初一七年级化简求值30题

合集下载

七年级数学化简求值题

七年级数学化简求值题

20 道七年级数学化简求值题题目一:化简并求值:3x + 2x - 5,当x = 3。

解析:-先化简式子,3x + 2x - 5 = 5x - 5。

-当x = 3 时,代入式子得5×3 - 5 = 15 - 5 = 10。

题目二:化简并求值:4y - 2y + 3,当y = -2。

解析:-化简式子为4y - 2y + 3 = 2y + 3。

-把y = -2 代入,2×(-2) + 3 = -4 + 3 = -1。

题目三:化简并求值:2a - 3a + 4a,当 a = 2。

解析:-化简式子,2a - 3a + 4a = 3a。

-当a = 2 时,3×2 = 6。

题目四:化简并求值:5b - 2b - 3b + 6,当 b = 4。

解析:-化简式子,5b - 2b - 3b + 6 = 6。

-当b = 4 时,结果仍为6。

题目五:化简并求值:3m - 2(m - 1),当m = 5。

解析:-先展开式子,3m - 2(m - 1)= 3m - 2m + 2 = m + 2。

-当m = 5 时,5 + 2 = 7。

题目六:化简并求值:2(n + 3) - 3n,当n = -3。

解析:-展开式子,2(n + 3) - 3n = 2n + 6 - 3n = -n + 6。

-当n = -3 时,-(-3)+6 = 3 + 6 = 9。

题目七:化简并求值:4(p - 2) + 3p,当p = 1。

解析:-展开式子,4(p - 2) + 3p = 4p - 8 + 3p = 7p - 8。

-当p = 1 时,7×1 - 8 = 7 - 8 = -1。

题目八:化简并求值:5q - 3(q + 2),当q = 2。

解析:-展开式子,5q - 3(q + 2)= 5q - 3q - 6 = 2q - 6。

-当q = 2 时,2×2 - 6 = 4 - 6 = -2。

题目九:化简并求值:2(r - 1) + 3(r + 1),当r = -1。

(完整word)七年级上册整式的化简求值专题训练

(完整word)七年级上册整式的化简求值专题训练

整式的加减(化简求值).解答题(共30小题)2.已知a 、b 、c 在数轴上的对应点如图所示,化简 |a - |a+b|+|c - a|+|b+c|."7~J0 a~4.已知(x+1) 2+|y - 1|=0, 求 2 (xy - 5xy 2)-( 3xy 2- xy )的值.1先化简,再求值: 5 (3a 2b _ ab 2)_ 3 (ab 2+5a 2b ), 其中 a =1 3,b=- 3.先化简,再求值: i (- 4x2+2x - 8y )x - 2y ),其中 1 x=, 2 y=2012 .5.已知A=x2- 2x+1 , B=2x2- 6x+3 •求:(1) A+2B . (2) 2A - B . 6•先化简,再求值:(-x2+5x+4 ) + (5x - 4+2x2),其中x= - 2. 7•先化简,再求值:那-25-対)-(刼-其中吨,n= -「&化简后再求值:25 (x - 2y)-二(x2- 2y)■J®-8 (x2- 2y) (x2-2y),其中哂+(y遗)=0.2 29 .化简:2 ( 3x - 2xy ) - 4 (2x - xy - 1)2 210. 4x y - [6xy - 2 (3xy - 2)- x y]+1,其中 11.化简:(1) 3a+ (- 8a+2)-( 3 - 4a )(2) 2 (xy 2+3y 3- x 2y )- (- 2x 2y+y 3+xy 2)- 4y 313. 某同学做一道数学题: 两个多项式A 、B , B=3x 2 - 2x - 6,试求A+B ”,这位同学把A+B ”看成A - B ” ,12.已知: (3)先化简,再求值(x _ ) 2+|y+3 |=0 ,求: 3x y - 2x y+[9x y -( 6x y+4x ) ] -( 3x y - 8x )的值.x=-丄,y=4 . 2结果求出答案是-8X2+7X+10,那么A+B的正确答案是多少?14. 先化简,再求值:-(3a2-4ab) +a2- 2 (2a+2ab),其中a=2, b= - 1.15 .已知扛士(孑一1), B=2a2+3a - 6, C=a2- 3.(1)求A+B - 2C 的值;(2)当a=- 2时,求A+B - 2C的值.16. 已知A=x 3- 2X2+4X+3 , B=X2+2X - 6, C=x3+2x - 3,求A - 2B+3C 的值,其中X= - 2.17. 求下列代数式的值:(1)a4+3ab - 6a2b2- 3aM+4ab+6a2b - 7a2b2- 2a4,其中a=- 2,b=1 ;(2)2a- {7b+[4a - 7b-( 2a- 6a- 4b) ] - 3a},其中a=-上,b=0.4 的值.72|a+b|— |a — b|— b - a|+|b — a|.1 — IT 19. ( 1)— (3)化简并求值: 3 - 3m 3 =12 2 3x y — [2xy — 2 (xy — ? 1 (2) — F £x+1 ) +2] — 2 234 x y ) +xy ]+3xy ,其中 x=3, y=—亠x2 3 13 20.已知(—3a ) 3与(2m — 5) a n 互为相反数,求 ——的值.21.已知 |a+2|+ (b+1) 2+ (c -丄)2=0,求代数式 2 2 25abc- {2a b — [3abc —( 4ab — a b ) ]}的值.18•已知a 、b22 .已知关于多项式mx2+4xy - x - 2x2+2nxy - 3y合并后不含有二次项,求n m的值.23.先化简,再求值.(2)已知a- b=2,求多项式2( a- b) 2- 9 (a- b)1(3)已知:a+b= - 2, a- b= - 3,求代数式:2 (4a- 3b- 2ab)- 3 ( 2a^ H 1 )的值.324. (2014秋?漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示)级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨-30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(1) 已知(a+2)2+|b-」=°,求a2b-[2a2- 2 (ab2- 2a2b)4] - 2ab2的值.—(a- b) 2- 5 (b - a).2(2)若张红家6月份缴交水费44兀,则该月用水量为吨:(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少兀?(用含a的代数式表示)25.先化简,再求值(1) (3a 4a2+i+2a3)( a+5a2+3a3),其中a= 1.26.已知-4xy n+1与一工匸"是同类项,求2m+n的值.4,小明同学把b丄错写成了2 2 2 227 .有一道题,求3a —4a b+3ab+4a b —ab+a —2ab 的值,其中a= —1,b=-亍,但他计算的结果是正确的,请你通过计算说明这是怎么回事?(2)o.2x2y—0.5xy2- 0.3x2y+0.7x2y,其中.■ - - | . —.第8页(共10页)结果.29 .化简并求值.4( x - 1) - 2 (x 2+1)-£ (4x 2- 2x ),其中 x=2.乙30.先化简,再求值.(1) 3x 3- [x 3 + (6x 2- 7x ) ] — 2 (x 3 - 2x 2 — 4x ),其中 x= — 1;(2) 5x 2-( 3y 2+7xy ) + (2y 2 - 5x 2),其中28.有这样一道题: 计算(2x 3- 3x 2y - 2xy 2)- 耳令,7=-1”.甲同学把 鼻冷”错抄成 帖一 土”(x 3 - 2xy 2+y 3) + (- x 3+3x 2y - y 3)的值,其中,但他计算的结果也是正确的, 试说明理由,并求出这个 x=—, y=-— 7 2第11页(共10页).解答题(共30小题)三2. 3a- 2c . 3. 1 3 21. 5. A+2B=5x 9.— 2x 2+4.整式的加减(化简求值) 参考答案与试题解析 2 2 .4. 2 (xy - 5xy ) — ( 3xy - xy ) 2— 14x+7 . (2) 2A — B=2x — 1. 6. — 16. 7. 0 10. 2. 2 3 11. (1)— a — 1; (2) xy +y ; (3) 2 2X 2+3X — 2. 14.— 16. 15. (1) 的值为10. 8. ;(2)— 5. 16.— 54. 17.(1) —52 ; (2) 20. 5. 21.17丄. 3 24. (1) 24; (2) 2 27. 24a , 当a=— 1, b=—时,原式=4,与b 的值无关. 12.& 13-.18.- a - b . 19.(1) m =3 ;(2)x = 18 5 (3) 22. 4. 23. (1)— 10. (2)— 9. (3)— 0.25. ;(3) (4.8a — 88)元.25. (1)— 11; (2) 28. 2. 28 45 26. 5. 29.— 12. 30. (1) 17; (2)。

初一七年级化简求值100题

初一七年级化简求值100题

初一七年级化简求值100题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。

(2)当x=5时,求y的解。

2、5(9+a)×b-5(5+b)×a(1)化简整个式子。

(2)当a=5/7时,求式子的值。

3、62g+62(g+b)-b(1)化简整个式子。

(2)当g=5/7时,求b的解。

4、3(x+y)-5(4+x)+2y化简整个式子。

5、(x+y)(x-y)化简整个式子。

6、2ab+a×a-b化简整个式子。

7、5.6x+4(x+y)-y化简整个式子。

8、6.4(x+2.9)-y+2(x-y)化简整个式子。

9、(2.5+x)(5.2+y)化简整个式子。

10.3ab-4ab+8ab-7ab+ab=______.11.7x-(5x-5y)-y=______.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.13.-7x2+6x+13x2-4x-5x2=______.14.2y+(-2y+5)-(3y+2)=______.15.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.20.2a-(3a-2b+2)+(3a-4b-1)=______.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.24.2x-(x+3y)-(-x-y)-(x-y)=______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.42.-6x2-7x2+15x2-2x2=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.(二)选择51.下列各式中计算结果为-7x-5x2+6x3的是 [ ] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得 [ ] A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于 [ ]A.-7a+10b;B.5a+4b;C.-a-4b;D.9a-10b.54.减去-3m等于5m2-3m-5的代数式是 [ ] A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为 [ ] A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于 [ ]A.20;B.24;C.0;D.16.57.若A和B均为五次多项式,则A-B一定是 [ ]A.十次多项式;B.零次多项式;C.次数不高于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于 [ ]A.0;B.-2y;C.x+y;59.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C.A<B;D.无法确定.60.当m=-1时,-2m2-[-4m2+(-m2)]等于 [ ]A.-7;B.3;C.1;D.2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于 [ ] A.1;B.9;C.3;D.5.62.4x2y-5xy2的结果应为 [ ]A.-x2y;B.-1;C.-x2y2;D.以上答案都不对.(三)化简63.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).64.4x-2(x-3)-3[x-3(4-2x)+8].65.5m2n+(-2m2n)+2mn2-(+m2n).66.4(x-y+z)-2(x+y-z)-3(-x-y-z).67.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).68.(4x2-8x+5)-(x3+3x2-6x+2).69.(-x2+4+3x4-x3)-(x2+2x-x4-5).70.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.71.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).82.3x-(2x-4y-6x)+3(-2z+2y).83.2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.85.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].89.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).(五)综合练习92.去括号:{-[-(a+b)]}-{-[-(a-b)]}.93.去括号:-[-(-x)-y]-[+(-y)-(+x)].94.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.95.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).96.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).99.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).101.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.102.已知x<-4,化简|-x|+|x+4|-|x-4|.103.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105.在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.106.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.107.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.108.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.109.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项: 7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y.114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.118.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].119.在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.。

