传染病数学建模论文

合集下载

sars数学建模获奖论文_11

sars数学建模获奖论文_11

sars数学建模获奖论文二.数学模型的分析与建立 2.1 分析与假设将人群分为四类:健康者(易受感染者):用 S 表示健康者在人群中的比例。

潜伏期者(已感染,尚未发病):用 E 表示他们在人群众的比率。

发病期者(已发病者):用 I 表示病人在人群中的比例。

退出者(死亡者):用 R 表示退出者在人群中的比例。

2.2 模型的建立 1 .参数设定 1每个病人平均每天有效接触(足以使被接触者感染)的人数。

q 退出率,为 SARS 患者的日死亡率和日治愈率之和。

l (流入)流出人口占本地总人口的比率。

1处于潜伏期的病人的日发病率。

P流入人口中带菌者所占的比例。

2 .控前方程的建立根据我们的分析和各变量的分析,结合实际的疫情的传播规律,我们可以建立如下的方程组:ISdtdS1(1)LE LP E ISdtdE 1 1(2)1/ 3qI EdtdI1(3)qIdtdR(4) 0 0 00, , , E R I S (初值)3 .参数的确定 1) 1根据医学资料和有关数据推导而得。

2) q 由该城市的医疗水平和已知的统计数据分析,求其统计平均值。

3) l 由城市的出入人口流动情况(主要由经济发达程度和交通状况决定)。

可查有关资料。

4) 1根据医学研究和调查的有关结果和该城市的疫情发展状况可得。

5) P由流入该城市人群的地区分布情况和各其他地区的疫情决定。

II 控后模型的建立 1 .参数设定 2 不可控人群(在后面的分析中可得到)在发病后到被隔离前平均每天接触的人的数目。

q 退出率,为 SARS 患者的日死亡率和日治愈率之和。

接触病源的人的发病率。

每天由可控人群和不可控人群转化为病人的日转化率。

2 .控后方程的建立根据上面我们的各种假设和各变量和参数的实际意义,我们可以建立如下控制后的疾病模型的方程组:(5)qI GdtdI(6) qIdtdR(7) SdtdS 2 GGGSdtdG 2GSdtd2 (9) 0 0 0 0 0, , , , E R I S (初值)在得到这个模型后,我们对模型和数据进行了进一步的分析,发现这个模型中存在以下的问题...3/ 3。

SARS传播的数学模型_数学建模全国赛论文1

SARS传播的数学模型_数学建模全国赛论文1

SARS传播的数学模型_数学建模全国赛论文SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS传播的因素参数化,在传染病 SIR 模型的基础上,改进得到SARS 传播模型.采用离散化的方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计2514 人,与实际情况比较吻合. 应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:早发现,早隔离能有效减少累计患病人数;严格隔离能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失,并预计北京海外旅游人数在 10 月以前能恢复正常. 最后给当地1/ 2报刊写了一篇短文,介绍了建立传染病数学模型的重要性. 1.问题的重述 SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1)对题目提供的一个早期模型,评价其合理性和实用性. (2)建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响. (3)根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响. (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义要求模型的建立有根据,预测结果切合实际. 实用性定义要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足...。

传染病感染数学模型论文---精品管理资料

传染病感染数学模型论文---精品管理资料

传染病感染问题研究一、 摘要:面对严重影响人类生活甚至生存的传染病感染问题,越来越多的人意识到研究其传染的严峻性和重要性。

许多学者和专家都投入了巨大的精力花费了许多时间来研究各种传染病的传播规律和预防手段,目的就是争取将其对人类的损害降到最低.利用数学模型,建立适当的假设然后对传染病感染问题进行适模拟然后进行研究,找出适当的预防手段是目前研究传染病传播比较流行的做法。

诚然对于现实的复杂和不可预测性我们在建立模型时是无法进行完整的模拟,只能对现实进行适当合理的假设。

因此本文就是就是在对传染病感染进行简单假设(孤岛疾病问题)的基础上对传染病感染问题进行数学建模并根据给出数据验证建模的准确性,分析模型的优缺点并给出改进方案。

二、 关键词:传染病 数学模型 微积分三、 引言:在人类生活中,一直受到各种传染病的困扰,造成各种影响范围巨大人数众多的死亡事件,如十四世纪四十年代肆虐欧洲的“黑死病”,共造成了全世界大约7500万人死亡,其中2500万为欧洲人约占欧洲总人口的三分之一,期间让整个欧洲出现了许多“空城"“死城”影响巨大。

