基期量增加M倍现期量=基期量+基期量×M=基期量×(1+M)估算法已知基期量,增长量N现期量=基期量+N尾数法,估算法增长量计算已知基期量,现期量增长量=现期量-基期量尾数法已知基期量,增长率x%增长量=基期量×x%特殊分数法已知现期量,增长率x%增长量=×x% 1.特殊分数法,当x%可以被视为时,公式可被简化为:增长量=2.估算法(倍数估算)或分数的近似计算(看大则大,看小则小)如果基期量为A,经N期变为B,平均增长量为xx=直除法增长量比较已知现期量,增长率x%增长量=×x% 1.特殊分数法,当x%可以被视为时,公式可被简化为:增长量=2.公式可变换为:增长量=现期量×,其中为增函数,所以现期量大,增长率大的情况下,增长量一定大增长率计算已知基期量,增长量增长率=截位直除法,插值法已知现期量,基期量增长率=截位直除法求平均增长率:如果基期量为A,第n+1期(或经n期)变为B,平均增长率为x%x%=-1代入法,公式法B=A(1+X%)n当x%较小时可简化为B=A(1+nx%)求两期混合增长率:如果第一期和第二期增长率分别为r1和r2,那么第三期相对第一期增长率为r3= r1+r2+r1r2简单记忆口诀:连续增长,最终增长大于增长率之和;连续下降,最终下降小于增长率之和(正负号带进公式计算)r3求总体增长率:整体分为A,B两个部分,分别增长a%与b%,整体增长率x%x%=x%=a%+已知总体增长率和其中一个部分的增长率,求另一部分的增长率求混合增长率:整体为A,增长率为a%,分为两个部分B,C,增长率为b%和c%混合增长率a%介于b%和c%之间混合增长率大小居中增长率比较已知现期量与增长量比较增长率=代替增长率进行大小比较相当于分数大小比较发展速度已知现期量与基期量发展速度==1+增长率截位直除法,插值法增长贡献率已知部分增长量与整体增长量增长贡献量=截位直除法,插值法贡献率贡献率%=贡献率是指有效或有用成果数量与资源消耗及占用量之比,即投入量与产出量之比拉动增长求B拉动A增长几个百分点:如果B是A的一部分,B拉动A增长x%x%=截位直除法,插值法比重计算某部分现期量为A,整体现期量为为B现期比重=截位直除法,插值法某部分基期量为A,增长率a%,整体基期量为B,增长率b%现期比重=一般先计算,然后根据a和b的大小判断大小某部分现期量为A,增长率a%,整体现期量为B,增长率b%基期比重=×一般先计算,然后根据a和b的大小判断大小求基期比重-现期比重:某部分现期量为A增长率a%,整体现期量为B,增长率b%两期比重差值计算:现期比重-基期比重=-×=×(1-)=×1.先根据a与b的大小判断差值计算结果是正数还是负数;2.答案小于|a-b|3.估算法(近似取整估算)4.直除法比重比较某部分现期量为A,整体现期量为B现期比重=相当于分数大小比较,同上述做法基期比重与现期比重比较:某部分现期量为A,增长率a%,整体现期量为B,增长率b%基期比重=×直除法,当部分增长率大于整体增长率,则现期比重大于基期比重。
(完整版)资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析公式汇总
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
资料分析公式汇总
资料分析公式汇总=基期量==以被视为时,公式可x=以被视为时,公式可增函数,所以现期量大,增长率大的情况增长率=x%=x%=长率进行大小比较增长贡献量=x%==的大小判断大小基期比重=×的大小判断大小=-×=×()=×指数=x%=x%=1000%1000%x%= r- r1000%速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
资料分析公式范文
资料分析公式范文以下是一些常用的资料分析公式:1.平均值公式:平均值是一组数据的总和除以数据的个数。
平均值公式可以表示为:平均值=总和/数据个数平均值可以用来描述一组数据的集中程度。