分享30个化简求值及答案初一

分享30个化简求值及答案初一

30个化简求值及答案初一20 年月日A4打印/ 可编辑中考专题—化简求值注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. (x +2)2+(2x +1)(2x −1)−4x(x +1)−√2(2013年河南、16)先化简,再求值:,其中x=.2. x =2+√3−√5<x <√5(2012河南、11)先化简 然后从的范围内选取一个合适的整数作为x 的值代入求值。

3.(1−1x−1)÷x 2−4x+4x 2−1−2≤x ≤2(2011河南、16)先化简,然后从的范围内选取一个合适的整数作为x 的值代入求值。

4.A =1x−2B =2x 2−4C =xx+2(A −B)÷CA −B ÷Cx =3(2010河南,16)已知,,,将它们组合成或的形式,请你从中任选一种进行计算.先化简,再求值,其中.5.(1x−1−1x+1)÷x2x2−2√2,1,−1x(2009河南,16)先化简,然后从中选取一个你认为合适的数作为的值代入求值.6.(x+y−2xy−2y 2x−y )⋅x2y+xy2x2−y2xyx=1−3<y<√3y(河南原创一,16)先化简,再选择一组合适的、代入求值,其中,且为整数.7.(14+4b+b2−1b2+4−4b)÷(12+b−12−b)b=−√5(河南原创二,16)先化简,再求值:,其中.8.(1x+2−1)÷x2+2x+1x2−4x=tan60o−1(河南原创三,16)先化简,再求值:,其中.9.(a−1a2−4a+4−a+2a2−2a)÷(4a−1)a{7−a>2|(河南原创四,16)先化简,在求职难:,其中是满足不等式组的整数解.10.x 2−1x2+x ÷(x−2x−1x)xx2+2x−3=0(河南原创五,16)先化简,再求值:,这里是一元为此方程的一个根.11.xx2−2x+1=0x−33x2−6x ÷(x+2−5x−2)(河南原创六,16)已知是一元二次方程的根,求代数式的值.12.(xx−5−x5−x)÷2xx2−25{−x−2≤3|(原创卷七)先化简,然后从不等式组的解集中,选取一个你认为符合题意的x的值代入求值。

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

部编数学七年级上册专题05整式的化简求值(30题)专项训练(解析版)含答案

专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2015年11月14日整式的加减(化简求值)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.30.(2014•咸阳模拟)先化简,再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x),其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2),其中x=,y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2012时,原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2,当m=,n=﹣1时,原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y,∵|x+|+(y﹣)2=0,∴x+=0,y﹣=0,即x=﹣,y=,则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3,当x=﹣,y=4时,原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号,2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号,合并同类项,将复杂整式,化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时,原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号,合并同类项,将整式化为最简式,最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x﹣=0,和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号,化简得x2y+4x2,问题可求.【解答】解:由题意,∵,∴x﹣=0,y+3=0,即x=,y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2),=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2,=x2y+4x2,=x2(y+4),=()2×(﹣3+4),=.【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,原式=﹣3a2+4ab+a2﹣4a﹣4ab,=﹣2a2﹣4a,=﹣2×22﹣4×2,=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵,B=2a2+3a﹣6,C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知,A+B﹣2C=a2+3a﹣,∴当a=﹣2时,原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6,可得2B=2x2+4x﹣12;由C=x3+2x﹣3,可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6,∴2B=2x2+4x﹣12;∵C=x3+2x﹣3,∴3C=3x3+6x﹣9;由题意,得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9),=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9,=4x3﹣4x2+6x+6,=4x2(x﹣1)+6x+6,∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2,b=1时,原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,当a=﹣,b=0.4时,原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6,移项合并得:3m=9,解得:m=3;(2)去括号得:x+1+3﹣=x,去分母得:3x+48﹣30=8x,解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0,求出m,a,再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0,∴2m﹣5=27,n=3,解得m=16,n=3,∴==5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)a n=0,21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0,必须都为0得出a+2=0,b+1=0,c﹣=0,求出a b c的值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴三个非负数的和为0,必须都为0,即a+2=0,b+1=0,c﹣=0,解得:a=﹣2,b=﹣1,c=,5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2,当a=﹣2,b=﹣1,c=时,原式=8×(﹣2)×(﹣1)×﹣(﹣2)2×(﹣1)﹣4×(﹣2)×(﹣1)2=+4+8=17.【点评】本题考查了求代数式的值,整式的加减,非负数的性质等知识点,关键是正确化简和求出a b c的值,题目比较典型,但是一道比较容易出错的题目.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.【考点】合并同类项;多项式.【分析】由于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+4=0,解方程即可求出m,n,然后把m、n的值代入n m,即可求出代数式的值.【解答】解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=4.【点评】考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.【考点】整式的加减—化简求值.【分析】(1)根据非负数的性质得到a,b的值,再把a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2去括号、合并同类项进行化简后代值计算即可求解;(2)先把多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)合并同类项,再把a﹣b=2整体代入即可求解;(3)先把代数式2(4a﹣3b﹣2ab)﹣3(2a﹣)化简,再根据a+b=﹣2,a﹣b=﹣3,得到ab的值,最后整体代入即可求解.【解答】解:(1)∵(a+2)2+|b﹣|=0,∴a+2=0,解得a=﹣2,b﹣=0,解得b=;a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2=a2b﹣[2a2﹣2ab2+4a2b﹣4]﹣2ab2=a2b﹣2a2+2ab2﹣4a2b+4﹣2ab2=﹣3a2b﹣2a2+4=﹣6﹣8+4=﹣10.(2)∵a﹣b=2,(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)=﹣(a﹣b)2﹣4(a﹣b)=﹣1﹣8=﹣9.(3)∵a+b=﹣2,a﹣b=﹣3,∴(a+b)2﹣(a+b)2=a2+2ab+b2﹣a2+2ab﹣b2=4ab=4﹣9=﹣5,∴ab=﹣1.25,∴2(4a﹣3b﹣2ab)﹣3(2a﹣)=8a﹣6b﹣4ab﹣6a+8b+ab=2a+2b﹣3ab=2(a+b)﹣3ab=﹣4+3.75=﹣0.25.【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费24元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)【考点】整式的加减;列代数式.【专题】应用题.【分析】(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.【解答】解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.【点评】本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)先将原式去括号、合并同类项,再把a=﹣1代入化简后的式子,计算即可;(2)先将原式合并同类项,再把x=﹣1,y=代入化简后的式子,计算即可.【解答】解:(1)原式=3a﹣4a2+1+2a3+a﹣5a2﹣3a3=﹣a3﹣9a2+4a+1,当a=﹣1时,原式=1﹣9×1﹣4+1=﹣11;(2)原式=0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y=0.6x2y﹣0.5xy2,当x=﹣1,y=时,原式=0.6×1×﹣0.5×(﹣1)×=+=.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.【考点】同类项.【专题】计算题.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解答】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【点评】本题考查同类项的知识,属于基础题,注意掌握同类项的定义.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式合并同类项得到结果不含b,则有b的取值无关.【解答】解:原式=4a2,当a=﹣1,b=时,原式=4,与b的值无关.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【考点】整式的加减.【专题】应用题.【分析】首先将原代数式去括号,合并同类项,化为最简整式为﹣2y3,与x无关;所以甲同学把“”错抄成“”,但他计算的结果也是正确的.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.【点评】整式的加减运算实际上就是去括号、合并同类项.注意去括号时符号的变化.21。