虽然随着医学的进步,诸如霍乱、天花等曾肆虐全球的疾病已经得到了有效的控制,但是一些全新的,不断变异升级的传染病却不间断的向人类袭来,如二十世纪八十年代开始迅速传播艾滋病;以及2003年席卷全球肆虐整个中国的“非典型肺炎(SARS )"和此后陆续出现的疯牛病、禽流感和猪流感都给人们的生活和生命带来极大的危害和困扰.长期以来,建立传统的传染病模型,模拟和描述传染病的传播过程,解释传播规律,分析受感染人群以及人数的变化规律,探索抑制和制止传染病传播和蔓延手段等,都是世界各国政府和专家学者们关注的课题之一。

研究传染病模型不可能通过实验获得数据,而且从医疗部门和卫生组织得到资料也是十分有限的,而且这些资料绝大多数是不完全和不充分的,同时由于不同的传染病传播的过程方式传染源各有不同,所以,我们只能按照一般的机理建立简单的模型。

毕业设计sars的传播数学建模论文

毕业设计sars的传播数学建模论文

SARS的传播摘要本文首先采用抽样检测法对SARS早期的模型的合理性及实用性进行了评价,然后我们通过对传染病的共性及SARS的特性的分析。

得出三个基本假设并且把人群理想化为三类(S类,I类,R类),建立起基本的SIR模型,再对SIR 模型中三类人群间的相互转化关系的分析,结合马氏链得出三种人群间变化率的矩阵T,由于SARS的特性,可知,SIR模型中的两个参数a(t),b(t)是以时间为变量的函数。

我们根据北京疫情的数据,通过多项式的数据拟合法分别得a(t),b(t)的表达式,我们把a(t),b(t)及T结合,从而建立出模型。

由于医疗条件的逐步改善,必会研制出其疫苗。

于是我们在不改变人群分类的情况下,增加了一个系数c,(c表示疫苗日成功接种率,由于在疫情期间,疫苗未能及时改良,故c为常数。

)进一步完善了我们的模型。

本文利用数学软件(Mathematica,Matlab)很好的实现了模型运算,并结合实际数据得出了各类人群与时间的关系图。

从图中可以很好的反映出各类人群的变化规律,它们的变化规律与实际变化相吻合,从而证明了我们的模型基本符合要求。

一问题的提出严重急性呼吸道综合症,简称SARS,是21世纪第一个在世界范围内传播的传染病。

它对全球的经济和生活造成巨大的破坏,尽管目前疫情已得到控制,但对这种新冠状病毒及其流行规律的研究还刚刚开始,因此,有必要根据SARS流行的特点,建立数学模型预测其传染,从而采取措施预防和控制其发展。

而建立该模型我们要综合各方面的因素才能使模型合理化。

二问题的分析通过分析北京,香港和广东三地的受感染人数的变化规律,我们就可以对不同地区预测流行病的变化趋势提出以下模型假设。

模型的假设:1 将人群分为三类易感染者人数(疑似病例):用S表示;病人数(已受感染者,即确疹者):用I表示;移出者人数(包括“被治愈者”和“死亡者”):用R表示2 该地区人口不流动,疫情阶段无病原的输入和输出,设最初易感染者人数为N,此时I,R均为0。

数学建模甲型H1N1流感论文

数学建模甲型H1N1流感论文

2009年西北师范大学数学建模大赛参赛题目:甲型H1N1流感防治的数学模型指导教师:曹海玲参赛队员:杨海、朱丹丹、林爱军所在学院:经济管理学院所在专业:信息管理与信息系统所在年级:2007级参赛时间:2009/6/1—2009/6/8甲型H1N1流感防治的数学模型摘要:该模型应用数学、运筹学(层次分析法)等知识,对病例数量变化进行了全面的分析,并应用模型进行了预测,在此基础上提出了对疾病的具体防治方案,根据不同情况进行方案的最优选择,达到防治成最低的目的。

