风电机组整机基础知识-南车
风电机组整机基础知识

空气密度按照标准空气密度(1.225kg/m3)计算功率曲线如下。
5.风力发电机的主要种类
竖轴式
横轴式
横轴风力发电机和竖轴风力发电机根据叶片固定轴的方位, 风力发电机可以分为横轴和竖轴两类。竖轴式风电机工作时转轴 方向与风向一致,横轴式风电机转轴方向与风向成直角。 横轴式风电机通常需要不停地变向以保持与风向一致。而 竖轴式风电机则不必如此,因为它可以收集不同来向的风能。 横轴式风电机在世界上占主流位置。 逆风风力发电机和顺风风力发电机 逆风风电机是一种风轮面向来风的横轴式风电机。而对於顺 风风电机,来风是从风轮的背後吹来。大多数的风力发电机是逆 风式的。 单叶片、双叶片和三叶片风力发电机 叶片的数目由很多因素决定,其中包括空气动力效率、复杂 度、成本、噪音、美 学要求等等。大型风力发电机可由1、2或 者3片叶片构成。叶片较少的风力发 电机通常需要更高的转速以 提取风中的能量,因此噪音比较大 。而如果叶片 太多,它们之 间会相互作用而降低系统效率。目前3叶片风电机是主流。从美 学角度上看,3叶片的风电机看上去较为平衡和美观。
抗拉强度:
当钢材屈服到一定程度后,由于内部晶粒重新 排列,其抵抗变形能力又重新提高,此时变形 虽然发展很快,但却只能随着应力的提高而提 高,直至应力达最大值。此后,钢材抵抗变形 的能力明显降低,并在最薄弱处发生较大的塑 性变形,此处试件截面迅速缩小,出现颈缩现 象,直至断裂破坏。钢材受拉断裂前的最大应 力值(b点对应值)称为强度极限或抗拉强度。
齿轮箱的重量约占机舱重量的1/2。 减振元件增加在齿轮箱与主机架之间。
5.润滑冷却系统
对齿轮和轴承的保护作用: • 减小摩擦和磨损,具有更高 的承载能力,防止胶合。 • 吸收冲击和振动。 • 防止疲劳点蚀。 • 冷却、防锈、抗腐蚀。
风力发电基础知识

风⼒发电基础知识第⼀章风⼒发电机组结构1.8 控制系统控制系统利⽤微处理器、逻辑程序控制器或单⽚机通过对运⾏过程中输⼊信号的采集传输、分析,来控制风电机组的转速和功率;如发⽣故障或其他异常情况能⾃动地检测平分析确定原因,⾃动调整排除故障或进⼊保护状态。
控控制系统的主要任务就是⾃动控制风机组运⾏,依照其特性⾃动检测故障并根据情况采取相应的措施。
控制系统包括控制和检测两部分。
控制部分⼜设置了⼿动和⾃动两种模式,运⾏维护⼈员可在现场根据需要进⾏⼿动控制,⽽⾃动控制应在⽆⼈值班的条件下预先设置控制策略,保证机组正常安全运⾏。
检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显⽰屏上可以查询。
现场数据可通过⽹络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。
安全系统要保证机组在发⽣⾮常情况时⽴即停机,预防或减轻故障损失。
例如定桨距风电机组的叶尖制动⽚在运⾏时利⽤液压系统的⾼压油保持与叶⽚外形组合成⼀个整体,同时保持机械制动器的制动钳处于松开状态,⼀旦发⽣液压系统失灵或电⽹停电,叶尖制动⽚和制动钳将在弹簧作⽤下⽴即使叶尖制动⽚旋转约90°,制动钳变为夹紧状态,风轮被制动停⽌旋转。
根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运⾏情况主要分为以下⼏类:待机状态、发电状态、⼤风停机⽅式、故障停机⽅式、⼈⼯停机⽅式和紧急停机⽅式。
(1)待机状态风轮⾃由转动,机组不发电(风速为0~3m/s),刹车释放。
(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。
发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。
(3)故障停机⽅式:故障停机⽅式分为:可⾃启动故障和不可⾃启动故障。
停机⽅式为正常刹车程序:即先叶⽚顺桨,党当发动机转速降⾄设定值后,启动机械刹车。
(4)⼈⼯停机⽅式:这⼀⽅式下的刹车为正常刹车,即先叶⽚顺桨,当发电机转速降⾄设定值后启动机械刹车。
风力发电基础知识