初一七年级化简求值100题

初一七年级化简求值100题

初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。

(2)当x=5时,求y的解。

2、5(9+a)Xb-5(5+b)Xa(1)化简整个式子。

(2)当a=5/7时,求式子的值3、62g+62(g+b)-b(1)化简整个式子。

(2)当g=5/7时,求b的解。

4、3(x+y)-5(4+x)+2y化简整个式子。

5、(x+y)(x-y)化简整个式子。

6、2ab+aXa-b化简整个式子。

7、5.6x+4(x+y)-y化简整个式子。

8、6.4(x+2.9)-y+2(x-y)化简整个式子。

9、(2.5+x)(5.2+y)化简整个式子。

10.3ab-4ab+8ab-7ab+ab=.11.7x-(5x-5y)-y=.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=.13.-7x2+6x+13x2-4x-5x2=.14.2y+(—2y+5)—(3y+2)=・15.(2x2-3xy+4y2)+(x2+2xy-3y2)=.16・2x+2y—[3x—2(x—y)]=・17・5—(1—x)—1—(x—1)=・18・()+(4xy+7x2—y2)=10x2—xy・19・(4xy2—2x2y)—()=x3—2x2y+4xy2+y3・20・2a—(3a—2b+2)+(3a—4b—1)=・21•已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=22•已知A=x3—2x2+x—4,B=2x3—5x+3,计算A—B=23.若a=—0.2,b=0.5,代数式—(|a2b|—|ab2|)的值为24.2x—(x+3y)—(—x—y)—(x—y)=・25•—个多项式减去3m4—m3—2m+5得-2m4-3m3-2m2-1,那么这个多项式等于.26.—(2x2—y2)—[2y2—(x2+2xy)]=.27.若-3a3b2与5ax—1by+2是同类项,则x=,y=.28.(—y+6+3y4—y3)—(2y2—3y3+y4—7)=・29•化简代数式4x2-[7x2-5x-3(l-2x+x2)]的结果是30・2a—b2+c—d3=2a+()—d3=2a—d3—()=c—()・3l・3a—(2a—3b)+3(a—2b)—b=・32•化简代数式x-[y-2x-(x+y)]等于・33・[5a2+()a—7]+[()a2—4a+()]=a2+2a+l・34・3x—[y—(2x+y)]=・35•化简|1—x+y|—|x—y|(其中xVO,y>0)等于・36.已知xWy,x+y—|x—y|=.37.已知xV0,yV0,化简|x+y|—|5—x—y|二・38.4a2n—an—(3an—2a2n)=・39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2—x2+2xy,则这个多项式为40.—5xm—xm—(—7xm)+(—3xm)=41.当a=—1,b=—2时,[a-(b-c)]-[-b-(-c-a)]=・42・—6x2—7x2+15x2—2x2=・43.当a=—1,b=1,c=—1时,—[b—2(—5a)]—(—3b+5c)=44.—2(3x+z)—(—6x)+(—5y+3z)=45.—5an—an+1—(—7an+1)+(—3an)=46.3a-(2a-4b-6c)+3(-2c+2b)=.48.9a2+[7a2-2a-(-a2+3a)]=.50•当2y-x=5时,5(x-2y)2-3(-x+2y)-100二(二)选择51•下列各式中计算结果为-7x-5x2+6x3的是[] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[] A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[]B.5a+4b;C.-a-4b;D.9a-10b.54•减去-3m等于5m2-3m-5的代数式是[]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55•将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[]A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56•当a=2,b=1时,—a2b+3ba2—(—2a2b)等于[]A.20;B.24;C.0;D.16.57•若A和B均为五次多项式,则A-B一定是[] A.十次多项式;B・零次多项式;C.次数不髙于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于[]A.0;B.-2y;C.x+y;D.-2x-2y.59•若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C・AVB;D.无法确定.60•当m=-1时,—2m2—[—4m2+(—m2)]等于[] A.-7;B.3;C.1;D. 2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[]A.1;B.9;C.3;D. 5.62.4x2y-5xy2的结果应为[]A.-x2y;B.-1;C.-x2y2;D•以上答案都不对.(三)化简 2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2). 4x-2(x-3)-3[x-3(4-2x)+8]. 5m2n+(-2m2n)+2mn2-(+m2n). 4(x-y+z)-2(x+y-z)-3(-x-y-z). 2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).(4x2-8x+5)-(x3+3x2-6x+2). (-x2+4+3x4-x3)-(x2+2x-x4-5). 若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B. 已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B)・(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 一{2a2b-[3abc-(4ab2-a2b)]}・(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).(x2-2y2-z2)-(-y2+3x 2-z2)+(5x2-y2+2z2). (3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).(4a-2b-c)-5a-[8b-2c-(a+b)]. (2m-3n)-(3m-2n)+(5n+m).(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6a b). 63. 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81xy-(2xy-3z)+(3xy-4z).(-3x3+2x2-5x+1)-(5-6x-x2+x3).3x-(2x-4y-6x)+3(-2z+2y).2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84•已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2X(a-b)2的值.85•已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+l|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88•当P=a2+2ab+b2,Q=a2—2ab—b2时,求P—[Q—2P—(P—Q)]・89•求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3・90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91•已知A=x3-5x2,B=x2-6x+3,求A-3(-2B)・(五)综合练习92•去括号:{—[—(a+b)]}-{-[-(a-b)]}・93•去括号:-[-(-x)-y]-[+(-y)-(+x)]・94•已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内・95・计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y)・96•去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2)・98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7)・99•已知A=llx3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B)・100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C)・.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A・102.已知xV—4,化简|-x|+|x+4|-|x-4|・103•求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105・在括号内填上适当的项:(1)x2-xy+y-1=x2-();(2)[()+6x-7]-[4x2+()-()]=x2-2x+1・106.计算4x2-3[x+4(1-x)-x2]-2(4x2T)的值.107•化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}・108•化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}・109•计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110•化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3)・111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4・112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y・114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn・115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1・116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117•在括号内填上适当的项:[()-9y+()]+2y2+3y-4=11y2-()+13・118・在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-()][y+()]・119・在括号内填上适当的项:(3x2+xy-7y2)-()=y2-2xy-x2・。