简要过程如下:1、从纯数学角分析(1)对每天的病例数量变化进行对比分析,并采用部分假设,抽象出病例一般变化模型。

得出病例数量()00K t N t N e =。

同时进行了验证,当T1=T —5时,最高病例数量为()010105500K T K T K N e N e e --=⋅,明显小于010K T N e 。

证明了“早预防、早发现、早控制、早治疗、早隔离”对控制甲型H1N1流感传播的必要性和重要性。

(2)对所建的初始模型进行优化,使其应用范围更广。

优化后的模型更接近实际情况,预测更加准确可信。

并可同时进行短期与中长期预测。

提出控制和减少传染源的重要性,这对于减少发病率,缩短流行周期具有一定的指导意义。

2 、结合病源学知识根据传染病随时间变化呈现“激增→增减平衡→衰退”的发展趋势,预测出其最终也是可战胜的。

基于以上两方面,得出的一致结论:甲型H1N1流感可战胜。

3、在以上分析的基础上,提出了防治的具体可行的方案,总结出了有效防治可以带来的效益。

4、在3的基础上,根据不同区域不同的病例数量,选择最优的各项措施组合,使得防治“效益代价比”最高。

即最优结果f(x)=Max{效益/代价},最终在达到防治万无一失的前提下,使得防治成本最低。

5、我们构建了建模过程示意图,其中包括了方案选择的条件以及不同的最优方案组合和预期要达到的目标。

目录摘要 (1)一、初始模型 (3)1、提出问题 (3)2、假设增长率K(t)为常数 (3)3、假设增长率K(t)为一个连续函数 (3)4、模型分析 (4)5、小结 (4)二、优化模型 (4)1、提出问题 (4)2、预测 (5)3、小结 (6)三、防治方案层次结构分析图 (7)1、防治效益图 (7)2、防治代价图 (8)四、模型与防治方案综合分析 (9)五、总结 (9)六、建模过程示意图 (10)七、推荐信 (11)八、甲型H1N1流感相关知识介绍 (12)九、参考文献 (14)一、初始模型1、提出问题:如何证明预防越早越有效参数说明:N :代表病人总数.N 0:表示初始时刻的病例数N(t):代表t 时刻的病例数K (t ):代表t 时刻的病例增长率,即K (t )=△N(t)/tN(t)(单位时间内N (t )的增量与N (t )的比例系数)K(t)N(t):代表单位时间内病例增加量根据以上对参数的假设可得,N (t )满足微分方程:(1)2、假设:增长率K (t )为常数(在爆发初期,该病例人数增长较快,增长率为K(t))设K (t )≡K 0,则(1)变为(2) 解之得:()00K t N t N e = (3)表明甲型H1N1流感病人将按指数规律无限增长(K>0)。

数学建摸论文例子-传染病模型

数学建摸论文例子-传染病模型

传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。

而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。

并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。

运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。

同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS预测模型之类的传染病预测模型的重要意义。

关键词:微分方程 SARS 数学模型感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。

2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。

附件1提供的数据供参考。

3)说明建立传染病数学模型的重要性。

2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。

传染病的传播及控制分析数学建模

传染病的传播及控制分析数学建模

传染病的传播及控制分析摘要为进一步探索传染病的传播和流行规律及其与防治措施的关系,本文通过建立传染病的传播模型,了解传染病的扩散传播规律,为预测和控制传染病提供可靠、足够的信息。

本文针对该问题建立了SEIR微分方程模型,对病毒的传播过程进行了模拟分析,得出了患者人数随时间的变化规律。

我们将人群分为五类:患者、疑似患者、正常人、治愈者和死亡者。

前三者作为传染系统。

我们认为治愈者获得终身免疫,和死亡者一样移出传染系统,即后两者合并为移出者。

本模型将病毒的传染与扩散分为两个部分:控制前和控制后。

在控制前,相当于没有对病毒扩散做任何限制,患者数量短时间内大量增长,并以死亡的形式退出传染系统;在控制后,由于对潜伏者进行了一定强度的隔离,与此同时,确诊患者得到有效的治疗,使得传染源数量减少,患者平均每天接触的人数减少,治愈者增多,并作为主要的移出者移出传染系统。

在模型建立的基础上,通过Matlab软件拟合出患者人数随时间变化的曲线关系图,得到如下结果:控制前,患者人数呈指数增长趋势;控制后,在p=0.4时,患者人数大致在7天时到达最大值,在25天时基本没有患者;在p=0.3时,患者人数大概在第8天到达最大值186383,大概在28天之后基本没有患者;在p=0.6时,大概在第5天患者人数到达峰值为47391,在21天时基本没有患者。