2.方差公式:方差是一组数据与平均值之间差值的平方的平均值。
方差公式可以表示为:方差= (∑(xi-平均值)²) / 数据个数方差可以用来描述一组数据的离散程度。
3.标准差公式:标准差是方差的平方根,用来衡量一组数据的波动程度。
标准差公式可以表示为:标准差=√方差标准差越大,数据的波动程度越大。
4.相关系数公式:相关系数描述两个变量之间的相关程度。
相关系数公式可以表示为:相关系数=协方差/(标准差1*标准差2)相关系数的取值范围为-1到1,当相关系数为正时,表示两个变量正相关;当相关系数为负时,表示两个变量负相关;当相关系数接近0时,表示两个变量不相关。
5.回归分析公式:回归分析用来建立变量之间的数学关系,并用来预测未来的数值。
最简单的线性回归模型可以表示为:y = a + bx其中y是因变量,x是自变量,a和b是回归系数。
通过拟合数据,可以求得最佳的回归系数,进而进行预测。
6.正态分布公式:正态分布是最常见的概率分布之一,用来描述自然界和人类行为中很多现象的分布情况。
正态分布的概率密度函数可以表示为:f(x)=(1/(σ√2π))*e^(-(x-μ)²/2σ²)其中f(x)是x的概率密度值,μ是均值,σ是标准差。
正态分布具有钟形曲线的形状,均值和标准差决定了曲线的位置和形状。
这些公式是资料分析中常用的基本工具,通过运用这些公式,我们可以从数据中提取出有意义的信息,并进行更深入的分析和推断。
同时,还有许多其他的资料分析公式,如卡方检验公式、t检验公式、ANOVA分析公式等等,这些公式可以根据具体的分析需求来选择和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节增速公式一、同比增速公式同比增速,是我们在考试里面最常见到的一种增速,这个增速表示的是,与去年同期相比,为什么这么说呢?因为这个概念是从“同比”衍生出来的,我们知道所谓“同比”,就是和去年同期相比得到的变化情况,所以同比增速就是和去年同期相比得到的增速,那同比增速公式怎么来的呢,又是怎么用呢,我们看下面的讲解。
(一)同比增速公式推导同比增速,是最简单的一种增速,也是我们最常见的一种增速,这种增速可以通过斜率来分析出来,大家如果不明白,可以采用斜率来分析一下。
现在,我们还是通过下面的例题来分析一下具体的公式。
假设指标A,在今年的值,也就是末期值为M,而在去年同期,也就是基期值为N,那么同比增速r,就是M/N-1;我们用文字表示就是同比增速=末期值/基期值-1;同比增速=(末期值-基期值)/基期值;同比增速=增加量/基期值;同比增速=增加量/(末期值-增加量)。
注意:末期值——今年某一时期的具体值;基期值——去年同期的具体值。
(二)同比增速公式的应用我们在做题的时候,就会发现,同比增速公式,不仅仅可以用来求增速,还可以用来求基期的具体值,怎么说呢?我们还是仔细的看看,同比增速公式的两种应用吧。
1、求增速我们在上面说了,求增速是同比增速公式的基础应用,一般当试题里面出现以下提问方式的时候,我们就可以直接套用同比增速公式来解答:(1)与上年同期相比,2010年某指标的增速为多少?(2)2010年某指标的同比增长率是多少?(3)2010年,某指标比2009年增长了多少?……当我们遇到这些问题的时候,就可以直接通用同比增速公式。
2、求基期值我们根据同比增速的公式,增速=(末期-基期)/基期,那么就有增速×基期+基期=末期,也就是(1+增速)×基期=末期,那么就有基期=末期/(1+增速)。
这个公式,在资料分析试题里面也经常用到,所以我们直接记住公式就好了,不用直接去推导,一般试题的提问方式就是:2009年,某指标的具体值是多少?(注意,材料给出的是2010年的具体值,以及增速)二、环比增速公式(一)环比增速公式的推导环比增速,是从“环比”这个概念引申出来的,所谓“环比”,就是和上一个统计周期相比得到的变化情况,所以环比增速就是和上一个统计周期相比得到的增速。