七年级整式化简50道

七年级整式化简50道

整式化简简答题1.先化简,再求值:已知A=4x2y−5xy2,B=3x2y−4xy2.当x=−2,y=1时,求2A−B的值.2.先化简,再求值:−a2b+(3ab2−a2b)−2(2ab2−a2b),其中a= 1,b=−2.3.先化简,再求值:12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=23.4. 先化简,再求值:5m2−[2mn−3(13mn+2)+4m2],其中(m+ 2)2+|2n−1|=0.5. 先化简,再求值:3x2y−[2xy2−2(xy−32x2y)+3xy]+3xy2,其中x,y满足(x−3)2+|y+13|=0.6.化简求值:b(2a+b)+(2a﹣b)(a+b)﹣4a2b÷b,其中a、b满足:(a﹣1)2+|b+2|=0.7.(1)先化简,再求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=﹣2;(2)先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y.8.先化简,再求值:(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(x﹣y),其中x=﹣,y=4.9.(1)先化简,再求值:(2x+y)2﹣(x+2y)(x﹣2y)﹣(3x﹣y)(x ﹣5y),其中x=﹣3,y=.(2)说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.10.求代数式的值:(m+2n)2+2(m+2n)(2m+n)+(2m+n)2,其中.11.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中(x+3)(x﹣n)=x2+mx+6.12.先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)(x+5),其中x=.13.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣3.14.已知x2﹣3x﹣2=0,求代数式(x+1)(x﹣1)﹣(x+3)2+2x2的值.15.先化简,再求值:(x+5)(x﹣1)+(2x﹣1)2,其中x=﹣.16.化简求值:2x(x﹣5y)﹣3y(2y﹣3x),其中,y=﹣1.17.先化简,再求值:a(a﹣2b)+(a+b)2﹣(a+b)(a﹣b),其中.18.先化简,再求值:(2x﹣1)(2x+1)﹣(x﹣3)2﹣6x,其中x=﹣3.19.先化简,再求值:4(m﹣1)2﹣(2m+5)(2m﹣5),其中m=﹣3.20.先化简,再求值:(2x+1)2﹣x(x+4)+(x﹣2)(x+2),其中x=﹣1.21.先化简,再求值:6n2﹣(m+2n)(3n﹣m),其中m=3,n=2.22.先化简,后求值:已知:x(x﹣3)+(1﹣x)(1+x),其中.23.先化简,再求值:(2x+1)2﹣(2x+1)(2x﹣1),其中x=﹣.24.已知2a2+a﹣6=0,求代数式(3a+2)(3a﹣2)﹣(5a3﹣2a2)÷a 的值.25.先化简,再求值:a•(a+2b)﹣(a+b)2,其中a=1,b=2.26.已知|m+1|+(n﹣5)2=0.(1)求m,n的值.(2)先化简,再求值:m(m﹣2n)+(m+n)2﹣2m2.27.先化简再求值:(x﹣2)(x+2)﹣6x(x﹣3)+5x2,其中.28.先化简,再求值2(a2﹣5)﹣(a+1)(a﹣1),其中a=3.29.先化简,再求值:(2a﹣1)2﹣4(a+1)(a﹣1),其中a=﹣.30.先化简,再求值:(2a+b)2+(a﹣b)(a+b)﹣4a(a﹣b),其中a=2,b=﹣.31.先化简,再求值:(x+1)(x﹣1)﹣(x﹣2)2,其中x=3.32.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.33.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.34.先化简,再求值:3(a2﹣2ab)﹣[a2﹣3b+3(ab+b)],其中a=﹣3,.35.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.36.先化简,再求值:3a2b+2(ab﹣a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a=2,b=﹣.37.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.38.先化简,再求值:x+﹣2(x﹣),其中x=﹣2,y=.39.先化简,再求值:,其中x=3,y=﹣.40.已知a、b满足(a+1)2+|2﹣b|=0.(1)求a,b的值.(2)若A=3a2﹣4ab,B=b2﹣2ab,求A﹣2B的值.41.化简并求值:2(a2b﹣ab)﹣4(a2b﹣ba),其中a=﹣,b=2.42.先化简,再求值.3a2b﹣[2a2b﹣(2abc﹣a2b)]﹣abc,其中a=﹣2,b=﹣3,c=1.43.先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=344.先化简,再求值:(3x2﹣2xy)﹣[x2﹣2(4y2﹣4xy)],其中x=﹣2,y=145.已知x+y=,xy=﹣.求代数式(x+3y﹣3xy)﹣2(xy﹣2x﹣y)的值.46.先化简再求值:﹣(x2+y2)+[﹣3xy﹣(x2﹣y2)],其中x=﹣1,y=2.47.先化简,再求值:﹣2(3ab﹣a2)﹣(2a2﹣3ab+b2),其中a=2,b=﹣,48.先化简,再求值:,其中x=2,y=﹣1.49.设A=2x2﹣3xy+2y,B=4x2﹣6xy﹣3x﹣y(1)求B﹣2A;(2)已知x=2,y=3求B﹣2A的值.50.先化简,再求值:﹣2(2m2﹣mn+)+3(m2+mn),其中m=﹣1,n=1.51.先化简,再求值:,其中x=﹣2,y=1.答案和解析1.32.解析: 由题意得: 2A −B=2(4x 2y −5xy 2)−(3x 2y −4xy 2) =8x 2y −10xy 2−3x 2y +4xy 2=5x 2y −6xy 2,当x =−2,y =1时,5x 2y −6xy 2=5×(−2)2×1−6×(−2)×1 =20+12=32.2.−ab 2;−4.解析: 原式=−a 2b +3ab 2−a 2b −4ab 2+2a 2b =(−1−1+2)a 2b +(3−4)ab 2 =−ab 2,当 a =1,b =−2 时,原式 =−1×(−2)2=−4.3.−3x +y 2,589. 解析: 原式=12x −2x +23y 2−32x +13y 2 =12x −2x −32x +23y 2+13y 2 =−3x +y 2,把x =−2,y =23代入原式,得: −3×(−2)+(23)2=589.4. 11. 解析: ∵(m +2)2+|2n −1|=0,∴m=−2,n=12,∵5m2−[2mn−3(13mn+2)+4m2]=5m2−(2mn−mn−6+4m2)=5m2−(mn−6+4m2)=5m2−mn+6−4m2=m2−mn+6,将m=−2,n=12,代入(−2)2−(−2)×12+6=4+1+6=11.5. xy2−xy,43.解析: 原式=3x2y−(2xy2−2xy+3x2y+3xy)+3xy2 =3x2y−2xy2+2xy−3x2y−3xy+3xy2=xy2−xy,∵(x−3)2+|y+13|=0,∴x=3,y=−13,则原式=13−3×(−13)=13+1=43.6.解:原式=2ab+b2+2a2+2ab﹣ab﹣b2﹣4a2=3ab﹣2a2,∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,解得:a=1,b=﹣2,则原式=3×1×(﹣2)﹣2×12=﹣6﹣2=﹣8.7.解:(1)原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1.当x=﹣2时,原式=3×(﹣2)2﹣1=11.(2)原式=x2﹣4xy+4y2﹣(2x2+xy﹣4xy﹣2y2)+x2﹣y2=x2﹣4xy+4y2﹣2x2﹣xy+4xy+2y2+x2﹣y2=5y2﹣xy.当x=5y时,原式=5y2﹣5y2=0.8.解:原式=x2﹣4xy+4y2+x2﹣4y2﹣2x2+2xy=﹣2xy.当,y=4时,原式=.9.解:(1)(2x+y)2﹣(x+2y)(x﹣2y)﹣(3x﹣y)(x﹣5y)=4x2+4xy+y2﹣(x2﹣4y2)﹣(3x2﹣15xy﹣xy+5y2)=4x2+4xy+y2﹣x2+4y2﹣3x2+15xy+xy﹣5y2=20xy,当x=﹣3,y=时,原式=20×(﹣3)×=﹣12;(2)[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y=[x2﹣2xy+y2﹣(x2﹣y2)]÷(﹣2y)+y=(x2﹣2xy+y2﹣x2+y2)÷(﹣2y)+y=(﹣2xy+2y2)÷(﹣2y)+y=x﹣y+y=x,因此,代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.10.解:原式=m2+4mn+4n2+4m2+10mn+4n2+4m2+4mn+n2=9m2+18mn+9n2=9(m+n)2,当m=,n=﹣时,原式=9×(﹣)2=.11.解:原式=m2﹣4m+4﹣n2+4﹣m2+m=﹣3m﹣n2+8,∵(x+3)(x﹣n)=x2+mx+6,∴x2﹣nx+3x﹣3n=x2+mx+6,∴x2+(3﹣n)x﹣3n=x2+mx+6,∴m=5,n=﹣2,∴原式=﹣3×5﹣(﹣2)2+8=﹣11.12.解:(x+2)(x﹣2)﹣(x﹣1)(x+5)=x2﹣4﹣x2﹣5x+x+5=﹣4x+1,当x=时,原式=﹣4×+1=﹣2+1=﹣1.13.原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,当x=﹣3时,原式=9+3=12.14.解:原式=x2﹣1﹣(x2+6x+9)+2x2=x2﹣1﹣x2﹣6x﹣9+2x2=2x2﹣6x﹣10,∵x2﹣3x﹣2=0,∴x2﹣3x=2,原式=2(x2﹣3x)﹣10=2×2﹣10=4﹣10=﹣6.15.解:原式=x2﹣x+5x﹣5+4x2﹣4x+1=5x2﹣4,当x=﹣时,原式=5×(﹣)2﹣4=5×﹣4=﹣4=﹣.16.解:原式=(2x2﹣10xy)﹣(6y2﹣9xy)=2x2﹣10xy﹣6y2+9xy=2x2﹣xy﹣6y2,当x=,y=﹣1时,原式=2×()2﹣×(﹣1)﹣6×(﹣1)2=2×+﹣6=+﹣6=0.17.解:原式=(a2﹣2ab)+(a2+2ab+b2)﹣(a2﹣b2)=a2﹣2ab+a2+2ab+b2﹣a2+b2=a2+2b2,当a=1,b=﹣时,原式=1+2×(﹣)2=1+=.18.解:原式=4x2﹣1﹣(x2﹣6x+9)﹣6x=4x2﹣1﹣x2+6x﹣9﹣6x=3x2﹣10,当x=﹣3时,原式=3×(﹣3)2﹣10=3×9﹣10=27﹣10=17.19.解:4(m﹣1)2﹣(2m+5)(2m﹣5)=4(m2﹣2m+1)﹣(4m2﹣25)=4m2﹣8m+4﹣4m2+25=﹣8m+29,当m=﹣3时,原式=﹣8×(﹣3)+29=24+29=53.20.解:(2x+1)2﹣x(x+4)+(x﹣2)(x+2)=4x2+4x+1﹣x2﹣4x+x2﹣4=4x2﹣3,当x=﹣1时,原式=4×(﹣1)2﹣3=4﹣3=1.21.解:原式=6n2﹣(3mn﹣m2+6n2﹣2mn)=6n2﹣3mn+m2﹣6n2+2mn=﹣mn+m2,当m=3,n=2时,原式=﹣3×2+32=3.22.解:x(x﹣3)+(1﹣x)(1+x)=x2﹣3x+1﹣x2=﹣3x+1,当时,原式=﹣3×(﹣)+1=+1=.23.解:原式=4x2+4x+1﹣(4x2﹣1)=4x2+4x+1﹣4x2+1=4x+2,当x=﹣时,原式=4×(﹣)+2=﹣1+2=1.24.解:(3a+2)(3a﹣2)﹣(5a3_2a2)÷a =9a2﹣4﹣(5a2﹣2a)=9a2﹣4﹣5a2+2a=4a2+2a﹣4,∵2a2+a﹣6=0,∴2a2+a=6,∴4a2+2a﹣4=2(2a2+a)﹣4=12﹣4=8.25.解:a•(a+2b)﹣(a+b)2=a2+2ab﹣a2﹣2ab﹣b2=﹣b2,当b=2时,原式=﹣(2)2=﹣4.26.解:(1)由题意可知:m+1=0,n﹣5=0,∴m=﹣1,n=5.(2)原式=m2﹣2mn+m2+2mn+n2﹣2m2=n2,当m=﹣1,n=5时,原式=52=25.27.解:原式=x2﹣4﹣6x2+18x+5x2=18x﹣4,当x=时,原式=18×﹣4=6﹣4=2.28.解:原式=2a2﹣10﹣(a2﹣1)=2a2﹣10﹣a2+1=a2﹣9,当a=3时,原式=9﹣9=0.29.解:原式=4a2﹣4a+1﹣4(a2﹣1)=4a2﹣4a+1﹣4a2+4=﹣4a+5,当a=﹣时,原式=﹣4×(﹣)+5=1+5=6.30.解:原式=4a2+4ab+b2+a2﹣b2﹣4a2+4ab=a2+8ab,当a=2,b=﹣时,原式=22+8×2×(﹣)=4﹣8=﹣4.31.解:(x+1)(x﹣1)﹣(x﹣2)2=x2﹣1﹣x2+4x﹣4=4x﹣5,当x=3时,原式=4×3﹣5=12﹣5=7.32.解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.33.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.34.解:原式=(3a2﹣6ab)﹣[a2﹣3b+(3ab+3b)]=3a2﹣6ab﹣(a2﹣3b+3ab+3b)=3a2﹣6ab﹣a2+3b﹣3ab﹣3b=2a2﹣9ab,当a=﹣3,b=时,原式=2×(﹣3)2﹣9×(﹣3)×=18+9=27.35.解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy,当x=﹣,y=﹣3时,原式=﹣12.36.解:原式=3a2b+2ab﹣3a2b﹣(2ab2﹣3ab2+ab)=3a2b+2ab﹣3a2b﹣2ab2+3ab2﹣ab=ab2+ab,当a=2,b=﹣时,原式=2×(﹣)2+2×(﹣)=2×﹣1=﹣1=﹣.37.解:原式=3x2y﹣[2x2y﹣6xy+3x2y﹣xy]=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当x=﹣1,y=﹣2时:原式=﹣2×(﹣1)2×(﹣2)+7×(﹣1)×(﹣2)=4+14=18.38.解:原式=x+y2﹣2x+y2=﹣x+y2,把x=﹣2,y=代入上式得:原式=2+=.39.解:原式=﹣2x2y﹣(2xy﹣2xy﹣x2y)=﹣x2y;当x=3,y=时,∴原式=﹣9×(﹣)=3.40.解:(1)∵a、b满足(a+1)2+|2﹣b|=0,(a+1)2≥0,|2﹣b|≥0,∴a+1=0,2﹣b=0,解得:a=﹣1,b=2;(2)A=3a2﹣4ab,B=b2﹣2ab,∴A﹣2B=3a2﹣4ab﹣2(b2﹣2ab)=3a2﹣4ab﹣2b2+4ab=3a2﹣2b2,∵a=﹣1,b=2,∴3a2﹣2b2=3×(﹣1)2﹣2×22=3×1﹣2×4=3﹣8=﹣5.41.解:原式=2a2b﹣2ab﹣4a2b+2ab=﹣2a2b;当a=﹣,b=2时,原式=﹣2×(﹣)2×2=﹣1.42.解:原式=3a2b﹣[2a2b﹣2abc+a2b]﹣abc=3a2b﹣2a2b+2abc﹣a2b﹣abc=abc.当a=﹣2,b=﹣3,c=1时,原式=(﹣2)×(﹣3)×1=6.43.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.44.解:原式=3x2﹣2xy﹣x2+4y2﹣4xy=x2+4y2﹣6xy,当x=﹣2,y=1时,原式=×(﹣2)2+4×12﹣6×(﹣2)×1=26.45.解:∵x+y=,xy=﹣,∴(x+3y﹣3xy)﹣2(xy﹣2x﹣y)=x+3y﹣3xy﹣2xy+4x+2y=5x+5y﹣5xy=5(x+y)﹣5xy=5×﹣5×(﹣)=3.5.46.解:原式=﹣x2﹣y2﹣3xy﹣x2+y2=﹣2x2﹣3xy,当x=﹣1,y=2时,原式=﹣2×(﹣1)2﹣3×(﹣1)×2=4.47.解:原式=﹣6ab+2a2﹣2a2+3ab﹣b2=﹣3ab﹣b2,当a=2,b=﹣时,原式=2﹣=.48.解:原式=﹣9y+6x2+3y﹣2x2=﹣6y+4x2,当x=2,y=﹣1时,原式=﹣6×(﹣1)+4×22=6+16=22.49.解(1)B﹣2A=4x2﹣6xy﹣3x﹣y﹣2(2x2﹣3xy+2y)=4x2﹣6xy﹣3x﹣y﹣4x2+6xy﹣4y=﹣3x﹣5y;(2)当x=2,y=3时,原式=﹣3x﹣5y=﹣3×2﹣5×3=﹣21.50.解:原式=﹣4m2+2mn﹣1+3m2+3mn=﹣m2+5mn﹣1,当m=﹣1,n=1时,原式=﹣1﹣5﹣1=﹣7.51.解:原式=4x2﹣xy﹣3x2+xy﹣y=x2﹣y,将x=﹣2,y=1代入得:原式=(﹣2)2﹣1=3。

七年级化简求值题50道

七年级化简求值题50道

七年级化简求值题50道一、整式化简求值题(30道)1. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据完全平方公式公式,可得公式。