综上分析,对隔离强度的处理是控制传染病的一个重要手段。

针对所得结果,对H7N9的传播控制时提出了医院、政府和个人应有的一些控制措施。

关键词:隔离强度潜伏期SEIR模型一、问题重述:2013年中,H7N9是网上的热点,尤其是其高致死率,引起了人们的恐慌,最近又有研究显示,H7N9有变异的可能。

假设已知有一种未知的现病毒[1]潜伏期为a:a天,患病者的治愈时间为a天,假设该病毒可以通过人与人之间的直接接123触进行传播,患者每天接触的人数为r,因接触被感染的概率为λ(λ为感染率)。

为了控制疾病的传播与扩散,将人群分成五类,患者、疑似患者、治愈者、死亡者、正常人。

传染病数学建模论文

传染病数学建模论文

甲型H1N1流感传播模型研究摘要本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。

二、问题分析甲型h1n1流感的传播是一道传染病问题。

在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。

SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。

本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

美国甲型H1N1流感实验室确认病例数量:三、建立模型(一)、不考虑潜伏期的数学模型1、模型假设(1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。

(2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。

病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。

治愈的病人具有了免疫力,即治愈后不再会成为二次患者。

(3)、s(t)、r(t)、i(t)之和是一个常数1。

2、模型构成易感者和发病者有效接触后成为发病者者。

设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。

所以有:()()()dS t S t I t dtλ=- (1) 单位时间内退出者的变化等于发病人群的减少,即()()dR t I t dtν= (2) 发病人群的变化等于易感人群转入的数量,即()()()()dI t S t I t I t dtλν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。

麻疹的传播数学建模优秀论文

麻疹的传播数学建模优秀论文

麻疹的传播数学建模优秀论文
麻疹是一种高度传染的疾病,对公共卫生和社会稳定造成了严
重威胁。

为了更好地理解和控制麻疹的传播,许多学者进行了数学
建模的研究。

下面简要介绍一篇优秀的麻疹传播数学建模论文。

论文标题:《麻疹传播的数学建模与分析》
该论文通过数学建模的方法,对麻疹的传播进行了深入的分析
与研究。

论文的主要内容包括以下几个方面:
1. 麻疹的基本传播模型:论文首先介绍了麻疹的基本传播模型,包括传播率、感染率、康复率等关键参数的定义和计算方法。

作者
将传染病学理论与数学模型相结合,建立了一个准确且可靠的麻疹
传播模型,为后续的研究奠定了基础。

2. 麻疹传播的时空特征:论文通过对麻疹传播的时空特征进行
分析,揭示了其传播规律和趋势。

作者运用数学方法对不同地区、
不同时期的麻疹传播数据进行了建模和预测,为公共卫生部门提供
了重要的决策依据。

3. 基于数学模型的防控策略:论文还探讨了基于数学模型的麻
疹防控策略。

作者通过对不同防控措施的模拟和仿真实验,评估了
各种策略的有效性和可行性,并提出了相应的建议和改进方案。

该论文在麻疹传播数学建模领域取得了显著的成果,对于预防
和控制麻疹的传播具有重要的理论和实际意义。

通过对该论文的深
入研读和借鉴,我们可以更好地理解和应对麻疹这一公共卫生问题。

传染病问题的模型-建模论文

传染病问题的模型-建模论文

传染病问题的模型参赛选择题号: 1 参赛报名组号: 95 参赛队员姓名:1. 孟高阳2. 白由田3. 王英杰传染病问题的模型【摘要】随着医学的发展,我们已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发,危害人们的健康和生命。

经济、环境、地理位置等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

本文通过详细分析、合理假设,对传染病问题建立模型,分析被传人数多少与初始被感染人数和传播时间等因素有关,同时我们运用最浅显的初等几何知识、微分方程的求解以及利用Matlab软件上机运算等方法,得到了该模型的优缺点,并做出了改进方案。

【关键词】传染病 Matlab AutoCAD 微分方程阈值相轨线分析Ⅰ、问题重述在一个人口数量N 的孤岛上,一部分到岛外旅游的居民回来使该岛感染了一种高传染性的疾病。

请预测在某时刻t 将会被感染的人数X 。

考虑一下模型,其中k >0为常数:)(X N kX dtdX-= (1) 本文主要通过以下四个方面对本问题进行分析:1、找出本模型所隐含的两条主要假设;2、利用所给模型的函数,做出关于被感染人数和传播时间的图形;3、根据(f)所给数据,计算得出结论是否支持该模型;4、通过进一步分析,提出对本模型的改进方案。