并网机构
1.1 双馈型风电主机
4.偏航/解缆系统
偏航机构
风向标 偏航饲服电机(或液压马达)4个 减速装臵 偏航液压制动器 偏航行星齿轮
对风/解缆操作
根据风向标控制对风 计算机控制的自动解缆 纽缆开关控制的安全链动作报警及人工解缆
1.1 双馈型风电主机
偏航的作用
电磁刹车--第3步
通过控制发电机电磁阻转矩实现
1.1 双馈型风电主机
1.1 双馈型风电主机
6.辅助系统
塔架 机舱罩 机舱底盘 变压器 防雷系统及电气保护装臵
1.1 双馈型风电主机
冷却系统
发热部件
液压系统 齿轮箱 发电机 变频器
冷却方式:空气冷却,液体冷却,混合冷却
其他部分
1.1 双馈型风电主机
(二)控制系统
1. 概述
与一般工业控制过程不同,风力发电机组的控制系统是综 合性控制系统。它不仅要监视电网风况和机组运行参数, 而且还要根据风速与风向的变化,对机组进行优化控制, 以提高机组的运行效率和发电量。 比较普遍采用的是分布式控制系统。信号处理通常有两个 独立的计算机或高速数字信号处理芯片。主控制器在地面 控制室的开关柜内,从机设在机舱内。主控制器监控风轮所 有的运行状态。主控制器和从控制器间通过光纤达到可靠 快速地交换信息。
2
1.1 双馈型风电主机
双馈型主机结构
3
1.1 双馈型风电主机
双馈型外观
4
1.1 双馈型风电主机
双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机发电,主要结构包括风轮、 传动装臵、发电机、变流器系统、控制系统等。 双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电 机定子、转子传送给电网。 双馈风力发电机组,定子有两套极数不同的绕组,功率绕组直接与电网相连,控制绕 组通过双向变流器接电网。 发电机定子绕组直接和电网连接,转子绕组和频率、幅值、相位都可以按照要求进行 调节的变流器相连。 变流器控制电机在亚同步和超同步转速下都保持发电状态。 在超同步(发电机转速发电>1500转)时,通过定转子两个通道同时向电网馈送能量, 这时变流器将直流侧能量馈送回电网。 在亚同步(发电机转速发电<1500转)发电时,通过定子向电网馈送能量、转子吸收 能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈。 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电 压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立控制。 变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机和电网造成的不 利影响。提供多种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及 风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运 行状态。
风力发电机基础知识及电气控制

IEC Ⅲ
IEC Ⅲ / IEC Ⅱ
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
7
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21 .7.321. 7.3Satur day, July 03, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2 1.7.321. 7.306:2 3:1706: 23:17Ju ly 3, 2021
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年7月 3日星 期六上 午6时23 分17秒 06:23:1 721.7.3
前端通过法兰 与风轮相连
齿轮箱的作用及工作过程
1 齿轮箱的作用:
将风轮的动能传递给发电机,并使其得到相应的转速。
2 齿轮箱的工作过程:
风作用到叶片上,驱使风轮旋转。旋转的风轮带动齿 轮箱主轴转动并将动能输入齿轮副。经过三级变速,齿轮 副将输入的大扭矩、低转速动能转化成低扭矩、高转速 的动能,通过联轴器传递给发电机。发电机将输入的动能 最终转化为电能并输送到电网。
偏航驱 动装置
侧面轴承
划垫保 持装置
偏航大齿 圈
大齿圈 主机架
划垫保持装置 侧面轴承
锁紧螺母
调整螺栓
偏航系统的功能就是捕捉风向,控制机舱平稳、精 确、可靠的对风
首先,假设现在风电机组正常工作,机舱叶轮处于迎风状 态,但是随着时间变化,风向逐渐的变化了,那么机组就不 能在原来位置工作了。
风力发电基础知识

维护成本高:风力发电机组需要 定期维护维护成本较高
添加标题
添加标题
添加标题
添加标题
投资成本高:建设风力发电场需 要大量生态环境产生一定影响如噪音、 电磁辐射等
风力发电的适用场景
风力资源丰富的地区如海岸线、山地、草原等 远离电网的偏远地区如海岛、边远山区等 需要清洁能源的地区如环保要求高的城市、工业园区等 需要稳定电力供应的地区如医院、学校、工厂等
单击此处添加副标题
风力发电基础知识
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 风力发电的原理 风力发电的优势与局限性 风力发电技术的发展历程 风力发电的应用前景 风力发电的实际应用案例
01
添加目录项标题
02
风力发电的原理
风力发电的工作原理
风力发电的基本原理:利用风力推动风力发电机的叶片旋转从而产生电能。 风力发电机的结构:包括叶片、转子、发电机、塔架等部分。 风力发电的过程:风力推动叶片旋转转子带动发电机发电电能通过输电线路传输到电网。 风力发电的优点:清洁、可再生、环保、无污染。
采用风能预测技术:通过风能预测技术提高风力发电系统的稳定性和效 率
提高风电机组稳定性的措施与技术保障
采用先进的控制技术如 自适应控制、模糊控制 等提高风电机组的稳定 性和可靠性。
加强风电机组的维护和 保养定期检查和更换易 损部件确保风电机组的 正常运行。
采用先进的风电机 组设计如采用多叶 片、可变桨距等设 计提高风电机组的 稳定性和效率。
德国:Nordsee-Ost风电场欧洲最大的 海上风电场之一
中国:内蒙古辉腾锡勒风电场中国最大的 风电场之一
美国:lt Wind Energy Center美国最大 的风电场之一
风力发电基础知识.