- 根据平方差公式公式,可得公式。

- 则原式公式。

- 再代入求值:- 当公式,公式时,公式。

2. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式。

- 根据完全平方公式公式。

- 则原式公式。

- 再代入求值:- 当公式,公式时,公式。

3. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

4. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

5. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据完全平方公式展开得:公式。

- 再代入求值:- 当公式,公式时,公式。

6. 化简求值:公式,其中公式。

- 解析:- 先化简式子:- 根据完全平方公式公式。

- 根据平方差公式公式。

- 根据单项式乘多项式公式。

- 则原式公式。

- 再代入求值:- 当公式时,公式。

7. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:。

8. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:- 当公式,公式时,公式。

9. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 去括号得:公式。

- 再代入求值:。

10. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式,这里公式,公式,则原式公式。

- 再代入求值:- 当公式,公式时,公式。

11. 化简求值:公式,其中公式,公式。

- 解析:- 先化简式子:- 根据平方差公式公式。

- 根据完全平方公式公式。

- 则原式公式。

word完整版七年级数学上册化简求值专项训练带答案

word完整版七年级数学上册化简求值专项训练带答案

2015年11月14日整式的加减(化简求值)一.解答题(共30小题)2222a=,ab)+5a,其中黔东南州期末)先化简,再求值:5(3abb﹣ab()﹣3.1(2014秋?﹣.b=2.(2014?咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.2x=,),其中)8y﹣(﹣x﹣3.(2015?宝应县校级模拟)先化简,再求值:(﹣4x2y+2x﹣y=2012.222﹣xy)的值.)﹣(3xy ﹣+|y1|=0,求2(xy﹣x+1(4.2014?咸阳模拟)已知()5xy22﹣6x+3.求:(1)A+2B.(2)2A﹣B.,A=x?(5.2014咸阳模拟)已知﹣2x+1B=2x第1页(共19页)22),其中x=﹣2.5x+5x+4)+(﹣4+2x6.(2010?梧州)先化简,再求值:(﹣x,m=,其中)陕西模拟)先化简,再求值:m﹣2)﹣(7.(2014?(n=﹣1.222)﹣2y2y)﹣(x(﹣2y)﹣8萧山区校级月考)化简后再求值:8.(2015春?5(xx﹣22,其中|x+|+(y=0﹣)(﹣x.﹣2y)22﹣xy2x﹣1)宝应县校级模拟)化简:9.(2015?2(3x4﹣2xy)﹣(22 y=4)﹣x+1y],其中x=.﹣,3xy4x201110.(秋?正安县期末)[6xyy﹣﹣2(﹣2﹣34a)(﹣(200911.(秋?吉林校级期末)化简:1)3a+8a+2)﹣(3322322 2xx()(22xy+3y﹣y)﹣(﹣y+y+xy)﹣4y页(共2第19页),其中)先化简,再求值(322222)6x]2xy+[9x秋?武进区期中)y+4x已知:y﹣,求:3x(y﹣201012.(22)的值.y﹣﹣(3x8x 2﹣2x﹣6、B,B=3x,试求?13.(2013秋淮北期中)某同学做一道数学题:“两个多项式A2+7x+10,那么A+B的正确答B”,结果求出答案是﹣8x”A+B,这位同学把“A+B”看成“A﹣案是多少?22﹣2(2a+2ab)德清县校级期中)先化简,再求值:﹣(3a,其中﹣4ab)+a?14.(2012秋a=2,b=﹣1.22﹣3.+3a﹣6,15B=2a.已知,C=a(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.3223+2x﹣3,求AC=x﹣2x+4x+3,B=x+2x﹣6,城口县校级期中)已知秋(16.2008?A=x﹣2B+3C 的值,其中x=﹣2.第3页(共19页)17.求下列代数式的值:42222224,其中a=﹣2,7ab=1b1)a;+3ab﹣6a﹣b3ab﹣2a+4ab+6a b﹣(﹣,b=0.4a=的值.4b)]﹣3a},其中6a(2)2a﹣{7b+[4a﹣7b﹣(2a﹣﹣18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.﹣=1 中山市校级期末)19.(2012秋?(1 )x2﹣=(2)+2[(x+1)]2222﹣x=3,其中,y=xy(3)化简并求值:3xy﹣[2xy﹣2(]﹣xy)+xy+3xy.n3 20互为相反数,求52m与(﹣)a的值.?2014.(秋吉林校级期末)已知(﹣3a)22222的c)(.已知21|a+2|+b+1+(﹣)=0])}ba4ab﹣(﹣b﹣5abc,求代数式{2a[3abc﹣值.4第页(共19页)m22 3y合并后不含有二次项,求n﹣+4xy﹣x2x的值.+2nxy﹣22.已知关于多项式mx.先化简,再求值.23222222﹣2ab﹣2a的值.ba﹣|=0,求)﹣b﹣[2a4﹣2(aba+2(1)已知()]+|b22 a).﹣5(b9(a﹣bb)﹣(a﹣)2()已知a﹣b=2a,求多项式(﹣b)﹣﹣﹣3(2a)的值.)﹣﹣3,求代数式:2(4a﹣3b﹣2ab﹣(3)已知:a+b=2,a﹣b=秋?漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).24.(2014 水价级别月用水量吨1.6元/级20吨以下(含20吨)第1 /吨元超过20吨部分按2.4吨(含第2级20吨﹣3030吨)吨/30吨部分按4.8元30第3级吨以上超过元;15)若张红家5月份用水量为吨,则该月需缴交水费1(吨;元,则该月用水量为442()若张红家6月份缴交水费(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)第5页(共19页)25.(2014?咸阳模拟)先化简,再求值2323),其中a=﹣1)﹣(﹣a+5a.+3a (1)(3a﹣4a+1+2a2222,其中.0.5xyy﹣0.3x 2()0.2xy+0.7xy﹣n+1 2m+n咸阳模拟)已知﹣4xy的值.与是同类项,求26.(2014?2222﹣2abab+ab+3ab+4a的值,其中2015(春?濮阳校级期中)有一道题,求3ab﹣4a﹣27.﹣b=,小明同学把,但他计算的结果是正确的,请你通过计算b=a=﹣1,错写成了b=说明这是怎么回事?322323)+x(+y﹣计算(2x2xy﹣3xy﹣2xy(﹣)﹣有这样一道题:201428.(秋?温州期末)“323“”,但他计算的结“yy﹣”错抄成)的值,其中”.甲同学把x+3x果也是正确的,试说明理由,并求出这个结果.22﹣2x),其中2)﹣(x+14x)﹣(1x4?2015.29(春绥阳县校级期末)化简并求值.(﹣x=2.第6页(共19页)30.(2014?咸阳模拟)先化简,再求值.33232﹣4x),其中x=﹣2x﹣1;21()3x﹣[x(+6x7x﹣)]﹣(x2222﹣,y=﹣5x),其中x=2y+3y)(25x﹣(+7xy)(第7页(共19页)2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)2222a=,其中+5a,﹣abb)﹣3(ab(1.(2014秋?黔东南州期末)先化简,再求值:53a)b﹣.b=【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.22222,8ab 5abb=﹣3ab﹣﹣【解答】解:原式=15a15ab﹣﹣.×=﹣8=×当a=,b=时,原式﹣【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014?咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.2x=,,其中(﹣x﹣2y宝应县校级模拟)先化简,4x再求值:(﹣)+2x﹣8y)﹣(3.2015?y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.22+x,2y+x+2y=﹣x 解:原式【解答】=﹣x﹣+x=.=,y=2012时,原式﹣+当x=【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.第8页(共19页)222﹣xy)的值.)﹣(3xy2(xy﹣5xy 4.(2014?咸阳模拟)已知(x+1)﹣+|y1|=0,求【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.2+|y﹣1|=0,所以x+1=0,x+1)y﹣1=0,解得【分析】因为平方与绝对值都是非负数,且(x,y 的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.22﹣xy3xy)(xy﹣5xy )﹣(【解答】解:222﹣xy3xy)(2xy﹣10xy )﹣(=22+xy10xy3xy﹣=2xy﹣22)﹣10xy2xy+xy)+(﹣3xy=(2,=3xy﹣13xy2)x+1∵(+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,22 1)×13×(﹣1=3×(﹣1)×1﹣3xy﹣13xy=﹣3+13=10.22﹣xy)的值为3xy10.xy答:2(﹣5xy )﹣(【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.22﹣6x+3.求:(1)A+2B.(2)2A﹣5.(2014?咸阳模拟)已知A=xB﹣2x+1,B=2x.【考点】整式的加减.【专题】计算题.22﹣6x+3),去括号合并可得出答案.)根据题意可得A+2B=x2x﹣2x+1+2(【分析】(122﹣6x+3),先去括号,然后合并即可.x ﹣2x+1)﹣(2x(2)2A﹣B=2(22﹣6x+3),﹣2x+1+2(2x 【解答】解:(1)由题意得:A+2B=x22﹣12x+6,=x ﹣2x+1+4x2﹣14x+7.=5x22﹣6x+3))﹣(2x,()2A﹣B=2x ﹣2x+1(222+6x﹣32x,=2x4x+2﹣﹣=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.22),其中x=﹣﹣4+2x2.(.2010?梧州)先化简,再求值:(﹣x)+5x+4+(5x6【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.22)5x﹣x(﹣4+2x+5x+4)+(【解答】解:原式=222+10x =xx+5x+4+5x﹣4+2x=﹣=x(x+10).∵x=﹣2,∴原式=﹣16.第9页(共19页)【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.m=,2)(,其中)﹣(7.(2014?﹣陕西模拟)先化简,再求值:mn=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.222,﹣m﹣m+2m+nn3m+n﹣解:原式【解答】==2=0.+(﹣1)n=﹣1时,原式=﹣3当×m=,【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.222﹣2y)8(x)﹣(x﹣2y.8(2015春?萧山区校级月考)化简后再求值:5(x)﹣﹣2y22=0.﹣,其中)|x+|+(y﹣(x﹣2y)【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.22222+8y,4x +8x+y﹣y=+16y﹣﹣【解答】解:原式=5xx﹣10y﹣x2)y﹣|x+|+(∵=0,y=,x= ﹣=0x+,y,﹣=0,即∴=.﹣1+=则原式【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22﹣xy﹣1))﹣4(2x 20159.(?宝应县校级模拟)化简:2(3x2xy﹣【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.222+4.+4xy+4=﹣2x【解答】解:原式=6x﹣4xy﹣8x【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22﹣,y=4.)﹣2x]y+1,其中x=﹣(﹣﹣正安县期末)秋(10.2011?4xy[6xy23xy【考点】整式的加减—化简求值.【专题】计算题.第10页(共19页)【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.22y])﹣x+1 ﹣2(3xy﹣【解答】解:4x2y﹣[6xy22y])﹣x+1 [6xy﹣(6xy﹣=4x4y﹣22y)﹣x+1 y﹣(6xy﹣=4x6xy+422y)x+1 =4x﹣(y4﹣22y+1 4+xy=4x﹣2y﹣3,=5x2××4﹣3=5﹣3=2.﹣,y=4时,原式=5x﹣y3=5当x=【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋?吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)2322323)﹣+xy﹣x2xy)﹣(﹣(2)2(xy4y+3yy+y,其中)先化简,再求值(3【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.232232323223y﹣2x﹣y+y2x+xyy)﹣4y=2xy(2)先去括号,2(xy+3yy+2x﹣x+6yy)﹣(﹣23;再合并同类项;﹣﹣xy4y合并同类项,将复杂整式,化为最)先去括号,(32代入计算即可.简式﹣3x+y;再将【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;2322323 4y)﹣(﹣2xy+y(2)2(xy+3y)﹣﹣x+xyy2322323﹣﹣+6yxy﹣2xy+2x4yy﹣=2xyy23;+y=xy22 xx+﹣y(3)原式=y2时,当﹣=3x+y2 +))(2×﹣原式=3(﹣第11页(共19页).