Ⅱ、模型一一、模型假设1、在疾病传播期内该岛总人数N 不变,不考虑人的生死、迁移、治愈以及具有免疫力的情况。

2、每天每个病人有效接触的平均人数为常数k 。

二、假设依据根据题目给出方程可知,在t 时刻共有)(X N kX -个健康者被感染,而没有死亡的、迁移的、治愈的以及具有免疫力的人。

孤岛上的总人数没有发生改变,旅游回来的居民携带着传染病,每天由于人员的流动性,并且没有对岛上的居民进行有效的宣传,因此随着时间的推移,岛上得病的人将会越来越多,而每天每个病人有效接触的平均人数基本稳定,因此k 为常数。

大学毕设论文__sars的传播数学建模论文

大学毕设论文__sars的传播数学建模论文

SARS的传播摘要本文首先采用抽样检测法对SARS早期的模型的合理性及实用性进行了评价,然后我们通过对传染病的共性及SARS的特性的分析。

得出三个基本假设并且把人群理想化为三类(S类,I类,R类),建立起基本的SIR模型,再对SIR 模型中三类人群间的相互转化关系的分析,结合马氏链得出三种人群间变化率的矩阵T,由于SARS的特性,可知,SIR模型中的两个参数a(t),b(t)是以时间为变量的函数。

我们根据北京疫情的数据,通过多项式的数据拟合法分别得a(t),b(t)的表达式,我们把a(t),b(t)及T结合,从而建立出模型。

由于医疗条件的逐步改善,必会研制出其疫苗。

于是我们在不改变人群分类的情况下,增加了一个系数c,(c表示疫苗日成功接种率,由于在疫情期间,疫苗未能及时改良,故c为常数。

)进一步完善了我们的模型。

本文利用数学软件(Mathematica,Matlab)很好的实现了模型运算,并结合实际数据得出了各类人群与时间的关系图。

从图中可以很好的反映出各类人群的变化规律,它们的变化规律与实际变化相吻合,从而证明了我们的模型基本符合要求。

一问题的提出严重急性呼吸道综合症,简称SARS,是21世纪第一个在世界范围内传播的传染病。

它对全球的经济和生活造成巨大的破坏,尽管目前疫情已得到控制,但对这种新冠状病毒及其流行规律的研究还刚刚开始,因此,有必要根据SARS流行的特点,建立数学模型预测其传染,从而采取措施预防和控制其发展。

而建立该模型我们要综合各方面的因素才能使模型合理化。

二问题的分析通过分析北京,香港和广东三地的受感染人数的变化规律,我们就可以对不同地区预测流行病的变化趋势提出以下模型假设。

模型的假设:1 将人群分为三类易感染者人数(疑似病例):用S表示;病人数(已受感染者,即确疹者):用I表示;移出者人数(包括“被治愈者”和“死亡者”):用R表示2 该地区人口不流动,疫情阶段无病原的输入和输出,设最初易感染者人数为N,此时I,R均为0。