课程目录
一 、风力发电机组的分类 二 、风力发电机组的功能原理 三 、风力发电机组的理论基础 四 、风力发电机组的空气动力基础知识 五、 风力发电机组设计风区分类
一 、风力发电机组的分类 风力发电系统的分类——风轮轴向
垂直轴
水平轴
一 、风力发电机组的分类 风力发电系统的分类——叶片数量
一 、风力发电机组的分类
风力发电系统的分类——按功率调节方式
定桨距风机:桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自 动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。
变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过
额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内。 主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控 制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功 率增加。
三、风力发电机组的理论基础
吸收功率 = 上风向能量 – 下风向能量 吸收的风能: E 1 m(v 2 v 2 )
ex
2
1
3
1 2 吸收功率: 2 E ex m(v 1 v 3 ) 2
三、风力发电机组的理论基础
吸收的风能
E
ex
3 1 Av1 2
2 1 v3 v 3 1 1 2 v1 v1
一 、风力发电机组的分类
风力发电系统的分类——按传动形式
高传动比齿轮箱型:风轮的转速较低,通常达不到发电机发电的要求,必须通过 齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。
风力发电机的基础知识介绍

风力发电机基础知识介绍一、风力发电的现状我国民能资源比较丰富,是风能利用的大国之一,风力提水和风帆运输曾有过辉煌历史。
但风力发电在我国起步较晚,前些年主要是建设小型风力发电机(10KW以下)。
目前50~200W微型风力发电机组已定型投入批量生产,年生产能力达一万台以上;l~20KW容量的中、小型风力发电机组已达到小批量生产阶段。
近几年来正在研制50~200KW大、中型风方发电机组。
据1992年末的统计,已推广使用微型风力发电机组约12万台,总装机容量约16·8MW在国际合作和引进国外机组的条件下,已在新疆、内蒙古等区建立了14个风力发电试验场,安装大、中型风力发电机组多台。
仅新疆达圾城风电场装机容量已突破10MW,其经济效益越来越明显。
据估计,10米高的平均风速高于 5.1m/s的面积约为全世界面积的1/4 (3*10 K㎡)如果按每平方公里的风力发电装机容量为0.33MW计算,则这些面积每年的发电量可达2000TW·h,相当于目前全球总耗电量的2倍。
到1990年为止,全世界风机总装容量约为200MW,大部分是欧洲国和美国。
目前,风机正朝大型化方向发展,我国现已有250~500MW级的成熟风机二、风力发电的特点风能的特点是半连续性的,风能受地形和天气的影响很大,并且还有季节性变化和逐日逐时变化,大部分位于海边,及平原地区也有较丰富的风能资源。
风力发电一般由多个机组组成,利用风力,使转子(由叶片、毂和转轴组成)快速转动;经齿轮带动发电机发电(即是把风能转化为机械能,再由机械能转化为电能)。
但风力、风向、风速都是不稳定的,所以把多个机组产生的电能集中后经过充电控制器,储存到蓄电池,提供给各种负载。
三、风力发电能量的来源通常所说的风能是空气流动所具有的动能。
风力发电就是将空气流动的动能转变为电能。
大风包含着很大的能量。
(风速为9~10m/S的五级风吹到物体表面上的力,每平方米面积上约10kg,风速为20m/S的九级风吹到每平米面积上的力约为50kg,风速为50~60m/s的台风这个力可达200kg。
风力发电理论及整机基础知识演示文档

优选风力发电理论及整机基础 知识
课程内容
整机机械传动 叶轮 齿轮箱 联轴器制动器 偏航系统 塔筒
机器的组成?
辅助系统,例如润滑、显示、照明等
原动机部分
传动部分
执行部分
控制系统
第一篇 整机机械传动
一.风力发电理论原理
风能
机械 能
变压器升压 后输送至电
网
电能
叶轮吸收风能 发电机将机械 转化为机械能 能转化为电能
α:冲角
δ:翼型厚度
f :翼型的弯度
叶片受力分析
• C点:压力中心点 • R:叶片翼型剖面受到的合力 • Ry:垂直于来流方向的分力 • Rx:平行于来流方向的分力
升阻力系数
Cl:升力系数
Cd:阻力系数
叶片升阻力系数与冲角的关系
叶片的最大升阻比
斜率=升力与阻力之比 最大升阻比cotε= Cl/ Cd
上半圈时,叶片离心 力和轴向推力的合力K和 叶片轴向重合
由于推力Su< S0 ,离 心力Fu >F0 ,所以下半圈 时,合力K并不停在叶片 轴向上。
轮毂受力情况
铰链式轮毂 常用于两叶片叶轮 半固定式轮毂,铰链轴与叶片长度方向及叶轮轴两两垂直
叶片系数与阻力系数的关系
风电机组对叶片的要求
• 比重轻且具有最佳的疲劳强度和机械性能,能经 受暴风等极端恶劣条件和随机负荷的考验;
• 叶片的弹性、旋转时的惯性及其振动频率特性曲 线都正常,传递给整个发电系统的负荷稳定性好;
• 耐腐蚀、紫外线照射和雷击的性能好; • 发电成本较低,维护费用最低。
叶片技术发展——材料
机型环境温度分类: 常温型:生存温度:-25℃~+45℃ 运行温度:-15℃~+45℃ 低温型:生存温度:-45℃~+45℃ 运行温度:-30℃~+45℃
风力发电基础知识