=6最后代入计算求合并同类项,将整式化为最简式,【点评】此类题的解答规律是先去括号,值.易错点是多项式合并时易漏项.22222]y+4x)y﹣武进区期中)已知:,求:3x(y﹣2x6xy+[9x12.(2010秋?22﹣8x﹣(3x)的值.y 化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【考点】整式的加减—,即任意数的偶次方或绝对值都是非负数,0,据非负数【分析】≥由;=0,和故只能xy+3=0﹣222222222 y+4x)去括号,化简得x)]﹣(3x,问题可求.将3xyy﹣2x﹣y+[9x8xy﹣(6xy+4x,∵【解答】解:由题意,,﹣=0,∴xy+3=0y=﹣3;即x=,22222223x∴)8x)]﹣(3xy﹣2x,y+[9xy﹣(6xyy+4x﹣2222222 y﹣4x=3xy+8xy ﹣2x﹣y+9x3xy﹣6x,22 y+4x=x,2)=x,(y+42)(),×(﹣=3+4=.,这≥0【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数个知识点.2,试求B=3x6﹣2x﹣2013秋?淮北期中)某同学做一道数学题:“两个多项式A、B,.13(2的正确答+7x+10,那么A+B8xA+B”看成“A﹣B”,结果求出答案是﹣A+B”,这位同学把“案是多少?【考点】整式的加减.2 A+B即可.得出A﹣先根据AB=﹣8x,再求出+7x+10【分析】22,2x﹣+7x+10,B=3x6﹣﹣【解答】解:∵AB=﹣8x228x(﹣A=∴)﹣(3x6﹣2x+7x+10)+226 2x+7x+10+3x﹣﹣=﹣8x2 +5x+4﹣5x,=225xA+B=(﹣∴)﹣(3x6﹣2x++5x+4)226 ﹣+5x+4+3x﹣5x=﹣2x2 2.=﹣2x+3x﹣熟知整式的加减实质上是合并同类项是解答此题的关键.【点评】本题考查的是整式的加减,1912第页(共页)22﹣2(2a+2ab)﹣4ab)+a,其中14.(2012秋?德清县校级期中)先化简,再求值:﹣(3aa=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,22﹣4a﹣3a4ab+4ab+a,原式=﹣2﹣4a,=﹣2a2﹣4×22×2,=﹣=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.22﹣3.﹣615,.已知,B=2aC=a+3a(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.22﹣3.,C=a∵,B=2a +3a﹣【解答】解:(1)6222a2C=(∴A+B﹣﹣3a)+3a﹣6)﹣2﹣1)+(2a(222+6 2a6﹣﹣+2a﹣=a+3a2﹣;+3a=a2﹣,+3a2C=a (2)∵由(1)知,A+B﹣﹣=﹣65.当a=﹣2时,原式=﹣∴【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3223+2x﹣3,求A+2x﹣6城口县校级期中)已知.(2008秋?A=x,﹣2xB=x+4x+3,C=x16﹣2B+3C 的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.2233+6x﹣9;,可得+2x﹣33C=3x ,可得【分析】由B=x+2x﹣62B=2x﹣+4x12;由C=x把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.2+2x﹣6B=x,∵【解答】解:第13页(共19页)22B=2x∴+4x﹣12;3C=x∵+2x﹣3,33C=3x∴+6x﹣9;3223+6x﹣9),﹣12)由题意,得:A﹣2B+3C=x+﹣2x(+4x+3﹣(2x3x+4x3223+6x﹣9,+4x+3﹣2x =x﹣﹣2x4x+12+3x32+6x+6,﹣4x=4x2(x﹣1)=4x+6x+6,∵x=﹣2.2)2=4×(﹣∴原式(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:42222224,其中a=﹣2,b=1b﹣7a;(1)ab+3ab﹣6a b﹣﹣3ab2a+4ab+6a﹣,b=0.4,其中a=的值.﹣6a﹣4b)]﹣3a}(2)2a﹣{7b+[4a﹣7b﹣(2a【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.42222224 b2a+4ab+6a﹣b解:(1)a+3ab﹣6a﹣b7a﹣3ab【解答】42222b ﹣+7ab﹣13a3abb=﹣a+6a 当a=﹣2,b=1时,42222×)1 )(﹣+62﹣3×(﹣2)×(﹣﹣(﹣原式=2))+7×(﹣2×1﹣13(﹣2)×11=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,﹣,b=0.4当a=时,﹣.×0.4= ﹣3×(﹣)﹣4=原式【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.第14页(共19页)【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.﹣=1 19.(2012秋?中山市校级期末)(1 )x2)+22(])﹣[=(x+12222,y=.y)+xy]+3xy﹣,其中(3)化简并求值:3x[2xyy﹣x=3﹣2(xyx﹣【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.,即可求出解;系数化为1【分析】(1)方程去分母,去括号,移项合并,把m 1,即可求出解;(2)方程去括号,移项合并,把x系数化为y的值代入计算即可求出值.(3)原式去括号合并得到最简结果,把x与3m1)去分母得:3﹣﹣6+6m=6,【解答】解:(移项合并得:3m=9,m=3;解得:=x﹣(2,)去括号得:x+1+3去分母得:3x+48﹣30=8x,x=;解得:22222+xy,=xyy﹣)原式=3xxy+3xyy﹣2xy +2xy﹣3x3(﹣.1=时,原式=当x=3,y=﹣﹣【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.n3互为相反数,求的值.)a3a吉林校级期末)已知(﹣)与(2m﹣520.(2014秋?合并同类项.【考点】3n=0,求出m,a5)a,再代入求值.【分析】运用相反数的定义得(﹣3a)2m+(﹣3n互为相反数a )与(2m﹣(﹣【解答】解:∵3a)53n)3a∴(﹣=0,a5)+(2m﹣∴2m﹣5=27,n=3,解得m=16,n=3,==5.∴3n=0,﹣2m5)a(3a【点评】本题主要考查了合并同类项,解题的关键是确定(﹣)+第15页(共19页)22222b)]}﹣(4ab的﹣﹣)﹣=0,求代数式5abc{2aab.已知21|a+2|+(b+1)﹣+(c[3abc值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.﹣=0,求出a b cb+1=0a+2=0,,c的【分析】根据三个非负数的和为0,必须都为0得出值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.22=0,)+(c 【解答】解:∵|a+2|+(b+1)﹣﹣=0,,b+1=0,c三个非负数的和为∴0,必须都为0,即a+2=0c=,,,b=﹣1解得:a=﹣2222b)]﹣a} 5abc﹣{2ab﹣[3abc﹣(4ab222b]﹣4ab} =5abc﹣{2a+ab ﹣[3abc222b} ﹣﹣3abc+4aba=5abc﹣{2ab222b +ab+3abc﹣=5abc﹣2a4ab22,4ab b﹣=8abc﹣ac=时,1,2当a=﹣,b=﹣22)(﹣1(﹣4×2))×﹣(﹣2)××(﹣1)﹣×原式=8×(﹣2)(﹣1=+4+8=17.【点评】本题考查了求代数式的值,整式的加减,非负数的性质等知识点,关键是正确化简和求出a b c的值,题目比较典型,但是一道比较容易出错的题目.22m的值.n +2nxy﹣3y.已知关于多项式mx﹣+4xyx﹣2x合并后不含有二次项,求22【考点】合并同类项;多项式.22+2nxy﹣3y合并后不含有二次项,即二次项系数为0+4xy﹣x﹣2x,【分析】由于多项式mx在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+4=0,m,即可求出代数式的值.的值代入nn,然后把m、n,解方程即可求出m22+2nxy﹣3y﹣2x合并后不含有二次项,【解答】解:∵多项式mx+4xy﹣x即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,m中,得原式=4n.的值代入把m、n【点评】考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.第16页(共19页)23.先化简,再求值.222222的值.2ab 4ab]﹣2a﹣+|b|=0﹣,求abb﹣[2a)﹣﹣2((1)已知(a+2)22﹣5(b﹣a﹣b))b).﹣9(a﹣b )﹣(a(2)已知a﹣b=2,求多项式(a﹣﹣)的值.(2a ﹣3b﹣2ab)﹣3﹣2,a﹣b=﹣3,求代数式:2(4a)已知:(3a+b=【考点】整式的加减—化简求值.222222ab﹣)﹣4﹣2a的值,再把a]b﹣[2ab﹣2(ab(【分析】1)根据非负数的性质得到a,b去括号、合并同类项进行化简后代值计算即可求解;22﹣5(b﹣a)合并同类项,再把aa﹣b﹣)﹣(a﹣b(2)先把多项式(a﹣b))﹣9(b=2整体代入即可求解;﹣)化简,再根据a+b=﹣2,a﹣2ab)﹣3(2ab=﹣3,(3)先把代数式2(4a﹣3b﹣的值,最后整体代入即可求解.得到ab2﹣|=0,【解答】解:(1)∵(a+2)+|b a=﹣2,∴a+2=0,解得;b=b﹣=0,解得22222﹣2(﹣2a2ab[2ab)﹣4ab]﹣ab﹣22222 b﹣4[2a]﹣2ab﹣+4a2ab=a﹣b222222abb+4﹣2a﹣+2ab﹣=a4ab22+4 b﹣=﹣3a2a8+4 ﹣=﹣6 10=﹣.b=2,﹣(2)∵a22 b﹣ab﹣)b ﹣9(a﹣))﹣(a﹣b)﹣5((a2 b=)﹣(a﹣b)﹣4(a﹣8 ﹣=﹣1 ﹣=9.∵3b=﹣,a+b=﹣2,a﹣(3)22)(∴a+b ﹣(a+b)2222﹣=ab+2ab+b﹣a+2ab=4ab9 =4﹣,=﹣5 ∴ab=,﹣1.25﹣)()﹣﹣﹣(∴24a3b2ab32a6a+8b+ab﹣6b﹣4ab﹣=8a第1917页(共页)3ab ﹣=2a+2b3ab )﹣=2(a+b4+3.75 ﹣= .=﹣0.25给出整式中字母的值,求整式的值的问题,一般要考查了整式的加减﹣化简求值,【点评】先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.秋?漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).24.(2014 级别月用水量水价 1.6元/吨第1级20吨以下(含20吨)2.4元/吨吨﹣30吨(含30吨)超过20吨部分按第2级20 4.8吨元/级30吨以上超过30吨部分按第324吨,则该月需缴交水费(1)若张红家5月份用水量为15元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)【考点】整式的加减;列代数式.【专题】应用题.【分析】(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.【解答】解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.【点评】本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.25.(2014?咸阳模拟)先化简,再求值2323),其中a=﹣13a﹣4a.+1+2a)﹣(﹣a+5a +3a1()(2222y,其中.﹣0.5xy ﹣0.3x0.2x(2)y+0.7xy【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)先将原式去括号、合并同类项,再把a=﹣1代入化简后的式子,计算即可;(2)先将原式合并同类项,再把x=﹣1,y=代入化简后的式子,计算即可.第18页(共19页)232332+4a+1,﹣3a9a=4a1)原式=3a﹣﹣+1+2aa+a﹣5a ﹣【解答】解:(当a=﹣1时,原式=1﹣9×1﹣4+1=﹣11;222222,yy+0.7x﹣(2)原式=0.2xy=0.6xy﹣0.5xy0.5xy﹣0.3x=.×+=×1 ×﹣0.5×(﹣1,当x=﹣1)y=时,原式=0.6【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.n+1与是同类项,求2m+n咸阳模拟)已知﹣4xy的值.26.(2014?【考点】同类项.【专题】计算题.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解答】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【点评】本题考查同类项的知识,属于基础题,注意掌握同类项的定义.2222﹣2ab的值,其中b濮阳校级期中)有一道题,求3a﹣﹣4aab+ab+3ab+4a201527.(春?﹣b=,但他计算的结果是正确的,请你通过计算b=a=﹣1,错写成了b=,小明同学把说明这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式合并同类项得到结果不含b,则有b的取值无关.2,【解答】解:原式=4a b=时,原式=4,与ba=﹣1,的值无关.当【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.322323)++y﹣2xy﹣3x(﹣y﹣2xyx)﹣有这样一道题:28.(2014秋?温州期末)“计算(2x(323“”,但他计算的结“yy﹣”错抄成)的值,其中”x.甲同学把+3x果也是正确的,试说明理由,并求出这个结果.【考点】整式的加减.【专题】应用题.3,与x无关;所以甲【分析】首先将原代数式去括号,合并同类项,化为最简整式为﹣2y“”错抄成,但他计算的结果也是正确的.同学把”“322323323)y+3x y﹣2xy+y﹣)+(﹣x解:【解答】(2x﹣3x﹣y2xyx)﹣(32232332333=2.1)2y=﹣2=﹣×(﹣yxx﹣=2x﹣3xy2xy﹣+2xy﹣y﹣+3xy﹣因为化简的结果中不含x,所以原式的值与x值无关.【点评】整式的加减运算实际上就是去括号、合并同类项.注意去括号时符号的变化.第19页(共19页)。