传染病潜伏期的数学建模与预测

传染病潜伏期的数学建模与预测

传染病潜伏期的数学建模与预测近年来,全球范围内爆发的传染病事件频繁,给人们的生命和健康带来了巨大威胁。

在应对传染病的过程中,了解传染病的潜伏期对于控制疫情的传播以及制定科学的防控策略至关重要。

本文将探讨传染病潜伏期的数学建模方法以及通过建模预测疫情的可行性。

一、传染病潜伏期的概念和重要性传染病的潜伏期是指感染者被感染后出现第一个症状之前的时间段,这段时间内感染者是无症状的但已具备传染性。

潜伏期的长短与传染病的类型、个体差异、环境因素等有关。

对于一些具有较长潜伏期的传染病,如新冠肺炎,潜伏期的研究对于控制疫情的传播和确诊诊断非常重要。

传染病潜伏期的数学建模可以基于传染病的传播机理和流行病学参数进行推导和估计。

通过建立数学模型,可以预测传染病的潜伏期分布和变化趋势,为疫情的预警和防控提供科学依据。

二、传染病潜伏期的数学建模方法1. 潜伏期模型的选择在建立传染病潜伏期模型时,需要根据病原体的特性和传播方式选择合适的数学模型。

常用的模型包括确定性模型和随机模型。

确定性模型适用于传染病的传播较为规律和确定的情况,而随机模型则适用于传染病传播的不确定性和随机性较强的情况。

2. 基本传播数的计算基本传播数(basic reproduction number,简称R0)是评估传染病传播强度的重要指标。

在传染病潜伏期模型中,可以通过计算R0来评估传染病的传播风险和潜在爆发的可能性。

3. 参数估计和模型验证传染病潜伏期模型的建立需要依靠传染病的实际数据进行参数估计和模型验证。

通过收集感染者的病程数据和接触者的流行病学调查数据,可以对潜伏期的分布和变化进行建模。

三、传染病潜伏期的预测和应用基于传染病潜伏期模型的建立和参数估计,可以进行传染病潜伏期的预测和应用。

具体包括以下几个方面:1. 疫情预警与监测通过传染病潜伏期模型,可以根据感染者的出现时间和疫情数据,实时监测和预测传染病的潜伏期分布和变化趋势。

这对于疫情的预警和监测提供重要依据,有助于及时采取控制措施并防止疫情扩散。

大学生数学建模有关传染病论文

大学生数学建模有关传染病论文

2013上学期数学论姓名:杨丽香、涂蓉学号:(02)、(04)学院:湖南信息职业技术学院专业:计算机网络****:***2013 年06月06日邮箱:***************传染病一、摘要:描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程和一般规律,建立模型。

利用了数学、力学、物理等学科中的定理来建立微分方程模型。

利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。

在我们的实际问题中,许多现象的规律性并不是很清楚,如果有所了解也是极其复杂的,建模时在不同的假设中去模拟实际的现象,建立能近似反映问题的微积分方程,然后从数学上去求解或分析所建的方程及其解的性质,再去与实际情况相对比,检验此模型能否刻画模拟了某些实际现象。

二、问题重述问题: 有一种传染病(如SARS、甲型H1N1)正在流行。

现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。

考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t时刻的感染人数。

2、假设环境条件下所允许的最大可感染人数为。

单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。

建立模型求t时刻的感染人数。

3、现有卫生防疫部门采集到的某地区一定时间内一定间隔区间的感染人数数据(见下表),利用该数据确定上述两个模型中的相关参数,并将它们的预测值与实际数据进行比较分析(计算仿真偏差)并对两个模型进行适当的评价。

(注:该问题中,设最大可感染人数为2000人)4、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。

传染病动力学的数学建模与研究论文

传染病动力学的数学建模与研究论文

就报告病例11335例,肯尼亚报告病例10108例.此外。结核病已使2亿人死亡; 疟疾仅在1997年就与厄尔尼诺现象一起造成150—270万人死亡【2】. 传染病的危害如此巨大,因此,人类一直以来都穷其智力为战胜传染病而奋斗 不息,取得显著成果.如今,天花被彻底消灭了,白喉、麻疹、破伤风在许多国家 得到有效抑制.随着抗生素的发明,结核病也结束了往日的恐怖.随着鸡尾酒疗法 的出现,艾滋病的治疗也在一定程度上得到改善。特别是各国采取广泛措施,积极 预防和消灭传染病,也取得了较好的社会效果.例如,世纪之初,我们即有效的消 灭了非典和禽流感的肆虐.成果的取得来之不易,根本原因在于传染病防治研究的 进步.。 目前,学界公认的传染病研究方法主要有四种;描述性研究、分析性研究、实 验性研究和理论性研究.传染病动力学是对传染病进行理论性定量研究的一种重要 方法.它是根据种群生长的特性,疾病的发生及在种群内的传播、发展规律,以及与 之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力
播.
第三部分介绍了我们在传染病动力学的微观建模与研究方面所做的一些工作. 考虑到癌症在HIV感染者中的高发特点,我们建立了两个艾滋病与癌症相结合的 HIV-1动力学模型;一个ODE模型;一个DDE模型.系统有四个平衡态.我们讨 论了在不同的免疫状况下这些平衡态的存在性、稳定性以及其生物学意义.在DDE 模型中,我们讨论了正平衡态Hopf分支的存在条件.我们的研究结果与一些医学 临床结果及试验室观察相吻合. 本文研究的是传染病动力学领域的重要问题,具有重大的研究价值,属于该领 域的前沿问题.文中所用方法和所得结果对研究传染病模型和疾病控制都有一定指
important
on
its pathogenesis,regu-

