人教版八年级数学上平方差公式练习题

合集下载

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。

)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。

)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。

)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。

)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。

)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。

)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。

)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。

)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。

)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。

)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。

)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。

)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。

解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。

2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。

八年级数学上册 因式分解 平方差公式专项练习(含答案)

八年级数学上册 因式分解 平方差公式专项练习(含答案)

2017-2018学年八年级数学上册因式分解平方差公式专项练习一、选择题:1、下列各式中,不能用平方差公式分解因式的是( )A.﹣a2+b2B.﹣x2﹣y2C.49x2y2﹣z2D.16m4﹣25n2p22、已知x2-y2=6,x-y=1,则x+y等于( )A.2B.3C.4D.63、下列多项式能用平方差公式分解因式的是( )A.﹣x2+y2B.﹣x2﹣y2C.x2﹣2xy+y2D.x2+y24、下列多项式中能用平方差公式分解因式的是( )A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+95、下列各式中,能用平方差公式分解因式的是( )A.x2+4y2B.x2﹣2y2+1C.﹣x2+4y2D.﹣x2﹣4y26、分解因式:x2﹣4y2的结果是( )A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)27、因式分解x2﹣4的结果是( )A.x(x﹣4)B.x(x﹣2)2C.(x﹣2)(x+2)D.x(x+2)28、若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值( )A.一定为正数B.一定为负数C.可能为正数,也可能为负数D.可能为09、(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( )A.2B.4C.6D.810、下面哪个式子的计算结果是9﹣x2( )A.(3﹣x)(3+x)B.(x﹣3)(x+3)C.(3﹣x)2D.(3+x)211、若a+b=3,a-b=7,则b2-a2的值为( )A.-21B.21C.-10D.1012、已知x-y=3,x2-y2=12,那么x+y的值是( )A.3B.4C.6D.1213、因式分解1-a2的结果是( )A.(1+a)(1-a)B.(1-a)2C.(a+1)(a-1)D.(1-a)a14、下列多项式中能用平方差公式分解因式的是( )A.a2+(﹣b)2B.5m2﹣20mnC.﹣x2﹣y2D.﹣x2+915、下列各式中,不能用平方差公式分解因式的是( )A.-x4-y4B.4m2+n2C.1-x4D.(a+b)2-8116、因式分解x2-9y2的正确结果是( )A.(x+9y)(x-9y)B.(x+3y)(x-3y)C.(x-3y)2D.(x-9y)2二、填空题17、因式分解:a2-9= .18、因式分解:(2a-1)2-a2= .19、因式分解:a2-1= .20、因式分解:x2-4= .21、因式分解:x2﹣36= .22、已知a﹣b=2,那么a2﹣b2﹣4b的值为 .23、因式分解:m4﹣16n4= .24、若a+b=2,a﹣b=﹣3,则a2﹣b2=______.25、因式分解:1-9y2=_____________26、因式分解:4-x2= .27、x﹣y=2,x+y=6,则x2﹣y2= .三、计算题:28、因式分解:4a2-16b2;29、因式分解 :(x-y)2-9(x+y)2;30、因式分解:(x2+x)2-(x+1)2;31、因式分解:(a2+b2)2﹣4a2b2.32、因式分解:m4﹣16n4;33、因式分解:4m2﹣9n2.34、因式分解:a2-9b2;35、因式分解:482-472参考答案1、答案为:B.2、答案为:D3、答案为:A4、答案为:D5、答案为:C6、答案为:B7、答案为:C8、答案为:B9、答案为:B10、答案为:A11、答案为:A12、答案为:B13、答案为:A.14、答案为:D15、答案为:A16、答案为:B17、答案为:(a+3)(a-3).18、答案为:(a-1)(3a-1).19、答案为:(a+1)(a-1).20、答案为:(x+2)(x-2).21、答案为:(x+6)(x﹣6).22、答案为:4.23、答案为:(m2+4m2)(m+2n)(n﹣2n).24、答案为:﹣6.25、答案为:(1+3y)(1-3y);26、答案为:(2+x)(2-x);27、答案为:12.28、答案为:4(a+2b)(a-2b).29、答案为:-4(2x+y)(x+2y).30、答案为:(x+1)3(x-1)3.31、答案为:(a+b)2(a﹣b)2.32、答案为:(m2+4n2)(m+2n)(m﹣2n);33、答案为:(2m+3n)(2m﹣3n).34、答案为:( a+3b)( a-3b)35、原式=(48+47)(48-47)=95×1=95。

八年级数学上册《第十四章 公式法》练习题附答案-人教版

八年级数学上册《第十四章 公式法》练习题附答案-人教版

八年级数学上册《第十四章公式法》练习题附答案-人教版一、选择题1.下列各式中,能用平方差公式因式分解的是( )A.x2+4y2B.x2﹣2y2+1C.﹣x2+4y2D.﹣x2﹣4y22.计算:852﹣152=( )A.70B.700C.4900D.70003.因式分解的结果是(2x-y)(2x+y)的是 ( )A.-4x2+y2B.4x2+y2C.-4x2-y2D.4x2-y24.已知x2-y2=6,x-y=1,则x+y等于( )A.2B.3C.4D.65.下列因式分解正确的是( )A.6x+9y+3=3(2x+3y)B.x2+2x+1=(x+1)2C.x2﹣2xy﹣y2=(x﹣y)2D.x2+4=(x+2)26.下列各式中不能用完全平方公式因式分解的是( )A.-x2+2xy-y2B.x4-2x3y+x2y2C.(x2-3)2-2(3-x2)+1D.x2-xy+12y27.若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是( )A.4B.﹣4C.±2D.±48.若a+b=3,a-b=7,则b2-a2的值为( )A.-21B.21C.-10D.109.小明在抄因式分解的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式因式分解,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有( )A.2种B.3种C.4种D.5种10.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为( )A.255054B.255064C.250554D.255024二、填空题11.因式分解:m2﹣4= .12.因式分解:(2a+b)2﹣(a+2b)2= .13.计算:2 019×2 021-2 0202=__________.14填空根据题意填空:x2﹣6x+(______)=(x﹣______)215.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为________.16.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三、解答题17.因式分解:5x2+10x+518.因式分解:x2(x﹣y)+(y﹣x)19.因式分解:2a3-12a2+18a20.因式分解:9a2(x﹣y)+4b2(y﹣x)21.在一块边长为a cm的正方形纸板中,四个角分别剪去一个边长为b cm的小正方形,利用因式分解计算:当a=98 cm,b=27 cm时,剩余部分的面积是多少?22.已知x-y=2,y-z=2,x+z=4,求x2-z2的值.23.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.24.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1 224,47×43=2 021,…(1)认真观察,分析上述各式中两因数的个位数字、十位数字分别有什么联系,找出因数与积之间的规律,并用字母表示出来;(2)验证你得到的规律.25.中国古贤常说万物皆自然,而古希腊学者说万物皆数.同学们还记得我们最初接触的数就是“自然数”吧!在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“n喜数”.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)试讨论是否存在“7喜数”若存在请写出来,若不存在请说明理由.参考答案1.C2.D3.D4.D5.B.6.D7.D8.A9.D10.D11.答案为:(m+2)(m﹣2).12.答案为:3(a+b)(a﹣b).13.答案为:-114.答案为:9,3;15.答案为:0.36.16.答案为:(n+3)2-n2=3(2n+3)17.解:原式=5(x2+2x+1)=5(x+1)2;18.解:原式=x2(x﹣y)+(y﹣x)=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1);19.解:原式=2a(a-3)220.解:原式=(x﹣y)(3a+2b)•(3a﹣2b).21.解:根据题意,得剩余部分的面积是:a2-4b2=(a+2b)(a-2b)=152×44=6 688(cm2). 22.解:由x-y=2,y-z=2,得x-z=4.又∵x+z=4∴原式=(x+z)(x-z)=16.23.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,即x=2,y=﹣3则原式=(x﹣3y)2=112=121.24.解:(1)上述等式的规律是:两因数的十位数字相等,个位数字相加等于10而积后两位是两因数个位数字相乘、前两位是十位数字相乘,乘积再加上这个十位数字之和;如果用m表示十位数字,n表示个位数字的话则第一个因数为10m+n,第二个因数为10m+(10-n),积为100m(m+1)+n(10-n);表示出来为:(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n);(2)∵左边=(10m+n)(10m-n+10)=(10m+n)[10(m+1)-n]=100m(m+1)-10mn+10n(m+1)-n2=100m(m+1)-10mn+10mn+10n-n2=100m(m+1)+n(10-n)=右边∴(10m+n)[10m+(10-n)]=100m(m+1)+n(10-n),成立.25.解:(1)44不是一个“n喜数”,因为44≠n(4+4)72是一个“8喜数”,因为72=8(2+7);(2)设存在“7喜数”,设其个位数字为a十位数字为b,(a,b为1到9的自然数)由定义可知:10b+a=7(a+b)化简得:b=2a因为a,b为1到9的自然数∴a=1,b=2;a=2,b=4;a=3,b=6;a=4,b=8;∴“7喜数”有4个:21、42、63、84.。