垂直和水平轴风机
叶轮连接方式
windward
Reference: DEWI
Leeward
叶轮连接方式
Tvind 风机
(2000 kW, D = 52m, 丹麦, 1977)
Hütter
W34
(100 kW, D = 34 m, 德国 1958)
Smith-Putnam
(1250 kW, D = 53 m, 美国1941)
(α )
A
ρ 2 w (c ⋅ b ) 2
L – 升力 D – 阻力 c – 弦长 b - width w – 速度
作用在叶片上的力
升力一直与速度的方向垂直 r r L⊥v 阻力与速度的方向平行
r r D v
攻角 αA
攻角:气流方向与翼弦之间的夹角, 气流方向:是指的风速与旋转速度的合速度的方向.
软并网技术
—转速升高,发电机输出功率,双向晶闸管自动关 闭,发电机输出电流通过自动开关触点流向电网 示意如图
发电机
自动并网开关
电网
双向晶闸管
E-36(450 kW, D=36 m )
后面: E-32 (300 kW, D=32 m)
Enercon 风机发展
Reference: Enercon
Enercon 风机发展
Reference: Enercon
Enercon的风机结构
早期设计
Enercon的风机结构
新设计结构
E112
ENCON E112 4.5MW风机,塔高112 米,机头总重530吨, 采用水泥塔
丹麦设计概念的发展
早在90年代,丹麦生产的150 kW 到300 kW 成了市场的主流
现在许多的制造商改变了他们的设计概念 一些依然坚持丹麦设计概念 一些用变浆功率调节代替了失速调节
风力发电理论及整机基础知识

8
水平轴风力发电机组
9
二.风力发电机组组成
兆瓦级的大型风力发电机组包括 四个部分:
• • • •
叶轮 机舱 塔架 基础
10
三. SL1500风力发电机组概述
叶片
一. 叶轮
轮毂
叶轮又叫风轮,是获 取风中能量的关键部件, 由叶片和轮毂组成。分变 桨距风轮和定桨距风轮。
3.加热器: 数量:六个(两组,每组一个备用) 位置:齿轮箱的前部和后部 作用:当齿轮箱工作环境温度较低 时,加热器对齿轮箱润滑油进行加 热,以确保齿轮箱内部的润滑油保 持在一定的粘度范围。
控制方式:系统自动控制
51
4.Pt 100(温度传感器):
数量:三个(油温、轴承各一个,备 用一个) 位置:齿轮箱后部右侧和上方 作用:监控油温和高速端轴承温度, 确保机组的安全 控制方式:系统自动控制
水平轴风力发电机
对风向依赖大
机器部件在基础底上,便于维修 高空维修难度大 叶片自重影响小 低风下叶片不会自己启动 叶片自重产生交变负荷对叶片 寿命产生决定性影响 达到切入风速机组即启动
地面到风轮中心点的距离很小, 轮毂中心高度可灵活掌握 减少了发电量
拉索产生振动问题,减振成本高 没有拉索,塔筒振动小
润滑方式:
飞溅润滑+压力润滑
46
齿轮箱的减噪装置
齿轮箱的重量约占机舱重量的1/2,而且当风机运 转时,齿轮箱会产生振动。为减小振动对其它部件的不 利影响,齿轮箱与主机架之间增加了减振元件。
47
结构特点
• 主轴内置于齿轮箱的内部,不需要现场主轴对 中; • 主轴轴承采用稀油润滑,效果更好; • 采用两极行星、一级平行轴机构传动,提高了 速比,降低了齿轮箱的体积; • 采用先进的润滑与冷却系统,使每个润滑点都 可以得到充分的润滑,确保了齿轮箱的使用寿 命。
风力发电机组整机基础知识