传染病模型数学建模论文

传染病模型数学建模论文

甲型H1N1流感传播模型研究摘要本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。

二、问题分析甲型h1n1流感的传播是一道传染病问题。

在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。

SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。

本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

美国甲型H1N1流感实验室确认病例数量:三、建立模型(一)、不考虑潜伏期的数学模型1、模型假设(1)、在甲型H1N1流感传播期内,美国境内的总人数为N亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S,发病人群I和退出人群R(括死亡者和治愈者)四类,时刻t内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。

(2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。

病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。

治愈的病人具有了免疫力,即治愈后不再会成为二次患者。

(3)、s(t)、r(t)、i(t)之和是一个常数1。

2、模型构成易感者和发病者有效接触后成为发病者者。

设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。

所以有:()()()dS t S t I t dtλ=- (1) 单位时间内退出者的变化等于发病人群的减少,即()()dR t I t dtν= (2) 发病人群的变化等于易感人群转入的数量,即()()()()dI t S t I t I t dtλν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。

埃博拉病毒的根除数学建模论文

埃博拉病毒的根除数学建模论文

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

传染病模型研究综述论文

传染病模型研究综述论文

传染病模型研究综述论文传染病模型研究是当今流行病学领域的重要课题之一。

这些模型以各种数学方法来研究疾病如何在人群中传播,并推断预测未来的传播趋势。

本文将综述当前常用的传染病模型及其应用。

最经典的传染病模型是SIR模型,它假设整个人群可以分为易感者(Susceptible)、感染者(Infected)和恢复者(Recovered)三类人群。

该模型假设每个人都会有相同的感染风险,感染后会在一定时间内恢复并具有抗体,不再具有感染性。

SIR模型可以用微分方程组来表示,其基本方程为:dS/dt = -βSIdI/dt = βSI - γIdR/dt = γI其中,β为感染率,γ为恢复率。

该模型是通过平衡感染率和疾病传播速度以控制传播的,因此它是最基本的控制传染病的模型。

然而,SIR模型存在许多局限性。

首先,它只考虑了三个人群,无法解释人群中存在的其他因素;其次,它忽略了季节性、空气质量等因素对传染病传播的影响。

因此,针对这些问题,发展了其他的传染病模型。

SEIR模型在SIR模型的基础上,增加了潜伏者(Exposed)人群,即已被感染但暂时没有表现出症状的人。

该模型可以更好地解释病毒潜伏期的影响。

此外,针对季节性因素,基于SIR模型发展了季节性模型,可描述疾病的季节性特征。

除了上述基于微分方程的传染病模型,还有基于普通微分方程、偏微分方程、晶格模型等多种不同的模型。

例如,基于普通微分方程的SI模型仅考虑易感者和感染者两类人群,其封闭形式解法简单,适合直接计算模型参数。

偏微分方程模型已经应用于建立整个城市人群的空间分布模型,以探究城市比例不均、环境变化、公共卫生设施等因素对传染病传播的影响。

此外,晶格模型在传染病模型中也有着广泛应用。

这些模型基于虚拟的“晶格”空间,可以更加详细地描述细胞、组织和器官之间的相互关系。

总的来说,传染病模型的发展历程迅速且复杂,从SIR、SEIR 模型到基于普通微分方程、偏微分方程、晶格模型等的更多模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲型H1N1流感传播模型研究
摘要
本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。

一、问题重述
近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的
焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。

二、问题分析
甲型h1n1流感的传播是一道传染病问题。

在数学建模领域已经有很多关于
这方面的研究,其中SIR模型是比较完整的模型。

SIR模型通过建立微分方程组,
按照一般的传播机理建立集中模型。

本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。

美国甲型H1N1流感实验室确认病例数量:
三、建立模型
(一)、不考虑潜伏期的数学模型
1、模型假设
(1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生
死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。

(2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。

病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。

治愈
的病人具有了免疫力,即治愈后不再会成为二次患者。

(3)、s(t)、r(t)、i(t)之和是一个常数1。

2、模型构成
易感者和发病者有效接触后成为发病者者。

设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。

所以有:
()
()()dS t S t I t dt
λ=- (1) 单位时间内退出者的变化等于发病人群的减少,即
()
()dR t I t dt
ν= (2) 发病人群的变化等于易感人群转入的数量,即
()
()()()dI t S t I t I t dt λν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。