初中数学人教版八年级上册14.2.1平方差公式

初中数学人教版八年级上册14.2.1平方差公式
猜想:(a+b)(a-b) =
a2-b2
(a+b)(a-b) = a2-b2
(a+b)(a-b) = a2 -ab +ab -b2 = a2-b2
(a+b)(a-b) = a2-b2
刚才我们用多项式乘法验证了 规律的正确性,它还可以用几 何的方法加以说明呢。
Hale Waihona Puke aaba2-b2 a a-b (a+b)(a-b)
• 3. 公式中字母可以是具体数字,也可以是多项式 或单项式。
• 重点:对于具有相同形式的多项式相乘,就可以 直接运用公式写出结果。
(a+b)(a-b)
ab
a2-b2
(相同) (相反) (平方差)
最后结果
(2x+2)(2x-2) 2x 2 (2x)2-22 4x2-4
(m+3n)(3n-m) 3n m (3n)2-m2 9n2-m2 (-a+4b)(-a-4b) -a 4b (-a)2- (4b)2 a2-16b2
1.经历探索平方差公式的过程,会推导平 方差公式。
2. 理解平方差公式的几何意义。
3.掌握平方差公式的结构特征,灵活应用 平方差公式。
多项式与多项式是如何相乘的?
(a+b)(m+n) =am+an +bm+bn
计算下列多项式的积:
(1) (x+1)(x-1) = x2 - 1 (2) (m+2)(m-2) = m2 - 4 (3) (2x+1)(2x-1) = 4x2 - 1
平方差公式
特征:
(a+b)(a-b)=a2-b2
(相同项)2-(相反项)2

人教版八年级上册数学 14.2乘法公式 同步练习

人教版八年级上册数学   14.2乘法公式   同步练习

人教版八年级上册数学14.2乘法公式同步练习第1课时平方差公式1.若x²−y²=4,则x+y²x−y²的值是()A.4B.8C.16D.642.下列多项式相乘不能用平方差公式计算的是()A.(4x-3y)(3y-4x)B.(-4x+3y)(-4x-3y)C.(3y+2x)(2x-3y)D.−14x+2y+2y3.已知(x+2)(x--2)--2x=1,则2x²−4x+3的值为()A.13B.8C.--3D.54.若a=2022º,b=2021×2023-2022²,c=−×,则a,b,c的大小关系是()A.a<b<cB.b<a<cC.c<b<aD.b<c<a5.计算:x+1x−1x²+1=.6.已知a--b=2,则a²−b²−4a的值为7.运用平方差公式计算:(1)9.9×10.1(2)(5ab-3xy)(-3xy-5ab)(3)31×29(4)(3m-2n)(-3m-2n)8.如图,大正方形ABCF与小正方形EBDH的面积之差是40,则涂色部分的面积是()A.20B.30C.40D.609.若(3a+3b+1)(3a+3b--1)=899,则a+b=.10.[3−1×3+1×32+1×34+1×⋯×3³²+1+1]÷3的个位上的数字为.11.如果a,b为有理数,那么2a²−a−b(a+b)-[(2-a)(a+2)+(-b-2)(2-b)]的结果与b的值有关吗?12.先化简,再求值:(a+2b)(a—2b)—(--2a+3b)(-2a-3b)+(--a-b)(b-a),其中a=2,b=3.13.阅读材料:乐乐遇到一个问题:计算(2+1)×2²+1×2⁴+1.经过观察,乐乐答案讲解发现如果将原式进行适当变形后,可以出现特殊的结构,进而可以运用平方差公式解决问题,具体解法如下:2+1×2²+1×2⁴+1=2−1×2+1×2²+1×2⁴+1=2²−1×2²+1×2⁴+1=2¹−1×2⁴+1=2⁸−1.根据乐乐解决问题的方法,请你试着计算下列各题:12+1×2²+1×2⁴+1×2⁸+1×2¹⁶+1.23+1×3²+1×3⁴+1×3⁸+1×3¹⁶+1.14.(1)将图①中的涂色部分裁剪下来,重新拼成一个如图②所示的长方形,通过比较图①②中涂色部分的面积,可以得到的整式乘法公式为(2)运用你所得到的乘法公式,完成题目:①若x²−9y²=12,x+3y=4,求x-3y的值.②计算:103×97.(3)计算:1−×1−×1−×⋯×1×1−.第2课时完全平方公式1.下列关于104²的计算方法中,正确的是()A.104²=100²+4²B.104²=100+4×100−4C.104²=100²+100×4+4²D.104²=100²+2×100×4+4²2.我们在学习许多公式时,可以用几何图形来推理和验证.观察下列图形,可以推出公式a−b²=a²−2ab+b²的是()3.若x=y+3,xy=4,则.x²−3xy+y²的值为4.已知x²−2x−2=0,则x−1²+2021=5.运用乘法公式计算:1.x+3x−3x²−92.−x−5²−2x+3²3.1+12x21−12x26.已知3a−b=5,9a²−7ab+b²=14,则ab的值为()A.1B.2C.9D.117.已知长方形的长和宽分别为a和b,长方形的周长和面积分别为20和24,则a²+b²的结果为()A.64B.52C.48D.448.已知a,b满足等式x=3a²−2a+4,y=2a²+4a--5,则x,y的大小关系是()A.x=yB.x>yC.x<yD.x≥y9.先化简,再求值:[4xy−1²−xy+2(2−xy)]÷xy,其中x=2,y=-0.3.10.已知2024−x²+x−2023²=9,则(2024-x)(x-2023)的值为.11.已知x+1x=3,求下列各式的值:1x4+1x4.2x.12.如图,将一块大长方形铁皮切割成九块(虚线代表切痕),其中两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是(第10题)长、宽分别为m,n的小长方形,且m>n,切痕的总长为42,每块小长方形的面积为9,则(m-n)²的值为.13.如图①,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)如图②,用1张A型卡片,2张答案讲解B型卡片,3张C型卡片拼成一个长方形,利用两种方法计算这个长方形的面积,可以得到一个等式:(2)选取1张A型卡片,8张C型卡片,张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的式子表示为.(3)如图③,正方形的边长分别为m,n,m+2n=10,mn=12,求涂色部分的面积.完全平方公式经过适当的变形,可以用来解决很多数学问题.14.例如:若a+b=3,ab=1,求a²+b²的值.解:∵a+b=3,ab=1,∴a+b²=9,2ab=2.∴a²+b²+2ab=9.∴a²+b²=7.根据上面的解题思路与方法,还可以解决下面的几何问题:如图,C是线段AB上的一点,分别以AC,BC为边向两侧作正方形ACDE与正方形BCFG.设AB=8,两个正方形的面积和为40,求△AFC的面积.。

14.2.1 平方差公式【习题课件】八年级上册人教版数学

14.2.1 平方差公式【习题课件】八年级上册人教版数学

)
)
C. ( x +1)8
( −)( −)

=8×10×12,则 k =(

D
素养达标
D. 7或-7
13. 计算( x4+1)( x2+1)( x +1)( x -1)的结果是(
A. x8+1
能力突破
D. 6
12
13
14
15
16
17
18
平方差公式
14.2.1
基础通关
能力突破
素养达标
15. 【教材第108页例1(2)改编】已知(- x +2 y )(- x -2 y )+ y2=5,求3
素养达标
16. 先化简,再求值:2(3 x +1)(1-3 x )+( x -2)(2+ x ),其中 x =2.
解:2(3 x +1)(1-3 x )+( x -2)(2+ x )=2(1+3 x )(1-3 x )+( x -2)( x +
2)=2(1-9 x2)+( x2-4)=2-18 x2+ x2-4=-17 x2-2.
第十四章
整式的乘法与因式分解
14.2
14.2.1
乘法公式
平方差公式
平方差公式
14.2.1
基础通关
能力突破
素养达标
平方差公式的几何意义
1. 如图,在边长为 a 的正方形中,剪去一个边长为 x 的小正方形,将余
下部分对称剪开,拼成一个梯形,根据两个图形阴影部分面积的关系,
可以得到一个关于 a , x 的恒等式是( C )
B. + − = a2-9
C. + − = a2-36
D. ( a +3)2= a2+6 a +9
1