风力发电机组整机基础知识风力发电机组是一种利用风能转化为电能的装置。
它由风力发电机、传动装置、发电机、控制系统和塔架等组成。
风力发电机是风力发电机组的核心部件,它通过叶轮捕获风能并将其转化为机械能。
一般来说,风力发电机的叶轮由三个叶片组成,叶片的形状和材质会直接影响发电机的效率。
同时,叶轮的直径和转速也会影响发电机的性能。
传动装置用于将风力发电机转动的低速轴传递给发电机。
传动装置通常由齿轮、轴和轴承等部件组成。
它的作用是将低速高扭矩的风轮转速转换为高速低扭矩的发电机转速,以提高发电机的效率。
发电机是将机械能转化为电能的装置。
在风力发电机组中,常用的发电机是异步发电机和永磁同步发电机。
异步发电机结构简单、可靠性高,适用于大型风力发电机组;而永磁同步发电机具有高效率和较小的体积,适用于小型风力发电机组。
控制系统是风力发电机组的大脑,它能监测和控制整个发电过程。
控制系统通常包括风向传感器、风速传感器、转速传感器和电气控制器等部件。
通过收集和分析这些传感器的数据,控制系统可以自动调整发电机的转速和输出功率,以适应不同的风速和风向条件。
塔架是将风力发电机组安装在地面或海上的支撑结构。
塔架的高度和材质会直接影响风力发电机组的发电能力。
一般来说,塔架越高,风力发电机组能够捕获到的风能就越多,从而提高发电效率。
风力发电机组的基础知识还包括风能的计算和风场选择。
风能的计算是评估风力发电机组发电潜力和风机选型的重要依据。
而风场选择则是确定风力发电机组安装位置的关键因素,需要考虑到地形、气象条件和电网接入等因素。
风力发电机组的整机基础知识包括风力发电机、传动装置、发电机、控制系统和塔架等组成部分,以及风能的计算和风场选择。
了解这些知识对于设计、安装和运维风力发电机组都具有重要的意义。
通过不断的研究和创新,风力发电技术将会进一步提高,为可持续能源的发展做出更大的贡献。
风电基础知识大全

40或 50m
GOLDWIND
600KW 风机
机 型:失速型、带叶尖气动 刹车、上风向、三叶片
额定功率:125/600kW 风轮直径:43m 轮毂中心高:40m,50m(根据塔架高
度) 起动风速:3m/s 额定风速:15m/s 停机风速:25m/s 最大抗风:70m/s(3秒) 最大风能利用系数:CPmax≥0.4 控制系统:计算机控制,远程监控 工作寿命:≥20年
举例:英国5MW岸上项目成本构成
风机成本构成
风机机舱成本构成
英国
风电项目中风机故障构成
英国的统计
风机制造行业特点
原材料密集 (体积大,重量重) 资本密集 技术密集 知识密集
研发周期长 设计周期长 试制生产周期长 产品测试、认证周期长
市场:目前还是政策主导
企业核心竞争力
目标 野心越大,度量越大,越能包容人才。
风机制造业
Repower 2MW 风机
***产品介绍
Φ43
❖ “***S43/600”含义:
m
▪ ***(goldwind) -公司品牌
▪ S-stall ,即失速控制
▪ 43-叶轮的直径为 43m
▪ 600-发电机的额定功率为600kw
❖ 采用丹麦设计概念:
▪ 上风向,三叶片,失速控制,叶尖 气动刹车。
基本价值
货币化的环境收益
燃料节省 资本节省
排放减少 化学燃料使用的减少
风电系统发电的度电成本模型(不考虑环境效益)
部件成本
组装成本
运输成本
风机生产成本
利润
风场配套设施 部件失败率 备件成本 备件预定时间 平均维修时间 耗材 风场人力 风频分布 功率曲线 可利用率 驱动链效率 上网损失
新能源电站-风力发电机整体介绍

产生危害。
5. 在存在一定安全风险的部件上工作之前,必须通过机舱控制柜或塔基控制 柜面板上的开关将机组切换到“检修状态”。同时,要在开关上应悬挂明 显的警告标志,以避免其他人无意的操作。
6. 机组切换到“检修状态”时,机组无法启动,但允许部分手动控制(正常 运行时是不允许的)。
机组运行,叶片开桨 机组停机,叶片顺桨
高速轴制动器
(七)偏航系统
风向总是变化的,为了捕获最大的风能,必 须每隔一段时间计算一次风向偏差,如果超过范 围,就要偏航对风。
风力发电机组的偏航系统主要由偏航轴承、 偏航驱动器、偏航制动器、润滑泵、偏航编码器 组成。
偏航轴承:偏航电机下面有一个小齿轮与大齿轮啮合,这个大齿轮叫偏航轴承, 由偏航电机驱动。偏航轴承承载机组中主要部件的重量,并传递气动推力到塔架, 轴承中含有齿圈,偏航驱动机构中的小齿轮与之啮合。
液压站系统有两个主控制回路:转 子制动回路和偏航刹车回路。系统正常 工作压力范围在140-160bar之间,系 统压力由电机泵组作为动力单元提供并 由压力传感器来加以精确显示,动力源 的断合利用压力传感器和电气联动控制 来实现。
(九)变频系统
变频器是风电机组的重要组成部分,为转子提供了频率可变的电源,使 得转子的机械转速与电网的同步转速相互解耦,由此实现了风电机组的变速 运行。
7. 在轮毂中进行维护工作时,不允许变桨系统进行变桨动作,除非在特殊情 况下,并且采取了特殊的防范措施。每个叶片有一个锁紧装置,当检修叶 片变桨驱动时必须启用该锁紧装置。
8. 在轮毂或在传动链部件上工作时必须启用风轮锁定装置。 9. 在系统检修时,同一时间内可以关闭一个偏航驱动,其他的驱动可以承受
风力发电机组基本结构与工作原理