3、模型求解
方程组(1)、(2)、(3)无法求出解析解,我们定义一个新的变量 /σλν=,于是可以求出方程的解为:
000
1
()ln
s
i s i s s σ
=+-+
(4) 下面分析s(t)、i(t)、r(t)的变化情况:
a 、不论初始条件0S 、0R 如何,病人最终将消失,即0i ∞=。

b 、最终未被感染者的健康者的比例是s ∞,是方程
000
1()ln
0s
s i s s σ
+-+
=在(0,1/)σ内的根。

C 、若01/s σ>,则开始有:()i t 先增加。

当01/s σ=时,()i t 达到最大值,然后()i t 减小且趋于零,()s t 则单调减小至s ∞。

d 、若01/s σ≤,则()i t 单调减小至5,()s t 则单调减小至s ∞。

我们发现人们的卫生水平越高,日接触率越小;医疗水平越高,日治愈率越高,于是σ越小,所以提高卫生水平和医疗水平有利于传染病的蔓延。

结合美国的具体情况和假设条件进行分析:
根据所得的数据画出美国患病人数变化曲线和治愈人数变化曲线:
根据图形来看,甲型h1n1流感在美国呈现出蔓延的形式,即现在属于
01/
sσ>
的情况,即
0/1/s σλν=>。

由假设条件可知λ的取值范围在1.4~1.6之间。


在我们取λ=1.6,则表示0/(1/) 1.6s νλ<=,即美国每天平均治愈的人数最多为1.6人,这与美国疾病预防与控制中心所发布的数据不同。

如果美国平均每天治愈1.6个人的话,那么从4月23日期,治愈的总人数为1.6*2336.8=人,这与实际的情况相差甚远。

产生这个问题的原因有以下几个方面:
第一:对每个病人每天有效接触的平均人数估计值偏小。

不是简单的成正比关系,应该是成多次方关系,甚至是指数关系。

第二:美国疾病预防与控制中心所得到的数据具有滞后性。

第三:在美国00s ≈不一定成立。

可以把那些身体强壮的、注意自己个人卫生的人排除在外。

(二)、考虑潜伏期的数学模型
1、模型假设
(1)、在甲型H1N1流感传播期内,美国境内的总人数为N 亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S ,病毒潜伏人群E,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为
()()()()s t e t i t r t 、、、。

(2)、每个病人每天有效接触的平均人数为λ,称为日接触率,当已感染者与易感染者有效接触时,使易感染者变为病毒潜伏人群,病毒潜伏人群过一段时间再转换成发病人群,发病人群被治愈。

2、模型构成
易感者和发病者有效接触后成为病毒潜伏者。

设每个发病者平均每天有效接触的易感者数为()()t S t λ,()NI t 个发病者平均每天能使()()()t S t NI t λ个易感者成为病毒潜伏者。

所以有()
()()()
dS t N t S t NI t dt λ=- 化简得: ()
()()()dS t t S t I t dt
λ=- 病毒潜伏人群的变化等于易感人群转入数量减去转化为发病人群的数量,即
()
()()()()()dE t t S t I t t E t dt λα=- 其中()t α表示潜伏期日发病率,即每个潜伏者平均有效发病的人数。

单位时间内退出者的变化等于发病人群的减少,即
()
()()dR t t I t dt
ν= 其中()t ν表示日退出率,即每个病人平均有效病情结束的人数。

发病人群的变化等于潜伏人群转入的数量,即
()
()()()()dI t t E t t I t dt
αν=- ()()()1s t i t r t ++=
初始时刻易感染者,已感染者与病愈免疫者的比例分别是
00000(0),(0),0
s s i i r >>=
3、模型求解
由于潜伏期的人群数量不能确定,所以可视为是易感人群的一部分,因此求解过程跟忽略潜伏期的一样。

四、模型的改进
就如何确定日接触率λ的值。

就如何确定日接触率可以进行改进,根据以前的流感疫情治愈率,加权平均得到值,而不是简单的是一个正比关系。

病毒在人群中的传播刚开始阶段一个有一个爆发阶段,该阶段的日接触率λ很大,可设为是一个冲激变量。

参考文献:
[1]姜启源谢金星叶俊数学建模(第四版)高等教育出版社
[2]数据来源:美国疾病预防控制中心。

相关文档
最新文档