假设指标A,在今年12月份的值,也就是末期值为M,而在今年11月份,也就是基期值为N,那么今年12月份的环比增速r,就是M/N-1;我们用文字表示就是环比增速=末期值/基期值-1;环比增速=(末期值-基期值)/基期值;环比增速=增加量/基期值;环比增速=增加量/(末期值-增加量)。
注意:末期值——今年某一时期的具体值;基期值——上一个统计周期的具体值。
【注意】环比增速和同比增速的概念基本相同,但是两者比较的基期不同,因此得到的数值必然不同,这点,我们一定要区分开。
三、年均增速公式年均增速,这个增速和年增速是不相同的,年增速通常说的是相邻年份之间的增速,而年均增速,则是间隔几个年份。
这个增速的计算量比较大,所以一般在考试的时候,我们并不经常遇到,但是我们也不能不知道这个增速怎么计算,那好,我们还是先从年均增速的定义入手,来揭开年均增速的神秘“面纱”。
第二节 A/B型公式A/B型公式,看着很抽象,其实,只要我们一点,你就会立马明白,A/B比就是一个比值吗,也就是两个数值的比值,那我们在计算的时候,什么时候涉及到两个数字的比值了呢?比重,对,就是和比重相似的概念,比如说倍数、贡献率等等,那我们接下来就讲解这几个公式。
一、比重(倍数)公式我们要说比重公式或者倍数公式的时候,总要先理解什么是比重,什么是倍数吧?否则讲解半天,连最基础的都不知道,那我们应用的时候,就会很麻烦。
比重是什么呢?倍数是什么呢?即使大家不能把概念说出来,但是肯定知道比重和倍数是怎么回事,说白了,就是指标A占指标B的百分数:(1)如果百分数超过了100%,此时我们就写成小数形式,那么这个小数就是我们所说的倍数;(2)如果百分数没有超过100%,那我们就把这个数值称为是比重。
(一)比重(倍数)公式推导我们从上面的讲解来看,如果说比重的时候,那么指标A是属于指标B的一部分,如果说倍数的时候,指标A、B是相互并列的,没有从属关系。
不过不论是比重,还是倍数,其都是A/B的形式,不过由于在资料分析里面,有时间出现,所以必然说涉及到末期比重,和基期比重,具体是怎样的呢?我们看下面的讲解。
假设在末期的时候,指标A的具体值为M,增速为m,指标B的具体值为N,增速为n,那么就有:(1)末期比重(倍数)公式:指标A/指标B=M/N;(2)基期比重(倍数)公式:指标A/指标B=(M/N)×(1+n)/(1+m)。
(二)比重(倍数)公式的应用2收藏比重(倍数)公式是最基本的公式,看着很简单,在应用的时候,也主要有两种情况,一种就是直接求比重,或者倍数,另外一种就是求整体,或者部分的数值,怎么说呢?我们还是举个例子。
二、贡献率公式贡献率,这个概念,在之前的考试里面并没有出现过,以至于好多考生都已经将其遗忘,不过,这可不是个好现象,因为在刚刚过去的2012年,就出现了对这个概念的考查,那具体什么是贡献率呢?贡献率怎么应用呢?我们还是看下面的讲解。
贡献率,则是说某一部分的增加对整体增加贡献了多少,也是用百分数来表示,对应的公式就是:贡献率=部分增加量/整体增加量×100%。
贡献率,在应用的时候,主要有两种情况,一种就是直接求贡献率,这点我们不陌生,另外一种,就是求部分或者整体的数值,这点和比重(倍数)公式的应用比较类似,那我们也不多说了,直接上例题吧。
第三节增加量公式增加量,这个知识点,在近几年的考试试题里面频频出现,每年的试题里面必然会出现2道左右的试题,所以我们在平时的复习里面,一定要对这个概念烂熟于心,此外,对这个概念的出题方式以及解题技巧也要有相应的掌握,具体的我们在后面的教材里面,会有详细的讲解,接下来,还是从增加量的概念入手,来获知增加量的公式吧。
增加量,这个就相对来说,是一个比较简单的概念,就是说,相对于基期量,末期量的增长情况,由于末期和基期之间存在一个年增速的概念,所以增加量的公式,其实是从年增速这个概念延伸而来的,在我们做题的时候,增加量常用的公式有:增加量=末期量-基期量;增加量=基期量×增速;增加量=末期量-末期量/(1+增速);增加量=末期量×年增速/(1+增速)。