电气工程新技术专题题目:风力发电机组基本结构与工作原理及其控制技术专业:电气工程及其自动化班级:*********姓名:*********学号:*********指导老师:*********本周的电气工程新技术专题中,主要讲解了一些关于风力发电机组的基本姐与工作原理方面的知识,使我们对此有了初步的认识,下面我将简单叙述一下我对风力发电机的了解。
风力发电机是将风能转换为机械功的动力机械,又称风车。
广义的说,它是一种以太阳微热源,以大气为工作介质的热能利用发电机。
风力发电机利用的是自然能源,相对柴油发电要好得多。
但若应急来用的话还是不如柴油发电机。
风力发电不可视为备用电源,但是却可以长期利用。
一、风力发电机的基本结构风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。
各主要组成部分功能简述如下:(1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。
(2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。
(3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。
(4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。
转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。
(5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。
同时提供必要的锁紧力矩,以保障机组安全运行。
(6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。
轮毂结构是3个放射形喇叭口拟合在一起的。
(7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。
通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。
风力发电机组的发电系统基础知识讲解

主轴剖面图
前轴承(BT轴承) 前轴承是双列圆锥滚子轴承,
它具有一个双滚道的外圈和两个 内圈,内圈之间有一隔圈,可以 通过改变隔圈的厚度调整轴承游 隙。
特点:这类轴承可以在承受径向载荷的同时承受双方向轴 向载荷,可在轴承的轴向游隙范围内限制轴和外壳的轴向 位移。主要用于承受以径向载荷为主的径向与轴向联合载 荷。具有承载能力大,极限转速低的特点。
59#发电机过速1故障为例:
HTMF文件
b文件
转子Biblioteka 轴承线圈永磁体定子
定轴 动轴
永磁体: 非满载状态下效率高 结构紧凑、重量轻
外转子、内定子结构: 磁通密度大、不会退磁
主动温度控制冷却系统: 冷却性能好
一体化轴承概念: 不另外需要轴承
发电机热量散热方式
发电机锁定装置
锁定系统包括维护手柄、叶轮锁定传感器、安全门以及叶轮锁定 销等部分。锁定传感器反馈叶轮是否锁住,安全门所反馈安全门 是否锁定,只有安全门锁住才可以退出发电机锁定销。锁定销装 置装在发电机定子支架上,通过操作机舱维护手柄进行叶轮锁定 后,拍下机舱急停按钮,安全门可以打开取下,通过发电机人孔 就可以进入轮毂工作。
发电机系统巡检项目
1.发电机散热风道密封完好无破损漏风,连接牢固; 2.发电机散热电机无振动无异常噪音; 3.滑环支架螺栓无松动; 4.滑环安装螺栓无松动; 5.发电机转速传感器电缆安装牢固,电缆完好绑扎固定良好; 6.发电机转速传感器距离测量物2-3mm; 7.转子制动器与定子连接螺栓无松动、无锈蚀; 8.制动器摩擦片厚度是否小于2mm; 9.制动器各油管路密封良好,无泄漏; 10.安全门锁的锁扣、行程开关的检查; 11.发电机轴承温度无异常,油脂正常、无溢出; 12.发电机开关柜电缆出线防火封堵的检查;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.世界各地的风力发电装置
到2005年底,世界总风力发电装机容量达58千兆瓦。德国、 西班牙、美国、印度和丹麦是以风力发电装机容量来算前几名的 国家。在丹麦,风能发电提供该国总用电量的20%。香港第一台 大型风力发电机是由香港电灯集团於2005年末安装在南丫岛上, 并於2006年二月正式启用。该机额定输出功率为800千瓦。 风能是可再生能源发展中最快的部分。由1995年到2005年之 间的年增长率为28.5%。根据德国风能会(DEWI)的估计,风能 发电的年增长率将保持高增长率,在2012年或之前全球风力发电 装机容量可能达到150千兆瓦。