最新七年级数学上册化简求值专项训练(带答案)

最新七年级数学上册化简求值专项训练(带答案)

最新七年级数学上册化简求值专项训练(带答案)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2 y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A﹣2B+3C的值,其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.30.(2014•咸阳模拟)先化简,再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x),其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2),其中x=,y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2012时,原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2,当m=,n=﹣1时,原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y,∵|x+|+(y﹣)2=0,∴x+=0,y﹣=0,即x=﹣,y=,则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3,当x=﹣,y=4时,原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号,2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号,合并同类项,将复杂整式,化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时,原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号,合并同类项,将整式化为最简式,最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x﹣=0,和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号,化简得x2y+4x2,问题可求.【解答】解:由题意,∵,∴x﹣=0,y+3=0,即x=,y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2),=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2,=x2y+4x2,=x2(y+4),=()2×(﹣3+4),=.【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,原式=﹣3a2+4ab+a2﹣4a﹣4ab,=﹣2a2﹣4a,=﹣2×22﹣4×2,=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵,B=2a2+3a﹣6,C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知,A+B﹣2C=a2+3a﹣,∴当a=﹣2时,原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A﹣2B+3C的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6,可得2B=2x2+4x﹣12;由C=x3+2x﹣3,可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6,∴2B=2x2+4x﹣12;∵C=x3+2x﹣3,∴3C=3x3+6x﹣9;由题意,得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9),=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9,=4x3﹣4x2+6x+6,=4x2(x﹣1)+6x+6,∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2,b=1时,原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,当a=﹣,b=0.4时,原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6,移项合并得:3m=9,解得:m=3;(2)去括号得:x+1+3﹣=x,去分母得:3x+48﹣30=8x,解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0,求出m,a,再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0,∴2m﹣5=27,n=3,解得m=16,n=3,∴==5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)a n=0,21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0,必须都为0得出a+2=0,b+1=0,c﹣=0,求出a bc的值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴三个非负数的和为0,必须都为0,即a+2=0,b+1=0,c﹣=0,解得:a=﹣2,b=﹣1,c=,5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b。

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)

七年级数学上册化简求值专项训练(带答案)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简;再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b);其中a=;b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示;化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简;再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y);其中x=;y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0;求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1;B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简;再求值:(﹣x2+5x+4)+(5x﹣4+2x2);其中x=﹣2.7.(2014•陕西模拟)先化简;再求值:m﹣2()﹣();其中m=;n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y);其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1;其中x=﹣;y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简;再求值;其中12.(2010秋•武进区期中)已知:;求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2 y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B;B=3x2﹣2x﹣6;试求A+B”;这位同学把“A+B”看成“A﹣B”;结果求出答案是﹣8x2+7x+10;那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简;再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab);其中a=2;b=﹣1.15.已知;B=2a2+3a﹣6;C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时;求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3;B=x2+2x﹣6;C=x3+2x﹣3;求A﹣2B+3C的值;其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4;其中a=﹣2;b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a};其中a=﹣;b=0.4的值.18.已知a、b在数轴上如图所示;化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2;其中x=3;y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数;求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0;求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项;求n m的值.23.先化简;再求值.(1)已知(a+2)2+|b﹣|=0;求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2;求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2;a﹣b=﹣3;求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.24.(2014秋•漳州期末)为鼓励人们节约用水;某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨;则该月需缴交水费元;(2)若张红家6月份缴交水费44元;则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30);请计算该月需缴交水费多少元?(用含a的代数式表示)25.(2014•咸阳模拟)先化简;再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3);其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y;其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项;求2m+n的值.27.(2015春•濮阳校级期中)有一道题;求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值;其中a=﹣1;b=;小明同学把b=错写成了b=﹣;但他计算的结果是正确的;请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值;其中”.甲同学把“”错抄成“”;但他计算的结果也是正确的;试说明理由;并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x);其中x=2.30.(2014•咸阳模拟)先化简;再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x);其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2);其中x=;y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简;再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b);其中a=;b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简;然后把给定的值代入求值.注意去括号时;如果括号前是负号;那么括号中的每一项都要变号;合并同类项时;只把系数相加减;字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2;当a=;b=﹣时;原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算;并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示;化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值;解答时根据绝对值定义分别求出绝对值;再根据整式的加减;去括号、合并同类项即可化简.【解答】解:由图可知;a>0;a+b<0;c﹣a<0;b+c<0;∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题;应熟练掌握绝对值的代数定义;正数的绝对值等于它本身;负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简;再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y);其中x=;y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果;把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x;当x=;y=2012时;原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值;熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0;求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数;且(x+1)2+|y﹣1|=0;所以x+1=0;y﹣1=0;解得x;y的值.再运用整式的加减运算;去括号、合并同类项;然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2;∵(x+1)2+|y﹣1|=0∴(x+1)=0;y﹣1=0∴x=﹣1;y=1.∴当x=﹣1;y=1时;3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项;这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1;B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3);去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3);先去括号;然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3);=x2﹣2x+1+4x2﹣12x+6;=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3);=2x2﹣4x+2﹣2x2+6x﹣3;=2x﹣1.【点评】本题考查了整式的加减;难度不大;解决此类题目的关键是熟记去括号法则;熟练运用合并同类项的法则;这是各地中考的常考点.6.(2010•梧州)先化简;再求值:(﹣x2+5x+4)+(5x﹣4+2x2);其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号;再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2;∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则;熟练运用合并同类项的法则;这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简;再求值:m﹣2()﹣();其中m=;n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果;将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2;当m=;n=﹣1时;原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值;熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y);其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果;利用非负数的性质求出x与y的值;代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y;∵|x+|+(y﹣)2=0;∴x+=0;y﹣=0;即x=﹣;y=;则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值;熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减;熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1;其中x=﹣;y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序;先计算小括号里的;故先把小括号外边的2利用乘法分配律乘到括号里边;然后根据去括号法则:括号前面是负号;去掉括号和负号;括号里各项都变号;合并后再利用去括号法则计算;再合并即可得到最后结果;最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3;当x=﹣;y=4时;原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值;去括号法则;以及合并同类项.其中去括号法则为:括号前面是正号;去掉括号和正号;括号里各项不变号;括号前面是负号;去掉括号和负号;括号里各项都要变号;此外注意括号外边有数字因式;先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减;字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简;再求值;其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号;3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号;2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号;合并同类项;将复杂整式;化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a);=3a﹣8a+2﹣3+4a;=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时;原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号;合并同类项;将整式化为最简式;最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:;求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由;据非负数≥0;即任意数的偶次方或绝对值都是非负数;故只能x﹣=0;和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号;化简得x2y+4x2;问题可求.【解答】解:由题意;∵;∴x﹣=0;y+3=0;即x=;y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2);=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2;=x2y+4x2;=x2(y+4);=()2×(﹣3+4);=.【点评】本题综合考查了非负数的性质和化简求值;正确解答的关键是掌握:非负数≥0;这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B;B=3x2﹣2x﹣6;试求A+B”;这位同学把“A+B”看成“A﹣B”;结果求出答案是﹣8x2+7x+10;那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A;再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10;B=3x2﹣2x﹣6;∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4;∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减;熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简;再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab);其中a=2;b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号;再合并同类项;把a=2代入求出即可.【解答】解:当a=2;b=﹣1时;原式=﹣3a2+4ab+a2﹣4a﹣4ab;=﹣2a2﹣4a;=﹣2×22﹣4×2;=﹣16.【点评】本题考查了整式的加减;合并同类项;去括号等知识点的应用;通过做此题培养了学生运用所学的知识进行计算的能力;题目比较典型;难度适中.15.已知;B=2a2+3a﹣6;C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时;求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子;再去括号;合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵;B=2a2+3a﹣6;C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知;A+B﹣2C=a2+3a﹣;∴当a=﹣2时;原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减;熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3;B=x2+2x﹣6;C=x3+2x﹣3;求A﹣2B+3C的值;其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6;可得2B=2x2+4x﹣12;由C=x3+2x﹣3;可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号;合并化简;最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6;∴2B=2x2+4x﹣12;∵C=x3+2x﹣3;∴3C=3x3+6x﹣9;由题意;得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9);=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9;=4x3﹣4x2+6x+6;=4x2(x﹣1)+6x+6;∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6;=4×4×(﹣3)﹣12+6;=﹣48﹣12+6;=﹣54.【点评】本题的解答;不要忙于代入计算;应先将复杂的式子整理成最简式;再代入计算.此类题的解答;关键是不要怕麻烦;一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4;其中a=﹣2;b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a};其中a=﹣;b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项;再代值计算;(2)去括号;合并同类项;再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2;b=1时;原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24;=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b;当a=﹣;b=0.4时;原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题;需要先化简;再代值.直接代值;可能使运算麻烦;容易出错.18.已知a、b在数轴上如图所示;化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负;利用绝对值的代数意义化简;计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b;且|a|>|b|;∴a+b<0;a﹣b<0;﹣b﹣a=﹣(a+b)>0;b﹣a>0;则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减;数轴;以及绝对值;熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2;其中x=3;y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母;去括号;移项合并;把m系数化为1;即可求出解;(2)方程去括号;移项合并;把x系数化为1;即可求出解;(3)原式去括号合并得到最简结果;把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6;移项合并得:3m=9;解得:m=3;(2)去括号得:x+1+3﹣=x;去分母得:3x+48﹣30=8x;解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy;当x=3;y=﹣时;原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值;熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数;求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0;求出m;a;再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0;∴2m﹣5=27;n=3;解得m=16;n=3;∴==5.【点评】本题主要考查了合并同类项;解题的关键是确定(﹣3a)3+(2m﹣5)a n=0;21.已知|a+2|+(b+1)2+(c﹣)2=0;求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0;必须都为0得出a+2=0;b+1=0;c﹣=0;求出a bc的值;先去小括号、再去中括号;最后去大括号后合并同类项;把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0;∴三个非负数的和为0;必须都为0;即a+2=0;b+1=0;c﹣=0;解得:a=﹣2;b=﹣1;c=;5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b。