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题(附答案)

初中数学平方差完全平方公式练习题一.单选题1•下列各式添括号正确的是()2. (l + y)d-y) = ()3•下列计算结果为Iab-Cr-Iy 的是(4.(-5√+4⅛2)( ) = 25/-16庆,括号内应填()6.多项式15∕7ΓH 2 +5〃,死一20〃円F 各项的公因式是()D. 5mn 2 7.下列多项式中,能用平方差公式分解因式的是()&化简(—3)2 -X(X-6)的结果为()9 •下列多项式能用完全平方公式分解的是(10•计算(3"-址)(-加- %)的结果是()11•如果X 2+(,H-I)X+ 9是一个完全平方式,那么m 的值是(12•若么处 是三角形的三边之长,贝IJ 代数式√÷2bc -c 2-∕r 的值(二.解答题13. 讣算:(1) (-3x 2-5y)(3x 2-5y):(2) (9X 2+1)(1-3Λ∙)(-3X -1)・14. 因式分解.(1 ) 2m(x 一 y) 一 3〃 (X - y) A. -A e — >= —(y -A) B.x-y = _(X + y)C. 10 一〃ι = 5(2 一加)D. 3 —2z∕ = —(2a — 3)A.l + y 2B.-ι-rC.1 -y 2D.-l + y 2A. ("-b)2B ∙(-α-∕√ C.-(" + b)2 D.-(α-Z√ A.5Λ2 ÷4∕?2 B. 5√-4∕?2 C. -5/-劲2 D. -5Π2+4/?25•下列计算正确的是()A. (-A - y)2 = -X 2 一 2Q - y 2B.G∏÷2∕?)2 =W 2÷4H 2C. (一3x + y)2 = 3Λ2 _ 6xy + y 2D.丄 x +5 = iχ2+5x + 25 A. 5/zz/zA .∏2+(→)2 B.5〃厂-20〃〃? C.-x D ∙-F+9A.6Λ-9B.-12x+9C.9D.3x + 9A. .v -x+1c ∙"2+"+l D.-σ2+ 庆-2ab A.∕22C 2 +9Λ2B.b 2c 2-3aC.-h 2c 2-9a 2D.-9α2+fe 2c 2 A.7B.-7C.-5或 7D.—5 或 5 A •小于0B •大于0C •等于0D •以上三种情况均有可能(2)-18√+12<r-2</15.用提公因式法将下列各式分解因式:(1 ) -4Π½2^∖2a2b-4ab :(2) (/ -") + C(U -b):(3 ) (3a一 4ft)(7" —Sb) + (Ila一 1 ”)(7“ 一Sb)・16.分解因式:(1)4Λ-2-4X+1:(2)4宀20肋+ 25几(3)9(α-b)2+42(α-b) + 49:(4)(x-2y)2 + 8ΛT ・17.分解因式:(1 ) a】(a_b) + b】(b_a):(2)x2 -y2 ^2x-2y;(3)x4-16/•18.先化简,再求值:a(a-2) - (a+l) (a - 1)■其中G =-丄219•先阅读下列因式分解的过程,再回答所提出的问题:1 + .¥ + X(X +1) + X(X +1)2=(1+ X)[1+ X + X(Λ∙+Γ)J=(1+ X)2(1+Λ)= d + √.(1)±述分解因式的方法是________ ,共应用___________ 了次;(2)若分解1÷A∙÷Λ∙(X÷1)÷X(Λ÷1)2÷..→Λ∙(X÷1)201∖则需应用上述方法________ 次,结果是(3)分解因式:1 ÷A∙÷X(X + 1) + X(X÷I)2 + ∙∙∙ + x(Λ∙ + ∖)n ( H为正整数)・三、填空题20•已知=-3, x+y = 2,贝IJ代数式x2y÷√的值是_____________ ・21•若√7巨+ //_% + 1 = 0,贝IJa = ________ , b = __________ .22.____________________________________________________ 已知(/?? 一* = 40,(W ^n)2 = 4000 ,则m2 + n2的值是 _______________________________________ ・23.己知a-b = 4,ab = —2,则Cr + 4ub + Iy的值为_________ ・24.计算(4 + √7)(4-√7)的结果等于____________ .25.计算:("一b)(α + b)(/ +Z?2)= ________ .参考答案1.答案:D解析:-x-y = -(x+y),故A错误:x-y = -{-x + y)t故B错误;易知C错误.故选D.2.答案:C解析:本题考查平方差公式•由平方差公式可得(i+y)(i->')=ι2-r = ι-r.故选c∙3.答案:D解析:(a -by =cι2 -2ab + b~,{-a-by =(a + b)2 =a2 +2ah + b2 ,-(a + b)2 =-cι2 - 2ab - b~ ,-(a - bγ =-a2+2αZ?-"'.故选 D.4.答案:C解析:∙.∙(-5c, +4⅛2)(-5α2-4b2) = (5α2 -4/,)(5,, + 4h2) = 25α4-16fe4,.∖括号内应填-5a2 -Ab2 . 故选C.5.答案:D解析:(-V- y)2 = X2 + 2xy + y2 ,故 A 错误;(∕n + 2n)2≈m2 + 4mn+ 4zι2,故 B 错误;(-3 A + y)2 = 9X2-6xy, + y2» 故 C 错误:GX+ 5∣ =∙^F+5x + 25,故 Dl匸确.故选 D.6.答案:C解析:多项式15∕√7Γ+5AH2Π-2O∕H V中,各项系数的最大公约数是5,各项都含有的相同字母是加,”,字母m的最低次数是2,字母n的最低次数是1,所以各项的公因式是5m2n .故选C.7.答案:D解析:A选项,/与(_方)2符号相同,不能用平方差公式分解因式,故A选项错误:B选项,5m2-20nu j=5m(m-4n),不能用平方差公式分解因式,故B选项错误;C选项,F与尸符号相同,不能用平方差公式分解因式,故C选项错误:D选项,-X2+9=-A-2+32,两项符号相反,能用平方差公式分解因式,故D 选项正确.故选D.8.答案:C解析:(X- 3)2 - X(X - 6) = x2 - 6.r + 9 - A2 + 6x = 9.故选 C.9.答案:B解析:A,C.D项不符合完全平方式的形式,故不能用完全平方公式分解因式:B项,1-2A + A∙2 =(x-l)2,能用完全平方公式分解因式.故选B.10.答案:D解析:(3a—bc)(-bc — 3a) = -(3a-bc)(3a+be) = -9a2 + b2c2 .故选 D.11.答案:C解析:TX2 +(Zn-I)X+ 9是一个完全平方式,伽—l)x = ±2 ∙ X - 3 ,.■-加一1 = ±6,.∙. m = 一5或7 ,故选:C.12.答案:B解析:a2 + TbC-C2— b2 =Cr - ^b I—2lκ' + c2) = Cr — (h — c)2 = [a + (b —c)][t∕ —(b — c)] = (a + h-C)(U + c-b) ,因为三角形的任意两边之和大于第三边,所+ h-c>0, a + c-b>O,因此原式大于0•故选B.13.答案:(1) (-3√ -5y)(3x2 -5y)=(-5>,- 3X2 ) (-5 V + 3Λ2)= (-5y)2-(3A-2)2=25V2-9Λ4.(2) (9∕+I)(1-3Λ)(-3Λ∙-T)=(-3X÷1)(-3X-1)(9Λ∙2+1)=[(-3X)2-12](9√+1)=(9X2-1)(9√+1)=(^)2-I2= 81√-L解析:14•答案:(I)(X-y)(2π∕+ 3/?)⑵略解析:15・答案:(1) -4a3b2 + ∖2a2b-4ab=-(Aah ∙ Crh - Aah ∙ Sa + 4")= -4πb(∕b-3d +1)・(2) (C -+ C(U-b)= a(a-b) + c(a-h)=(a - h)(a + c).(3 ) (3d - 4b)C7a一Sb) + (IkI 一 1 ”)(7“ 一 8/?) =(7 a—8b)(3“ — 4b+ Ila一∖2b)= (7α-8b)(14α-16b)=2(7"-8历(7“-8方)= 2(7d-8b)2.解析:16.答案:(1) 4f —4Λ÷ 1 = (2Λ*-1)-・(2 ) 4O2-20ah + 25b2 = (Ia -5b)2 .(3)9(α-b)2+42(α-b) + 49= [3(a-b) + l]2=(3a — 3b + 7)~・(4)(x-2>y+8小=X2 - 4xy + 4y2 + SXy=x2 +4x}* + 4y2= (x + 2y)1・解析:17.答案:(1) a2(a-b) + b2(b-a)=Cr (U - b) - b' (U — b)=(U _ b)^a2 _ ZΛ)=(U一b)(a一b)(a + b)=(U- b)2 (a + b).(2)x2-y2+2A∙-2y=(X2-√) + (2x-2y)= (x + y)(x-y) + 2(x-y)= (x-y)(x+y + 2).(3)Λ4-16∕=(-)2-(<√)2= (x2+4√)(x2-4y2)= (x2 + 4y2)(A∙ + 2y)U- 2y).解析:18.答案:化简得-2a+l ;2解析:19.答案:(1)提公因式法;2(2)2018:(l÷x)2°,9(3) 1 + X + X(X +1) + X(X +1)2÷・・・ + X(X + Ir= (l + x)[l + x + xα + l)+ x(x + Γ)2+-. + x(Λ∙ + l)^r=(1+ X)2[1+Λ∙+Λ∙(X +1)+ X(X+1)2+…+ x(x + iy,'2J• • ♦= (l + x)n+1.解析:20.答案:-6解析:因为x = -3, x + y = 2,所以X2y + x)2 = Xy(X + y) = -3×2 = -6 .21.答案:-2 1解析:∙.∙√<∕ + 2 + 0-l)2 =0 , /. α + 2 = O.1=0, α = -2,b = l22.答案:2020解析:(m-n)2 =m2 -2mn + n2= 40,(∕n + n)2 = m2 + 2tnn+n2 = 4000 ,两等式相加,得2(异 + “2 ) = 4040 ,所以m2 + I r = 2020 .23.答案:4解析:∙.t a-b = 4,Ub = -2, Cr +b' =(a_b)‘ +2ab =42+2×(-2) = 12, .,.a2 +4nb+b2= 12+4×(-2) = 4.故答案为4.24.答案:9解析:根据平方差公式得,原式=4? - (J7)2=16 - 7=9.25.答案:a -Z?4解析:原式= (Cr -Z>2)(α2+⅛2) = α4-^4.。