设於塔底的变压器(或者有些设於机舱内)可提升发电机的 电压到配电网电压(香港的情况为11千伏)。 所有风力发电机的功率输出是随著风而变的。强风下最常见 的两种限制功率输出的方法(从而限制风轮所承受压力)是失速 调节和斜角调节。使用失速调节的风电机,超过额定风速的强风 会导致通过业片的气流产生扰流,令风轮失速。当风力过强时, 业片 尾部制动装置会动作,令风轮剎车。使用斜角调节的风电 机,每片叶片能够以纵向为轴而旋转,叶片角度随著风速不同而 转变,从而改变风轮的空气动力性能。当风力过强时 ,叶片转 动至迎气边缘面向来风,从而令风轮剎车。 叶片中嵌入了避雷条,当叶片遭到雷击时,可将闪电中的电 流引导到地下去。
3.风的功率计算
风的能量指的是风的动能。特定质量的空气的动能可以用下 列公式计算 。 能量= 1/2 X 质量 X (速度)^2 吹过特定面积的风的的功率可以用下列公式 算 。 功率= 1/2 X 空气密度 X 面积 X ( 速 度 )^3 其中功率单位为瓦 特; 空气密度单位为千克/立方米; 面积指气流横截面积,单位为平方米 ; 速度单位为米/秒。 在海平面高度和摄氏15度的条件下,干空气密度为 1.225千 克/ 立方米。空气密度随气压和温度而变。随著高度的升高,空 气密度也会下降。 上述公式中可以看出,风的功率与速度的三次方(立方)成 正比,并与风轮扫掠面积成正比。不过实际上,风轮只能提取风 的能量中的一部分,而非全部 。
空气密度按照标准空气密度(1.225kg/m3)计算功率曲线如下。
5.风力发电机的主要种类
竖轴式
横轴式
横轴风力发电机和竖轴风力发电机根据叶片固定轴的方位, 风力发电机可以分为横轴和竖轴两类。竖轴式风电机工作时转轴 方向与风向一致,横轴式风电机转轴方向与风向成直角。 横轴式风电机通常需要不停地变向以保持与风向一致。而 竖轴式风电机则不必如此,因为它可以收集不同来向的风能。 横轴式风电机在世界上占主流位置。 逆风风力发电机和顺风风力发电机 逆风风电机是一种风轮面向来风的横轴式风电机。而对於顺 风风电机,来风是从风轮的背後吹来。大多数的风力发电机是逆 风式的。 单叶片、双叶片和三叶片风力发电机 叶片的数目由很多因素决定,其中包括空气动力效率、复杂 度、成本、噪音、美 学要求等等。大型风力发电机可由1、2或 者3片叶片构成。叶片较少的风力发 电机通常需要更高的转速以 提取风中的能量,因此噪音比较大 。而如果叶片 太多,它们之 间会相互作用而降低系统效率。目前3叶片风电机是主流。从美 学角度上看,3叶片的风电机看上去较为平衡和美观。
第二篇 风力发电机组概述
叶片 叶轮 直径尺寸分类: 有82米和88米 机型环境温度分类: 常温型:生存温度:-25℃~+45℃ 运行温度:-15℃~+45℃ 低温型:生存温度:-40℃~+45℃ 运行温度:-30℃~+45℃
2.风力发电机组基本参数
技术参数 额定功率 切入风速 切出风速 单位 kW m/s m/s WT1650/82 1650 3.5 25 WT1500/88 1500 3.5 25
齿轮箱的重量约占机舱重量的1/2。 减振元件增加在齿轮箱与主机架之间。
5.润滑冷却系统
对齿轮和轴承的保护作用: • 减小摩擦和磨损,具有更高 的承载能力,防止胶合。 • 吸收冲击和振动。 • 防止疲劳点蚀。 • 冷却、防锈、抗腐蚀。
第四篇
1.装配位置
联轴器制动器
2.联轴器
联轴器作用: 作为一个柔性轴,它补偿 齿轮箱输出轴和发电机转子的 平行性偏差和角度误差。
通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实 现风机的功率控制。 如果一个驱动器发生故障,另两个驱动器可以安全地使风机 停机。
4.叶轮组装图片
第三篇
1.装配位置
齿轮箱
2.工作原理
低转速 叶轮 将低转速的动能转化为高 转速的动能 齿轮箱
需要高转 速
发电机
3. 风电机组齿轮箱结构
4.齿轮箱的减噪装置图片
抗拉强度:
当钢材屈服到一定程度后,由于内部晶粒重新 排列,其抵抗变形能力又重新提高,此时变形 虽然发展很快,但却只能随着应力的提高而提 高,直至应力达最大值。此后,钢材抵抗变形 的能力明显降低,并在最薄弱处发生较大的塑 性变形,此处试件截面迅速缩小,出现颈缩现 象,直至断裂破坏。钢材受拉断裂前的最大应 力值(b点对应值)称为强度极限或抗拉强度。
6.风电场
风电系统可以是仅有一台风电机,或者由多台风电机器线 性排列或方阵排列形成风电场。 风电场的风力发电机相互之间需要有足够的距离,以免造 成过强的湍流相互影响,或由於“尾流效应”而严重减低後排 风电机的功率输出。 为了配合运送大型设备(特别是叶片)到安装现场,须要 风电场 建设道路。另外亦须要建设输电线,把风电场的输出连接到电 网接入点。