初一七年级化简求值30题.doc

初一七年级化简求值30题.doc

初一七年级化简求值30题.doc1.(海曙区期末)先化简,再求值:3(a²-2ab)-[a²-3b+3(ab+b)],其中a=−3,b=132.(瑞安市期末)先化简,再求值:23(6m−9mn)−(n n2−6mn),其中m=1,n=-3。

3.(宁波期末)先化简,再求值:3a2b+2(ab−32n a2b)−[2ab2−(3ab2−ab)],其中a=2,b=−12。

4.(南宁期末)先化简,再求值:(2x²-2y²)-3(xy³+x²)+3(xy³+y²),其中x=-1,y=2。

5.(信宜市月考)先化简,在求值:5(a²-4ab)-2(a²-8ab+1),其中a=23,b=−6。

6.(临沧期末)先化简,再求值:2(xy²+5x²y)-3(3xy²-x²y)-xy²,其中x=−1,y=−12。

7.(香坊区校级期末)先化简,再求值:(2x2−12+3x)−4(x−x2+12),其中x=-3。

8.(雨花区校级期末)先化简,再求值:-3a²b+(4ab²-a²b)-2(2ab²-a²b),其中a=1,b=-1。

9.(民权县期末)先化简,再求值(4a²b-3ab)+(-5a²b+2ab)-(2ba²-1),其中a= 2,b=12。

10.(香坊区期末)先化简再求值:(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。

11.(开福区期中)化简求值:2a²b+2ab²-1-[3(a²b-1)+ab²+2],其中a=-1,b=2。

12.(瑶海区期末)先化简,再求值:5a²b-2(a²b-2ab²+1)+3(-2ab²+a²b),其中a=-2,b=1。

初一七年级化简求值60题

初一七年级化简求值60题

初一七年级化简求值60题1. )3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a2. )45(2)45(332-+---+-x x x x ,其中2-=x3. 求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c5. 化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6. 先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.8. 化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9. 先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中10. 求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中11.12. 先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.13. 先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1.14. 先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5.15. 先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2.16. 先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2.17. 先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2.18. 先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.19. 先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13.20. 化简求值:2111(428)(1),422x x x x -+---=-其中21. 先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a =22. 先化简再求值:222232(33)(53),35x x x x -+--+=-其中23. 先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.24. 先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=25. 先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.26. 先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.27. 先化简,再求值:22223()3x x x x ++-,其中x=-1228. (52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.29. 先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y =30. 先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中,31. 223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。

初一化简求值题30道

初一化简求值题30道

1、先化简,再求值: 2(a-3)(a+2)-(3+a)(3-a)-3(a-1)2其中a=-2解:原式=2(a2-a-6)-(9-a2)-3(a2-2a+1)=2a2-2a-12-9+ a2-3a2+6a-3=4a-24当a=-2时,原式=4×(-2)-24=-32.2、先化简,再求值:(3a²b-ab²)-2(ab²-3a²b),其中a=-2,b=3解:原式=3a²b-ab²-2ab²+6a²b=9a²b-3ab²=9x(-2)²x3-3x(-2)x3²=9x4x3-3x2x9=108-54=543、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3.解:原式=(5-3-2)x²+(-5+6)x+(4-5)=x-1.当x=-3时,原式=-3-1=-4.4、先化简,再求值:(3a²b-2ab²)-2(ab²-2a²b),其中a=2,b=-1.解:原式=3a²b-2ab²-2ab²+4a²b=7a²b-4ab²当a=2,b=-1时,原式=-28-8=-36.5、若a²+2b²=5,求多项式(3a²-2ab+b²)-(a²-2ab-3b²)的值.解:原式=3a²-2ab+b²-a²+2ab+3b²=2a²+4b².当a²+2b²=5时,原式=2(a²+2b²)=10.6、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3.解:原式=2x+2x²y-2x²y-x-y²=x-y².当x=1,y=-3时,原式=1-9=-8.7、已知∣m+n-2∣+(mn+3)²=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-218、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2.解:原式=2x²y-2xy²-2x²y+8xy²=6xy².当x=1/2,y=-2时,原式=6×1/2×4=12.9、先化简,再求值:2(x²y+xy)-3(x²y-xy)-4x²y,其中x,y满足|x+1|+(y -1/2)²=0.解:原式=2x²y+2xy-3x²y+3xy-4x²y=-5x²y+5xy因为|x+1|+(y-1/2)²=0,所以x=-1,y=. 1/2故原式=-5/2-5/2=-5.10、先化简,再求值∶3a²b+2(ab-3/2a²b)-|2ab²-(3ab²-ab)|,其中a=2,b=-1/2解:原式=3a²b+2ab-3a²b-(2ab²-3ab²+ab)=3a²b+2ab-3a²b-2ab²+3ab²-ab =ab²+ab,当a=2,b=-1/2时,原式=2×(-1/2)²+2×(-1/2)=2×1/4-1=-1/211、先化简,再求值:(4a²b-3ab)+(-5a²b+2ab)-(2ba²-1),其中a=2,b=1/2.解:原式=4a²b-3ab-5a²b+2ab-2ba²+1=-3a²b-ab+1,当a=2,b=1/2时,原式=-3×2²×1/2-2×1/2+1=-6-1+1=-6.12、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2.解:(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³)=2x³-2y²-3x³y²-3x³+2y²+2x³y²=-x³-x³y².当x=-1,y=2时,原式=-(-1)³-(-1)³×2²=1+4 =5.1、-9(x-2)-y(x-5)?(1)化简整个式子。

初一七年级化简求值100题

初一七年级化简求值100题

初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。

(2)当x=5时,求y的解。

2、5(9+a)×b-5(5+b)×a(1)化简整个式子。

(2)当a=5/7时,求式子的值。

3、62g+62(g+b)-b(1)化简整个式子。

(2)当g=5/7时,求b的解。

4、3(x+y)-5(4+x)+2y化简整个式子。

5、(x+y)(x-y)化简整个式子。

6、2ab+a×a-b化简整个式子。

7、+4(x+y)-y化简整个式子。

8、(x+-y+2(x-y)化简整个式子。

9、+x)+y)化简整个式子。

10.3ab-4ab+8ab-7ab+ab=______.11.7x-(5x-5y)-y=______.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.13.-7x2+6x+13x2-4x-5x2=______.14.2y+(-2y+5)-(3y+2)=______.15.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.20.2a-(3a-2b+2)+(3a-4b-1)=______.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=,b=,代数式-(|a2b|-|ab2|)的值为______.24.2x-(x+3y)-(-x-y)-(x-y)=______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.42.-6x2-7x2+15x2-2x2=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.(二)选择51.下列各式中计算结果为-7x-5x2+6x3的是 [ ] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得 [ ] A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于 [ ]A.-7a+10b;B.5a+4b;C.-a-4b;D.9a-10b.54.减去-3m等于5m2-3m-5的代数式是 [ ]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55.将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为 [ ] A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56.当a=2,b=1时,-a2b+3ba2-(-2a2b)等于 [ ]A.20;B.24;C.0;D.16.57.若A和B均为五次多项式,则A-B一定是 [ ]A.十次多项式;B.零次多项式;C.次数不高于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于 [ ]A.0;B.-2y;C.x+y;59.若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C.A<B;D.无法确定.60.当m=-1时,-2m2-[-4m2+(-m2)]等于 [ ]A.-7;B.3;C.1;D.2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于 [ ] A.1;B.9;C.3;D.5.62.4x2y-5xy2的结果应为 [ ]A.-x2y;B.-1;C.-x2y2;D.以上答案都不对.(三)化简63.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).64.4x-2(x-3)-3[x-3(4-2x)+8].65.5m2n+(-2m2n)+2mn2-(+m2n).66.4(x-y+z)-2(x+y-z)-3(-x-y-z).67.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).68.(4x2-8x+5)-(x3+3x2-6x+2).69.(-x2+4+3x4-x3)-(x2+2x-x4-5).70.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.71.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).72.+xy2-y3)-+.73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).82.3x-(2x-4y-6x)+3(-2z+2y).83.2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84.已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2×(a-b)2的值.85.已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+1|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88.当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].89.求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91.已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).(五)综合练习92.去括号:{-[-(a+b)]}-{-[-(a-b)]}.93.去括号:-[-(-x)-y]-[+(-y)-(+x)].94.已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.95.计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y).96.去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2).98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7).99.已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).101.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.102.已知x<-4,化简|-x|+|x+4|-|x-4|.103.求两代数式+,的差与++的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105.在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.106.计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.107.化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.108.化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.109.计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110.化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3).111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn.115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1.116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117.在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.118.在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].初一七年级化简求值100题119.在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.11 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档