专题7 平方差与完全平方公式压轴题的四种考法(原卷版)-2024年常考压轴题攻略(8年级上册人教版)

专题7 平方差与完全平方公式压轴题的四种考法(原卷版)-2024年常考压轴题攻略(8年级上册人教版)

专题07平方差与完全平方公式压轴题的四种考法类型一、平方差公式逆运算类型二、完全平方公式(换元法)类型三、完全平方公式变形类型四、完全平方公式与几何综合例.两个边长分别为a 和b 的正方形如图放置(图①),其未叠合部分(阴影)面积为1S ;若再在图①中大正方形的右下角摆放一个边长为b 的小正方形(如图②),两个小正方形叠合部分(阴影)面积为2S .(1)用含a 、b 的代数式分别表示1S 、2S ;(2)若8a b -=,13ab =,求12S S +的值;(3)用a 、b 的代数式表示3S ;并当1234S S +=时,求出图③中阴影部分的面积3S .课后训练(1)观察图2,请你写出()2a b +、()2a b -、ab 之间的等量关系是(2)利用(1)中的结论,若5x y +=,94xy =,求()2x y -的值;(3)如图3,点C 是线段AB 上的一点,分别以AC 、BC 为边在正方形CBFG ,连接EG 、BG 、BE ,当1BC =时,BEG 的面积记为(1)图2中的阴影部分的正方形的边长等于.(2)观察图2你能写出下列三个代数式()()22m n m n mn +-,,之间的等量关系(3)运用你所得到的公式,计算若24mn m n =--=,,求:①()2m n +的值.②44m n +的值.(4)用完全平方公式和非负数的性质求代数式2224x x y y ++-(1)图2中的阴影部分的正方形的边长等于______(2)观察图2你能写出下列三个代数式(m+n)2,(m-n)(3)运用你所得到的公式,计算若mn=-2,m-n=4,求(4)用完全平方公式和非负数的性质求代数式x 2+2x+y (5)试画出一个几何图形,使它的面积等于3m 2+4mn+n9.若(m +48)2=654421,求(m +38)(m +58)的值.10.已知()()22a b a b a b -+=-.(1)()()()2212121-++=______;(2)求()()()()()248162121212121+++++的值;(3)求()()()()()()24816322313131313131++++++结果的个位数字.。

初二数学平方差公式1[人教版]

初二数学平方差公式1[人教版]