风轮叶片由复合材料制造。不像小型风力发电机,大型风电 机的风轮转动相当慢。比较简单的风力发电机是采用固定速度的。 通常采用两个不同的速度-在弱风下用低速和在强风下用高速。 这些定速风电机的感应式异步发电机能够直接发产生电网频率的 交流电。 比较新型的设计一般是可变速的(比如Vestas公司的V52850千瓦风电机转速为每分钟14转到每分钟 31.4转)。利用可变 速操作,风轮的空气动力效率可以得到改善,从而提取更多的能 量,而且在 弱风情况下噪音更低。因此,变速的风电机设计比 起定速风电机,越来越受欢迎。 机舱上安装的感测器探测风向,透过转向机械装置令机舱和 风轮自动转向,面向来风。 风轮的旋转运动通过齿轮变速箱传送到机舱内的发电机(如果 没有齿轮变速箱则直接传送到发电机)。在风电工业中,配有变 速箱的风力发电机是很普遍的。不过,为风电机而设计的多极直 接驱动式发电机,也有显著的发展 。
额定风速 叶轮直径 轮毂高度 生存风速
转速范围 额定转速
m/s m M m/s
rpm rpm
11 82 65 52.5
9.7-19 17.4
11 88 70 52.5
9.8-18.3 17.4
3. 风力发电机组机舱内部简图
第三篇
1.叶片
数量:三只 作用:机组吸收风能的部件 主要材料:玻璃钢
叶轮
变桨系统:改变叶片仰角可实现功率调节 叶片的工作位置:在90度仰角时
风力发电机组 整机基础知识
中国南车株洲电力机车研究所风电事业部
第一篇
1.风力发电理论原理
风力发电简介
变压器升压后输 送至电网
风能
机械能 叶轮吸收风能 转化为机械能
电能
发电机将机械
能转化为电能
现代风力发电机采用空气动力学原理,就像飞机的机翼一 样。风并非"推"动风轮叶片,而是吹过叶片形成叶片正反面的压 差,这种压差会产生升力,令风轮旋转并不断横切风流。 风力发电机的风轮并不能提取风的 所有功率。根据Betz 定律,理论上风电 机能够提取的最大功率,是风的功率 的 59.6%。大多数风电机只能提取风的功 率的40%或者更少。 风力发电机主要包含三部分∶风轮、 机舱和塔杆。大型与电网接驳的风力发电 机的最常见的结构,是横轴式三叶片风轮 ,并安装在直立管状塔杆上。
3.制动器
制动器作用: 制动器是一个液压动作 的盘式制动器,用于机械刹 车制动。
•制动器图片
4.刹车系统位于齿轮箱高速端与低速端的比较
低速轴上
优点 高可靠刹车直接作用在风轮上 刹车力矩不会变成齿轮箱载荷
高速轴上
刹车力矩小 齿轮箱可带集成风轮支撑
缺点
刹车力矩很大
多数情况要采用非集成风轮支撑的齿轮 箱
刹车力矩对齿轮箱有载荷冲击
安全性差
5.发电机对中
齿轮箱输出轴轴心线
发电机转子轴心线
第五篇
1.装配位置
偏航系统
2.偏航系统
功能:改变机舱朝向以实现对风、解缆保护。 机组偏航
1.靠什么装置驱动?
2.“需要偏航”由谁决 定? 3.“偏航多少角度”由 谁检测?
•偏航系统结构
侧面轴承
偏航驱动装置
滑垫保持装置
•现场照片
•叶片技术发展——材料 木制叶片及布蒙皮叶片
钢梁玻璃纤维蒙皮叶片 铝合金等弦长挤压成型叶片 玻璃钢复合叶片 碳纤维复合叶片
•叶片技术发展——尺寸
•叶片技术发展——数量
单叶片
双叶片
三叶片
2.轮毂
功能: 固定叶片,连接齿轮箱。叶片受力后,带动轮毂顺时针旋转, 即将风能转化为机械能。
3.变桨系统:
a、张线支撑式
b、悬臂梁式
c、桁架式及塔架的主要受力情况
3. 机组塔筒
目前南车风电所用塔架(以轮毂 中心高计算)主要为: 65米、70米 以运行的环境温度划分有: 低温型(-40ºC) 常温型(-20ºC)
3. 机组塔筒吊装图
4.塔筒的高强度螺栓连接
螺栓上的字符:
字母表示生产厂家的简称,比 如CA是一汽标准件厂的简写。 下面的数字表示螺栓的强度等 级,圆点前的数字表示螺栓的抗拉强 度Mpa的百分之一。圆点后的数字表 示螺栓的屈服强度与抗拉强度的比 的10倍 。
4.风力发电机的功率曲线
在风速很低的时候,风电机风轮会保持不动。当到达切入风速时 (通常每秒3到4米),风轮开始旋转并牵引发电机开 始发电。随著风 力越来越强,输出功率会增加。当风速达 到额定风速时,风电机会输 出其额定功率。之後输出功率 会保留大致不变。当风速进一步增加, 达到切出风速的时 候,风电机会剎车,不再输出功率,为免受损。 风力发电机的性能可以用功率曲线来表达。功率曲 线是用作显示 在不同风速下(切入风速到切出风速)风电机的输出功率。 为特定地点选取合适的风力发电机,一般方法是采用风电机的功率 曲线和该地点的风力资料以进行产电量估算。 风力发电机的额定输出功率是配合特定的额定风速设而定的。由 於能量与风速的立方成正比,因此 ,风力发电机的功率会随风速变化 会很大。 同样构造和风轮直径的风电机可以配以不同大小的发电机。因此 两座同样构造和 风轮直径的风电机可能有相当不同的额定输出功率值, 这取决於它的设计是配合强风地带(配较大型发电机)或弱风地带 (配较小型发电机)。