一般我们在计算的时候,由于经常给出末期量,以及末期的增速,所以我们通常采用来增加量=末期量×增速/(1+增速)计算。
【注意】在计算增加量的时候,我们可以通过分数模型解答,也可以通过放缩估算的方法解答。
第二章资料分析提炼公式资料分析试题里面,有着基本的公式,但是还存在着一些隐含的公式,这些公式需要我们进行抽取才能得到,并且当我们熟练的掌握这些公式,当遇到某些试题的时候,只要将相关数据代入到公式里面,这样就能快速的解答试题,当然了,这些公式都是有着自己独特的应用条件,那具体有什么前提,怎么应用呢?我们还是一点点的剖析吧。
第一节复合增速公式复合增速公式,其实是增速的一种,我们最容易把它和混合增速混淆在一样,不过它们两个可是不同的,复合增速公式,是具有时间段的增速,而混合增速则是同一年不同指标的增速,那复合增速具体是怎样表达的呢,公式是什么,我们还是先推导一下,这样我们的记忆就会更加深刻,也容易记住。
一、复合增速公式推导复合增速公式,具体的文字表述,我们不用太纠结,关键就是要知道这个公式是怎么来的,也就是公式具体长什么模样,我们还是来推导一下吧。
例如:2011年,某省地区生产总值为X亿元,同比增长r1,而去年同期同比增长r2,则相对于2009年,2011年该省地区生产总值增长了( )。
2011年该省地区生产总值为X,同比增速为r1,那么2010年为X/(1+r1);2010年该省地区生产总值为X/(1+r1),增速为r2,那么2009年为[X/(1+r1)]/(1+r2)=X/[(1+r1)(1+r2)];相对于2009年,2011年该省地区生产总值的增速为X/{X/[(1+r1)(1+r2)]}-1=(1+r1)(1+r2)-1。
所以我们可以得到复合增长率的公式为r=(1+r1)(1+r2)-1=r1+r2+r1×r2。
【注意】我们在将r1、r2代入的时候,一定要加上正负号,比如说,某一年的增速下降了5.3%,那我们代入的时候,要用-5.3%;二、复合增速公式应用复合增速怎么用呢?我们不光要知道公式是什么,还要知道这个公式是怎么用的,这个公式,我们在应用的时候,主要有两种情况:(1)求增速,也就是求复合增速,那我们就直接运用公式来解答就好了;(2)求基期的具体值,这种情况,主要是应用在材料中给出了末期的具体值,同比增速,以及同比增速的变化情况,然后让我们求基期的基期的具体值,具体是什么样的呢,就比如上面的例题中,让我们求2009年该省地区生产总值是多少亿元?这时,我们就先求出复合增速公式,然后采用A/(1+a)的形式来解答,这总比我们计算两次除法运算要快很多吧。
好了,我们大概知道了,复合增速公式有什么样的应用之后,就看看这些在试题里面具体是怎么用的。
第二节比重增减公式在近两年的考试试题里面,有这样一类试题,问的是,与上年同期相比,某年某个指标占整体的比重是怎么变化的,我们把这类试题称为是比重差问题,在解答这类问题的时候,我们可以采用比重增减公式,那什么是比重增减公式呢?这个公式在应用的时候,有什么需要注意的呢?我们还是先看看这个公式是怎么推导出来的。
一、比重增减公式推导比重增减公式,是我们从这个公式可以解决的问题的类型抽取出来的,也就是说这个公式可以解决掉计算比重增减的试题,那具体的公式是什么呢?我们看下面的推导。
【示例】2011年某省地区生产总值为B亿元,同比增速为b,其中第一产业增加值为A 亿元,同比增速为a。
问:2011年第一产业增加值占地区生产总值的比重比2010年增加了多少个百分点?(1)2011年第一产业增加值占地区生产总值的比重为A/B;(2)2010年第一产业增加值为A/(1+a),地区生产总值为B/(1+b),第一产业增加值占地区生产总值的比重为(A/B)×(1+b)/(1+a);(3)2011年第一产业增加值占地区生产总值的比重比2010年增加了(A/B)-[(A/B)×(1+b)/(1+a)]=(A/B)×(a-b)/(1+a)。
从上面的分析我们就可以得到比重增减公式为(A/B)×(a-b)/(1+a),注意a为分子的增速,b为分母的增速。