足彩推单是骗局
[单选,A2型题,A1/A2型题]下颌骨的主要生长中心为()A.髁状突B.喙状突C.下颌角D.正中联合E.颏孔区 [单选]对躯体疾病所致谵妄状态的处理,不正确的方法是()。A.积极治疗原发疾病B.精神症状对症处理C.加强护理与支持治疗D.环境干预,越安静越好E.告知家属相关知识,消除紧张情绪 [单选]冰区航行,应尽可能避免在冰区内抛锚,如必须抛锚,则链长应该()。A.以2~3节为宜B.以3~5节为宜C.不超过水深的2倍D.不超过水深的4倍 [单选]行政机关委托的组织所作出的具体行政行为,下列()机关是被申请人。A.委托的行政机关B.委托的行政机关的上一级机关C.作出具体行政行为组织的主管机关D.作出具体行政行为的受委托组织 [单选,A1型题]从化学结构角度,鞣质是天然界植物中广泛存在的一类()A.糖苷类B.多元酚类C.黄烷醇类D.酯糖苷类E.黄烷醇多聚物类 [问答题,简答题]优质护理的主题是什么? [问答题,简答题]社会化的基本内容? [单选,A2型题,A1/A2型题]灸法的主治作用是()A.蔬肝理气B.安神补心C.温经散寒D.益气养阴E.以上均不是 [单选,A1型题]给予温热药引起的热证模型动物,其脑内神经递质的变化是()A.去甲肾上腺素含量增加B.多巴胺含量降低C.五羟色胺含量升高D.谷氨酸含量降低E.乙酰胆碱含量降低 [单选]有助于系统性红斑狼疮临床确诊及其活动性判断的标记性抗体是()A.抗SSA抗体B.抗RNP抗体C.抗Sm抗体D.抗dsDNA抗体E.抗磷脂抗体 [单选]下列有关噪声的叙述中,错误的是()。A.当某噪声级与背景噪声级之差很小时,则感到很嘈杂B.噪声影响居民的主要因素与噪声级、噪声的频谱、时间特性和变化情况有关C.由于各人的身心状态不同,对同一噪声级下的反应有相当大的出入D.保证睡眼不受影响,室内噪声级的理想值为3 [单选]到2020年,建设质量强国取得明显成效,质量基础进一步夯实,质量总体水平(),质量发展成果惠及全体人民。A.稳定提高;B.显著提升;C.跨越发展。 [问答题]当代普通混凝土的六种主要原材料组份是什么? [单选]某居民企业2012年度取得销售货物收入6000万元,当年实际发生与生产经营活动有关的业务招待费30万元,且能提供有效凭证。该企业当年可在企业所得税前扣除的业务招待费为()万元。A.9.85B.18C.20.15D.30 [单选,案例分析题]贝加尔湖湖面每年1&mdash;5月封冻,冰厚可达90厘米。图5为贝加尔湖地区等高线图。贝加尔湖()A.结冰主要原因是海拔高B.湖面中心结冰早于边缘C.位于山谷导致冰层较厚D.北部的封冻期长于南部 [单选]传染病流行区的家畜家禽外运,负责其检疫的单位是()A.卫生监督部门B.环境保护部门C.工商管理部门D.畜牧兽医部门E.市容监察部门 [单选,A1型题]与情绪形成有关的3个要素是()。A.环境、心境、生理变化B.情景、心境、条件反射C.情景、刺激、生理过程D.认知、反应、结果评价E.情景、认知、生理变化 [多选]在社B.涂尔干C.布鲁默(符号互动)D.吉登斯(类意识) [单选]局部浸润麻醉选用普鲁卡因时,其常用浓度为()A.0.5%B.1%C.1.5%D.2%E.2.5% [多选]按风机排出气体压力高低,风机可分为()。A.送风机B.通风机C.鼓风机D.压缩机 [填空题]超声场中,当X≥3N时,长横通孔的反射声压与长横孔直径的()成正比,与距离的3/2次方成反比。 [单选]()通过手指上的弯曲传感器、扭曲传感器和手掌上的弯度传感器、弧度传感器,来确定手及关节的位置和方向,从而实现环境中的虚拟手及其对虚拟物体的操纵。A.跟踪球B.数据手套C.头盔显示器D.立体眼镜 [单选,A1型题]与麻黄"利水消肿"功效密切相关的药理作用是()A.兴奋中枢B.抗炎C.镇咳D.解热E.利尿 [单选,A2型题,A1/A2型题]右眼瞳孔扩大,直接对光反应消失,间接光反应存在,左侧瞳孔间接反应消失提示病灶部位在()。A.右视束B.视交叉C.右侧视反射D.右侧视神经E.左侧视神经 [单选]一位消费者只消费两种商品,z和y。z对y的边际替代率在任一点(z,y)是y/z。假定收入为B=260元,Pz=2元,Py=3元,消费者消费40单位z商品和60单位y商品。()A、消费者实现了效用最大化B、消费者可以通过增加z商品的消费,减少y商品的消费来增加他的效用C、消费者可以通过增 [单选]“寻人启事”写成“寻丫启事”易引起人们注意是利用刺激物的()特点。A.强度B.持续C.活动D.对比 [问答题,简答题]使用哪些车辆运输货物需要施封? [单选]下列不属于并励直流电动机()。A.绕组导线截面小B.绕组匝数少C.励磁绕组和电枢绕组并联D.机械特性硬 [单选]用于限制柴油机转速不超过某规定值而在此定值之下不起调节作用的调速器称为()。A.极限调速器B.定速调速器C.全制式调速器D.双制式调速器 [单选,A2型题,A1/A2型题]当中心体温降到多少度时,肌肉由颤抖变为僵直,失去产热的作用,将会发生死亡()。A.30~33℃B.32~34℃C.30℃以下D.28~31℃E.0℃ [单选]在骨关节炎与类风湿关节炎的鉴别要点中,以下最具鉴别意义的是()A.发病年龄不同B.性别比例不同C.是否有晨僵D.类风湿因子是否阳性E.关节X线表现不同 [多选]气柜底板的严密性试验,可采用()。A.煤油渗透B.氨气渗漏法C.真空试验法D.注水试验 [单选]《湖南省建筑消防设施管理办法》于2008年12月26日经通过。()A、省人民政府第21次常务会议B、省人民政府第22次常务会议C、省人民政府第23次常务会议D、省人民政府第24次常务会议 [单选]混凝土抗渗标号是指A.在一定水头作用下,水渗过一定厚度混凝土所需的时间B.混凝土的密实度,用混凝土的干密度表示C.混凝土中毛细水上升高度D.最大作用水头与建筑物最小壁厚的比值 [单选]确诊感染性心内膜炎除血培养多次阳性外,还应有()A.指甲下裂片状出血B.新出现的心脏病理性杂音C.Janeway损害D.Roth斑E.转移性脓肿 [单选]褶皱构造是()。A.岩层受构造力作用形成一系列波状弯曲且未丧失连续性的构造B.岩层受构造力作用形成一系列波状弯曲且丧失连续性的构造C.岩层受水平挤压力作用形成一系列波状弯曲而丧失连续性的构造D.岩层受垂直力作用形成一系列波状弯曲而丧失连续性的构造 [单选]Inmarsat-C船站在进行卫星洋区登记时,()是正确的.A.只能进行报文的接收B.可以接收EGC报文C.只能接收来自地面站的遇险报警信息D.不能进行报文的发射 [问答题,简答题]经食物传播有哪些特征? [单选,A2型题,A1/A2型题]为了区别红白血病与巨幼红细胞性贫血,下列首选试验是().A.PAS染色B.POX染色C.ALP积分测定D.&alpha;-NAE染色E.以上都正确 [填空题]不符合《中华人民共和国道路运输条例》第九条、第二十三条规定条件的人员驾驶道路运输经营车辆的,由县级以上道路运输管理机构责令改正,处200元以上()元以下的罚款;构成犯罪的,依法追究刑事责任。

初中数学八年级上册 两数和(差)的平方 人教版

初中数学八年级上册   两数和(差)的平方  人教版
第一重境界,是出得来,而进不去;第二重境界,是进得去,而出不来;第三重境界,才是进退自如、来去随意。放得下,是因为看透了、超脱了,所以随缘。 跟道家学想得开 。道家是追求超世、讲究自然的,要求心明大道、眼观天地、冷眼看破。概括为三个字,就是“想得开”。什么是“想得开”?且看这个“道”字——一个“走”字旁加一个“首”字,也就是脑袋走或者走脑袋。脑袋走就是动脑子,尽量透彻;走脑袋就是依胸中透彻而行,尽量顺应规律。合起来,就是要明道,并依道而行。这种智慧,就是想得开。
B、 (5x-2y)2=25x2-10xy+4y2
C、 (-a-1)2=-a2-2a-1
D、 (-a2-0.3ab)2=a4+0.6a3b+0.09a2b2 2、无论x取何值,(x+a)2=x2-x+a2,则常数 a等于 (D ) A 、2 B 、 -2 C、1/2 D、 -1/2
新知拓展
(a+b)2 = a2+2ab+b2 ①
已知x

1 x

3,
求x2

1 x2
的值.
解: x2

1 x2

(x1)2 2(x 1)
x
x
(x 1)2 2
x
32 2
7
课后作业
1、若 a2+b2 =14 , a+b=6, 求ab ; 2、若 a2- m a+25 是一个完全平 方式,求m;
3、若 a2-12ab + m 是一个完全 平方式,求m;
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。

平方差公式练习题

平方差公式练习题

平方差公式练习题公式名称:平方差公式公式描述:平方差公式是指两个数的平方之差等于这两个数的和乘以差。

数学表达式如下:(a + b)(a - b) = a^2 - b^2公式应用:平方差公式在代数中常用于解决方程、因式分解等问题。

通过利用平方差公式,可以简化计算,并找到问题的解决方法。

练习题1:1. 计算以下平方差公式的结果:a) (5 + 3)(5 - 3)b) (10 + 4)(10 - 4)c) (2 + 7)(2 - 7)解答:a) (5 + 3)(5 - 3) = 5^2 - 3^2 = 25 - 9 = 16b) (10 + 4)(10 - 4) = 10^2 - 4^2 = 100 - 16 = 84c) (2 + 7)(2 - 7) = 2^2 - 7^2 = 4 - 49 = -45练习题2:2. 利用平方差公式将以下方程进行分解:a) x^2 - 9b) 9y^2 - 4解答:a) x^2 - 9 = (x + 3)(x - 3)b) 9y^2 - 4 = (3y + 2)(3y - 2)练习题3:3. 根据给定的平方差公式,计算以下问题的结果:a) (6 + 2)(6 - 2)b) (11 + 5)(11 - 5)c) (4 + 9)(4 - 9)解答:a) (6 + 2)(6 - 2) = 6^2 - 2^2 = 36 - 4 = 32b) (11 + 5)(11 - 5) = 11^2 - 5^2 = 121 - 25 = 96c) (4 + 9)(4 - 9) = 4^2 - 9^2 = 16 - 81 = -65练习题4:4. 根据平方差公式,计算以下方程的结果:a) a^2 - 16b) 25 - b^2解答:a) a^2 - 16 = (a + 4)(a - 4)b) 25 - b^2 = (5 + b)(5 - b)练习题5:5. 利用平方差公式将以下问题进行因式分解:a) x^2 - 49b) 36 - m^2解答:a) x^2 - 49 = (x + 7)(x - 7)b) 36 - m^2 = (6 + m)(6 - m)通过以上练习题,我相信你对平方差公式的应用已经更加熟悉了。

八年级数学上第14章整式的乘法与因式分解14.3因式分解第3课时公式法__平方差公式新新人教1

八年级数学上第14章整式的乘法与因式分解14.3因式分解第3课时公式法__平方差公式新新人教1
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
答案显示
1.a2-b2=__(a_+__b_)_(_a_-__b_)__,即两个数的平方差,等于这 两个数的__和______与这两个数的___差_____的积.
2.(2020·金华)下列多项式中,能运用平方差公式分解因式 的是( C )
A.a2+b2 B.2a-b2 C.a2-b2 D.-a2-b2
(1)请你再写出两个(不同于上面的算式)具有上述规律的算式; 解:答案不唯一,如:112-92=8×5,132-112=8×6.
(2)用文字写出反映上述算式的规律; 解:任意两个奇数的平方差等于8的倍数.
(3)证明这个规律的正确性. 证明:设m,n为整数(m>n),两个奇数可分别表示为2m+ 1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1). ①当m,n同是奇数或偶数时,m-n一定为偶数, ∴4(m-n)一定是8的倍数; ②当m,n是一奇一偶时,m+n+1一定为偶数, ∴4(m+n+1)一定是8的倍数. 综上所述,任意两个奇数的平方差等于8的倍数.
(3)3a2-48; 解:原式=3(a2-16)=3(a+4)(a-4);
(4)2a2(n-m)+8(m-n). 原式=2a2(n-m)-8(n-m)=2(n-m)(a2-4)=2(n- m)(a+2)(a-2).

2019-2020学年人教版八年级数学上册14.2平方差与完全平方公式培优专题( 解析版 )

2019-2020学年人教版八年级数学上册14.2平方差与完全平方公式培优专题( 解析版 )

2019-2020平方差与完全平方公式培优专题(含答案)一、单选题1.()()()()248323212121211+++⋯++的个位数是 ( ) A.4B.5C.6D.82.若229x kxy y -+是一个完全平方式,则常数k 的值为 ( ) A.6B.6-C.6±D.无法确定3.()()()()242212121 (2)1n++++=( )A.421n -B.421n +C.441n -D.441n +4.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个 ( ) A.30B.32C.18-D.95.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52C .±1D .±526.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为,小正方形的面积为4,若用表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是( )A .B .C .D .二、填空题7.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.8.若m+1m =3,则m 2+21m=_____. 9.若x ﹣1x=2,则x 2+21x 的值是______.10.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.11.已知1<x <2,,则的值是_____.12.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.请借鉴小黄的方法计算:(1+12)×(1+212)×(1+412)×(1+812)×(1+1612)×(1+3212)×(1+6412),结果是_____. 13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.15.若214x x x++=,则2211x x ++= ________________.16.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .17.计算:(a+1)2﹣a 2=_____.三、解答题18.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn nnn -++-+=,∴()()2220m n n -+-=,∴()20m n -=,()220n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则a =__________,b =__________. (2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC △的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC △的周长. 19.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.20.已知7a b -=,12ab =-. (1)求22a b ab -的值;(2)求22a b +的值; (3)求+a b 的值; 21.已知120153a m =+,120163b m =+,120173c m =+,求222a b c ab bc ac ++---的值. 22.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12. 23.先化简,再求值:已知代数式 化简后,不含有x 2项和常数项. (1)求a 、b 的值;(2)求 的值.24.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣12. 25.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中x=2+3,y=2﹣3.26.计算:211-2⎛⎫ ⎪⎝⎭×211-3⎛⎫ ⎪⎝⎭×211-4⎛⎫ ⎪⎝⎭×…×211-9⎛⎫ ⎪⎝⎭×211-10⎛⎫⎪⎝⎭. 27.阅读题.材料一:若一个整数m 能表示成a 2-b 2(a,b 为整数)的形式,则称这个数为“完美数”.例如,3=22-12,9=32-02,12=42-22,则3,9,12都是“完美数”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整数),所以M也是”完美数”.材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)=pq.例如18=1×18=2×9=3×6,这三种分解中3和6的差的绝对值最小,所以就有F(18)=3162.请解答下列问题:(1)8______(填写“是”或“不是”)一个完美数,F(8)= ______.(2)如果m和n都是”完美数”,试说明mn也是完美数”.(3)若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n为“完美数”且x+y能够被8整除,求F(n)的最大值. 28.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.29.已知a,b,c是△ABC的三边长,且满足a2+b2﹣4a﹣8b+20=0,c=3cm,求△ABC的周长.30.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:31.请认真观察图形,解答下列问题:如图①,1号卡片是边长为a 的正方形,2号卡片是边长为b 的正方形,3号卡片是一个长和宽分别为a ,b 的长方形.(1)若选取1号、2号、3号卡片分别为1张、1张、2张,可拼成一个正方形,如图②,能用此图解释的乘法公式是______________;(请用字母a ,b 表示)(2)若选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),则能用此图解释的整式乘法运算是____________________;(请画出图形,并用字母a ,b 表示)(3)如果图中的a ,b (a >b )满足a 2+b 2=57,ab=12,求a+b 的值;(4)已知(5+2x )2+(3+2x )2=60,求(5+2x )(2x+3)的值.32.已知:x 2+xy +y =14,y 2+xy +x =28,求x +y 的值.33.已知a b 、是等腰△ABC 的边且满足2284200a b a b +--+=,求等腰△ABC 的周长。

人教版八年级上册数学平方差公式同步训练

人教版八年级上册数学平方差公式同步训练

人教版八年级上册数学14.2.1 平方差公式同步训练一、单选题1.下列算式不能运用平方差公式计算的是( )A .(x +a )(x ﹣a )B .(x +a )(﹣a +x )C .(a +b )(﹣a ﹣b )D .(﹣x ﹣b )(x ﹣b )2.如图1,在边长为a 的大正方形中,剪去一个边长为3的小正方形,将余下的部分按图中的虚线剪开后,拼成如图2所示的长方形,根据两个图形阴影部分面积相等的关系,可验证的等式为( )A .22(3)69a a a -=-+B .22(3)69+=++a a aC .2(3)3a a a a +=+D .2(3)(3)9a a a +-=- 3.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积( )A .没有变化B .变大了C .变小了D .无法确定 4.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是( ) A .a B .2b C .-16a D .2b - 5.若2210a a --=,那么代数式()()222a a a +--的值为( )A .1-B .3-C .1D .3 6.一个长方形的长为2x ﹣y ,宽为2x +y ,则这个长方形的面积是( ) A .4x 2﹣y 2 B .4x 2+y 2 C .2x 2﹣y 2 D .2x 2+y 2 7.若3,6x y x y +=-=,则22x y -的值为( )A .18B .6C .3D .28.代数式()()()()()24816322(31)3131313131++++++的末尾数字是( ) A .0B .1C .6D .8二、填空题9.已知x +2y =5,x 2-4y 2=-15,则2x -4y 的值为________.10.已知m +n =3,m -n =2,则22m n -=________.11.已知3m n +=,12m n -=,则()()2255m n --+=______.12.一个长方形的长为2x y -,宽为2x y +,则这个长方形的面积是_______. 13.一个正方形的边长增加3 cm ,它的面积就增加3 9cm ,那么这个正方形的边长是 cm .14.计算:20182﹣2019×2017=_____.15.若20195a b +=,5a b -=,则22a b -=______. 三、解答题16.计算:(1)(x +2y )(2x ﹣y ) (2)(2a ﹣3b )(﹣2a ﹣3b )17.先化简,再求值:(2)(2)(4)x y x y y y x +-+-,其中2x =,1y =.18.观察以下规律:①52﹣32=42;①132﹣52=122;①252﹣72=242;①412﹣92=402;……(1)根据规律写出第5个等式为 ;(2)猜想:第n 个等式,请你给出证明.19.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,再将剩下的三块拼成一个新矩形.(1)求拼成新矩形的周长(用含m或n的代数式表示);(2)当m=7,n=3时,求拼成新矩形的面积.20.小芳同学将一块长为(3a+3b)分米,宽为(3a+b)分米的长方形纸板的四个角都剪去一个边长为b分米的小正方形,然后沿虚线折成一个无盖的盒子作为收纳盒.(1)用含a、b的代数式表示收纳盒的容积;(2)若a=1,b=0.5,求收纳盒的容积.。

人教版八年级上册数学习题课件-平方差公式

人教版八年级上册数学习题课件-平方差公式

问题:计算:
(1)(3+1)(32+1)(34+1)(38+1)…(364+1)-32128;
解:原式=
1 2
(3-1)(3+1)(32+1)(34+1)(38+1)…(364+1)
-3128 2
=12(32-1)(32+1)(34+1)(38+1)…(364+1)-32128
=12(34-1)(34+1)(38+1)…(364+1)-32128 =12(3128-1)-32128 =3128-1-3128
14.【2018·衡阳】先化简,再求值:(x+2)(x-2)+x(1- x),其中x=-1. 解:原式=x2-4+x-x2=x-4, 当x=-1时,原式=-5.
15.已知a-b=2,b-c=2,a+c=14,求a2-b2的值. 【点拨】本题体现了整体思想及平方差公式的逆用. 解:把b-c=2,a+c=14相加得a+b=16,所以a2-b2 =(a-b)(a+b)=2×16=32.
(2)猜想: (a-b)(an-1+an-2b+…+abn-2+bn-1)=__a_n-__b_n__(其中n 为正整数,且n≥2).
(3)利用(2)猜想的结论计算:
29-28+27-…+23-22+2. 解:29-28+27-…+23-22+2=13[2-(-1)][29+28×
(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=
16.【中考·北京】已知2a2+3a-6=0,求式子3a(2a+1)- (2a+1)(2a-1)的值. 解:原式=6a2+3a-4a2+1 =2a2+3a+1, 因为2a2+3a-6=0, 所以2a2+3a=6. 所以2a2+3a+1=7.
17.探究活动: (1)如图①,可以求出阴影部分的面积是__a_2-__b_2__(写成

八年级数学上册分层练习:14.2.1 平方差公式(含答案)

八年级数学上册分层练习:14.2.1 平方差公式(含答案)

14.2 乘法公式14.2.1 平方差公式01 基础题知识点1 平方差公式几何意义1.将图甲中阴影部分小长方形变换到图乙位置,你根据两个图形面积关系得到数学公式是(a +b)·(a-b)=a 2-b2.2.如图1,从边长为a 正方形纸片中剪去一个边长为b 小正方形,再沿着线段AB 剪开,把剪成两张纸片拼成如图2等腰梯形.图1 图2(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 代数式表示S 1,S 2;(2)请写出上述过程所揭示乘法公式.解:(1)S 1=a 2-b 2,S 2=12(2b +2a)(a -b)=(a +b)(a -b). (2)(a +b)(a -b)=a 2-b 2.知识点2 直接利用平方差公式计算3.在下列多项式乘法中,可以用平方差公式进行计算是(B ) A .(x +1)(1+x) B .(12a +b)(b -12a)C .(-a +b)(a -b)D .(x 2-y)(x +y 2)4.下列计算正确是(C )A .(a +3b)(a -3b)=a 2-3b 2B .(-a +3b)(a -3b)=-a 2-9b 2C .(-a -3b)(a -3b)=-a 2+9b 2D .(-a -3b)(a +3b)=a 2-9b 25.计算:(1)(1-12a)(1+12a)=1-14a 2; (2)(-x -2y)(2y -x)=x 2-4y 2.6.计算:(1)(14a -1)(14a +1); 解:原式=116a 2-1. (2)(-3a -12b)(3a -12b); 解:原式=(-12b)2-(3a)2=14b 2-9a 2. (3)(-3x 2+y 2)(y 2+3x 2);解:原式=(y 2)2-(3x 2)2=y 4-9x 4.(4)(x +2)(x -2)(x 2+4).解:原式=(x 2-4)(x 2+4)=x 4-16.知识点3 利用平方差公式解决问题7.若x 2-y 2=20,且x +y =-5,则x -y 值是(C )A .5B .4C .-4D .以上都不对8.利用平方差公式直接写出结果:5013×4923=2_49989.(1)1 007×993;解:原式=(1 000+7)×(1 000-7)=1 0002-72=999 951.(2)2 016×2 018-2 0172.解:原式=(2 017-1)×(2 017+1)-2 0172=2 0172-1-2 0172=-1.10.(宁波中考)先化简,再求值:(x +1)(x -1)+x(3-x),其中x =2.解:原式=x 2-1+3x -x 2=3x -1.当x =2时,原式=3×2-1=5.02 中档题11.若(2x +3y)(mx -ny)=9y 2-4x 2,则(B )A .m =2,n =3B .m =-2,n =-3C .m =2,n =-3D .m =-2,n =312.计算(x 2+14)(x +12)(x -12)结果为(B ) A .x 4+116 B .x 4-116 C .x 4-12x 2+116 D .x 4-18x 2+11613.两个正方形边长之和为5,边长之差为2,那么用较大正方形面积减去较小正方形面积,差是10.14.若(x +3)(x -3)=x 2-mx -n ,则m =0,n =9.(1)(-x -y)(x -y);解:原式=(-y)2-x 2=y 2-x 2.(2)(a +2b)(a -2b)-12b(a -8b); 解:原式=a 2-(2b)2-12ab +4b 2 =a 2-12ab. (3)(2x -y)(y +2x)-(2y +x)(2y -x).解:原式=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.16.先化简,再求值:(1)(a +b)(a -b)+2a 2,其中a =1,b =2;解:原式=a 2-b 2+2a 2=3a 2-b 2.当a =1,b =2时,原式=3-(2)2=1.(2)(北京中考)已知2a 2+3a -6=0,求式子3a(2a +1)-(2a +1)(2a -1)值.解:原式=6a 2+3a -4a 2+1=2a 2+3a +1,∵2a 2+3a -6=0,∴2a 2+3a =6.∴原式=7.17.解方程:(3x)2-(2x +1)(3x -2)=3(x +2)(x -2).解:9x2-(6x2-4x+3x-2)=3(x2-4),9x2-6x2+4x-3x+2=3x2-12,x=-14.03综合题18.(1)(百色中考)观察下列各式规律:(a-b)(a+b)=a2-b2(a-b)(a2+ab+b2)=a3-b3(a-b)(a3+a2b+ab2+b3)=a4-b4…可得到(a-b)(a2 016+a2 015b+…+ab2 015+b2 016)=a2_017-b2_017;(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=a n-b n(其中n为正整数,且n≥2);(3)利用(2)猜想结论计算:29-28+27-…+23-22+2.解:原式=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9]+1=13(210-1)+1=342.。

人教版初二数学上册:平方差公式(提高)巩固练习

人教版初二数学上册:平方差公式(提高)巩固练习

【巩固练习】一.选择题 1.(2016•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )2 2. (2015春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( ) A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y ) 3. 下列因式分解正确的是( ).A.()()2292323a b a b a b -+=+-B.()()5422228199a ab a a b ab -=+-C.()()2112121222a a a -=+- D.()()22436223x y x y x y x y ---=-+- 4. 下列各式,其中因式分解正确的是( ) ①22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭;②()()2933x x x -=-+ ③()()()()2212121m n m n m n +--+=+- ④()()()()2294252a b a c a b c a b c +-+=+-++ A.1个 B.2个 C.3个 D.4个5. 若4821-能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭应等于( ) A .512 B .12 C .1120 D .23二.填空题 7. 11_________m m aa +--=;()2211x x x --+= .8. 若()2|4|50m n -+-=,将22mx ny -分解因式为__________.9. 分解因式:2121()()=m m p q q p +--+-_________.10. 若()()()216422n x x x x -=++-,则n 是_________.11. (2015春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 . 12.(2016•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 .三.解答题13. 用简便方法计算下列各式:(1) 21999-1998×2000 (2)2253566465⨯-⨯ (3) 222222221009998979695......21-+-+-++-14.(2014秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设22131a =-,22253a =-,……,()()222121n a n n =+--(n 为大于0的自然数)(1)探究n a 是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出1a ,2a ,……,n a 这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,n a 为完全平方数.【答案与解析】 一.选择题 1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式. 故选:A .3. 【答案】C ;【解析】()()22933a b b a b a -+=+-;()()()()()542222228199933a ab a a b ab a a b a b a b -=+-=++-;()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--. 4. 【答案】C ;【解析】①②③正确. ()()()()229433223322a b a c a b a c a b a c +-+=++++-- ()()53232a b c a b c =+++-. 5. 【答案】C ;【解析】()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯6. 【答案】C ; 【解析】22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=二.填空题7. 【答案】()()111m a a a -+-;()()211x x -+【解析】()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+.8. 【答案】()()2525x y x y +-;【解析】4,25,m n ==()()222525mx ny x y x y -=+-.9. 【答案】21()(1)(1)m p q p q p q ---+--;【解析】原式=()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦. 10.【答案】4; 【解析】()()()()()22244224416x x x x x x++-=+-=-.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1, =(22﹣1)(22+1)(24+1)(28+1)+1, =(24﹣1)(24+1)(28+1)+1, =(28﹣1)(28+1)+1, =216﹣1+1,=216因为216的末位数字是6, 所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2,∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4. 三.解答题 13.【解析】解:(1)21999-1998×2000 =()()222199919991199911999199911--+=-+=(2)()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯= (3)222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (21)5050=+-++-+++-=++++++=14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±. 15.【解析】解:(1)()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+= 又n 为非零的自然数, ∴n a 是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数. (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.n 为一个完全平方数的2倍时,n a 为完全平方数.附录资料:【巩固练习】 一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( ) A. AB =DE B. ∠A =∠D C. BC =CD D. ∠ACD =∠BCE2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ . 三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上); (2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷灿若寒星整理制作平方差公式练习题1.下列运算中,正确的是()A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.可以用平方差公式计算的是()A.(x+1)(1+x)B.(12a+b)(b-12a)C.(-a+b)(a-b) D.(x2-y)(x+y2)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.94.若(x-5)2=x2+kx+25,则k=() A.5 B.-5 C.10 D.-105.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±26.已知a+1a=3,则a2+21a,则a+的值是() A.1 B.7 C.9 D.117.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为() A.10 B.9 C.2 D.1 8.│5x-2y│·│2y-5x│的结果是()A.25x2-4y2 B.25x2-20xy+4y2 C.25x2+20xy+4y2 D.-25x2+20xy-4y2 9.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以10.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b) C.(13a+b)(b-13a)D.(a2-b)(b2+a)11.下列计算中,错误的有()A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. 12.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 二、填空题1.(-2x+y)(-2x-y)=______.(-3x2+2y2)()=9x4-4y4.2.(a+b-1)(a-b+1)=()2-()2.3.已知x2-5x+1=0,则x2+21x=________.4.9.8×10.2=________; a2+b2=(a+b)2+______=(a-b)2+________.5.(x-y+z)(x+y+z)=________; (a+b+c)2=_______.6.(12x+3)2-(12x-3)2=________.若a2+2a=1,则(a+1)2=_________.7、(2a-3b)(2a+3b)②(-p2+q)(-p2-q)③(x-2y)2④(-2x-12y)2.①(2a-b)(2a+b)(4a2+b2)②(x+y-z)(x-y+z)-(x+y+z)(x-y-z).①2023×2113②2009×2007-20082 ③22007200720082006-⨯④22007200820061⨯+①(a+2)(a2+4)(a4+16)(a-2)②x(x+2)+(2x+1)(2x-1)(3) (2x-1) (2x + 1)-2(x-2) (x + 2) (4) (-2x+3y)(-2x-3y)①(a -2b+3c)2-(a+2b -3c)2② [ab(3-b)-2a(b -21b 2)](-3a 2b 3); (3) (y+3x)(3x-y)1.若x 2-x -m=(x -m)(x+1)且x ≠0,则m 等于( )A.-1 B.0 C.1 D.22.(x+q)与(x+51)的积不含x 的一次项,q =( )A.5 B.51 C.-51D.-53.下列四个算式:①4x 2y 4÷41xy=xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c;③9x 8y 2÷3x 3y=3x 5y;④(12m 3+8m 2-4m)÷(-2m)=-6m 2+4m+2,其中正确的有( ) A.0个 B.1个 C.2个 D.3个 4.设(x m -1y n+2)·(x 5m y -2)=x 5y 3,则m n 的值为( )A.1 B.-1 C.3 D.-35.计算[(a 2-b 2)(a 2+b 2)]2等于( ) A.a 4-2a 2b 2+b 4 B.a 6+2a 4b 4+b 6 C.a 6-2a 4b 4+b 6 D.a 8-2a 4b 4+b 86.已知(a+b)2=11,ab=2,则(a -b)2的值是( )A.11 B.3 C.5 D.197.若x 2-7xy+M 是一个完全平方式,那么M 是( )A.27y 2B.249y 2C.449y 2D.49y 28.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m) 9.下列各式运算结果是x 2-25y 2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)10.下列计算正确的是( ) A.(2x+3)(2x -3)=2x 2-9 B.(x+4)(x -4)=x 2-4 C.(5+x)(x -6)=x 2-30 D.(-1+4b)(-1-4b)=1-16b 211.若x,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )A.x n、y n一定是互为相反数 B.(x1)n 、(y 1)n 一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等 2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (4) (-2+ab)(2+ab)(1)(x+1)(x-3)-(x+2)2+(x+2)(x-2) (2))49)(23)(23(22b a b a b a ++- (3) (12m-3)(12m+3) (4) (13x+6y)2 (5) (a+2b-1)2 (6) (2x+y+z)(2x-y-z)(7))132)(132(++--y x y x (8)8、 (a + b -c) (a -b + c)① a(a -5)-(a+6)(a -6) ②( x+y)( x -y)( x 2+y 2) ③125)2(3=+x④))(())(())((a c a c c b c b b a b a +-++-++- ⑤9982-4 ⑥2)3(b a --④ [(x+2y)(x -2y)+4(x -y)2-6x ]÷6x. )213)(213)(1(22n m n m -+)46)(46)(2(n m n m ++- 2)21)(3(b a -22)331()331)(3(b a b a --+ 2)43)(4(--y x (5))7)(7()3(+---a a a a1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

3.已知 2()16,4,a b ab +==求223a b+与2()a b -的值。

1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3、已知224,4a b a b +=+=求22a b 与2()a b -的值。

4、已知(a+b)2=60,(a-b)2=80,求a 2+b 2及ab 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。

6.已知222450x y x y +--+=,求21(1)2x xy --的值。

7.已知16x x-=,求221x x +的值。

8、0132=++x x ,求(1)221x x +(2)441x x +9、已知a+b=3,ab=2,求a 2+b 2;(2)若已知a+b=10,a 2+b 2=4,ab 的值呢?10、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.11、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值12:已知22124,10n m mn n m +==+),求( 2))(2(n m -完全平方公式1.填空题(1)a2-4ab+( )=(a-2b)2 (2)(a+b)2-( )=(a-b)2(3) (3x+2y)2-(3x-2y)2= (4)(3a2-2a+1)(3a2+2a+1)=(5)( )-24a2c2+( )=( -4c2)2 (6)-4x2+4xy+(_______)=-(_______).5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.已知a2+14a+49=25,则a的值是_________.2.选择题(1)下列等式能成立的是( ).A.(a-b)2=a2-ab+b2B.(a+3b)2=a2+9b2C.(a+b)2=a2+2ab+b2D.(x+9)(x-9)=x2-92.(a+3b)2-(3a+b)2计算的结果是( ).A.8(a-b)2 B.8(a+b)2 C.8b2-8a2 D.8a2-8b2(3)(5x2-4y2)(-5x2+4y2)运算的结果是( ).A.-25x4-16y4B.-25x4+40x2y2-16y2C.25x4-16y4D.25x4-40x2y2+16y2(4)如果x2+kx+81是一个完全平方式,那么k的值是( ).A.9B.-9C.9或-9D.18或-18(5)边长为m的正方形边长减少n(m>n)以后,所得小正方形的面积比原正方形面积减少了( ) A.n2 B.2mn C.2mn-n2 D.2mn+n26.设a、b、c是不全相等的数,若x=a2-bc,y=b2-ac,z=c2-ab,则x、y、z( )A.都不小于0B.至少有一个小于0C.都不大于0D.至少有一个大于0 7.已知y2+my+16是完全平方式,则m的值是() A.8 B.4 C.±8 D.±4 8.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+19.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)210.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)23.化简或计算(1)(3y+2x)2 (2) (9-a2)2-(3-a)(3-a)(9+a)2 (3)(3a+2b)2-(3a-2b)2(4)(x2+x+6)(x2-x+6) (5)(a+b+c+d)2 (1)20012 (2)1.99924.先化简,再求值. (x3+2)2-2(x+2)(x-2)(x2+4)-(x2-2)2,其中x= -14.解方程:(x2-2)(-x2+2)=(2x-x2)(2x+x2)+4x9.把下列各式分解因式:①a2+10a+25 ②m2-12mn+36n2③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2 10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.12用整体的思想方法把下列式子分解因式吗?①(x+2y)2-2(x+2y)+1 ②(a+b)2-4(a+b-1)。

相关文档
最新文档