勒贝格积分函数的研究 汤倩南
第五章勒贝格积分5.1测度有限集合上有界函数的积分本章的基本
![第五章勒贝格积分5.1测度有限集合上有界函数的积分本章的基本](https://img.taocdn.com/s3/m/e5e1251402d8ce2f0066f5335a8102d276a2612f.png)
第五章勒贝格积分5.1 测度有限集合上有界函数的积分本章的基本内容是建立一种新的积分,即勒贝格积分理论,它是实变函数论研究的中心内容。
随着微积分学的发展,人们在应用黎曼(Riemann)积分理论时,逐渐感到它有很大的局限性,这主要表现在以下三个方面:1.黎曼积分对函数的连续性依赖太强.我们先来分析一下它的定义:设是定义在区间上的函数,对于的分法,作积分和其中,而是中的任意一点。
令,如果当时,趋于极限值,就说在黎曼可积,同时,称为在上的黎曼积分,记作积分和的结构与分法及的选取有关。
分法将分成个小区间以后,中的每一点都可取作,而每个的改变不能使积分和有显著的变化,这只有当的变化所引起的函数值的改变很小,或的改变较大而的改变很小时才有可能,这对于是近乎连续性的要求。
可以说,黎曼积分是为“基本上”是连续的函数建立的(参看定理5.4.5)。
而迪里克雷函数是区间上的有界函数,但却不黎曼可积,因为无论把分得多么细,在每个小区间中总能找到有理数和无理数,如果所有的都取为有理数,则,如果所有的都取为无理数,则。
如此简单的有界函数都不黎曼可积,可见黎曼可积函数类实在太窄了,这是黎曼积分定义固有的局限性。
2.在黎曼积分理论中,处理极限与积分交换顺序时,所要求的条件也是相当苛刻的,一般要求一致收敛性。
因为如果不一致收敛,则一列可积函数的极限可能根本是不可积的,当然更谈不上换序的问题,例如,设则收敛于每个都是黎曼可积的,而极限函数却不是黎曼可积的。
这个一致收敛的要求或者常常得不到满足,或者招致繁琐的验证。
由于积分与极限的换序问题不能顺利解决,就大大降低了黎曼积分的应用效果。
3.在数学分析中,我们知道牛顿一莱布尼茨公式表达了微分与积分两种互逆运算的联系,即设是上的可微函数且在上是可积的,则有显然,为使这一微积分基本定理成立,必须是可积的。
早在1881年,伏尔台拉(V olterra)就作出了一个可微函数。
其导函数是有界的但却不是黎曼可积的。
Lebesgue积分与函数逼近
![Lebesgue积分与函数逼近](https://img.taocdn.com/s3/m/ed06f15ba9114431b90d6c85ec3a87c240288a1d.png)
Lebesgue积分与函数逼近Lebesgue积分是实分析中重要的概念,它是对实值函数进行积分的一种方法。
Lebesgue积分通过对函数在定义域上的分割,将函数值与定义域的测度关联起来,从而得到积分结果。
Lebesgue积分的引入解决了Riemann积分的一些固有问题,并且在函数逼近中也起到了重要的作用。
一、Lebesgue积分的引入Lebesgue积分是由法国数学家Henri Lebesgue在20世纪初期引入的,它是对实函数进行积分的一种新的定义与方法。
Riemann积分的定义是将定义域分割成n个小区间,然后在每个小区间内求和。
但是在某些情况下,Riemann积分的定义不够灵活,无法处理一些非常规的函数。
为了解决这个问题,Lebesgue引入了测度的概念,并将函数值与测度关联起来,从而定义了Lebesgue积分。
二、Lebesgue积分的定义Lebesgue积分的定义是通过将函数在定义域上的取值与定义域的测度相乘,然后求和得到的。
具体来说,给定一个实值函数f(x),定义域为E,我们将定义域E分割成许多小区间,然后对每个小区间求函数f(x)在该区间上的值乘以该区间的测度,最后对所有小区间的积分结果求和,即可得到Lebesgue积分。
三、函数逼近与Lebesgue积分函数逼近是数学中一个重要的研究方向,它通过寻找一系列简单的函数来逼近复杂的函数。
在函数逼近的过程中,Lebesgue积分可以作为一个强大的工具,它可以帮助我们对复杂的函数进行分解和理解。
通过Lebesgue积分,我们可以将一个复杂的函数分解成一系列简单函数的线性组合,从而更容易理解函数的性质和特点。
这种分解可以用于研究函数的连续性、一致收敛性等重要性质。
此外,Lebesgue积分还可以用于证明许多重要的数学定理,如傅里叶级数的收敛性等。
四、Lebesgue积分的应用Lebesgue积分在实际问题中的应用非常广泛。
它可以用于概率论、偏微分方程、调和分析等领域。
非负可测函数的勒贝格积分
![非负可测函数的勒贝格积分](https://img.taocdn.com/s3/m/d2e8117ea9956bec0975f46527d3240c8447a11f.png)
非负可测函数的勒贝格积分引言在实分析中,积分是一个重要的概念。
而勒贝格积分是实分析中的一种积分方法,它对非负可测函数的积分提供了一种可行的方式。
本文将介绍勒贝格积分的基本思想和定义,并深入探讨其性质和应用。
勒贝格积分的基本思想勒贝格积分是由法国数学家亨利·勒贝格于1902年引入的一种积分方法。
它的基本思想是将被积函数分解为两个非负函数的差来进行积分。
具体来说,如果一个函数是非负可测函数,那么可以将其分解为一个非负递增函数和一个非负递减函数的差。
勒贝格积分的定义勒贝格积分的定义比较复杂,我们需要引入一些相关的概念。
可测集合可测集合是指在一个测度空间中具有良好性质的集合,具体的定义需要借助测度论的相关概念,这里不再详述。
非负可测函数非负可测函数是指定义在一个测度空间上的函数,且在该空间上取非负值。
非负可测函数的定义也涉及到测度论的一些概念,这里我们只需要知道其取非负值即可。
前向极限函数和后向极限函数给定一个非负可测函数f,我们定义其前向极限函数为:inff n(x)f∗(x)=limn→∞其中,inff n(x)表示函数序列{f n(x)}的下确界。
类似地,我们可以定义其后向极限函数为:supf n(x)f∗(x)=limn→∞其中,supf n(x)表示函数序列{f n(x)}的上确界。
勒贝格积分的定义给定一个非负可测函数f,我们定义其勒贝格积分为:∫fdμ=sup{∫gdμ:g为有界的非负简单函数且g≤f}其中,μ表示测度,∫gdμ表示简单函数g的积分。
勒贝格积分的性质勒贝格积分具有一些重要的性质,下面我们将介绍其中的一部分。
单调性如果函数f≤g,则有∫fdμ≤∫gdμ。
这意味着勒贝格积分是一个单调的操作。
有限可加性对于可测函数f,如果将其分解为f=f1+f2,则有∫fdμ=∫f1dμ+∫f2dμ。
这表明勒贝格积分在有限可加性上与常见的积分运算类似。
上下极限对于函数序列{f n(x)},如果存在一个函数f(x)使得对于几乎所有的x都有f(x)= lim n→∞f n(x),则有lim n→∞∫f n dμ=∫fdμ。
第一讲 勒贝格积分的研究背景_定积分理论的进展
![第一讲 勒贝格积分的研究背景_定积分理论的进展](https://img.taocdn.com/s3/m/3fe6d30e7f1922791788e8d0.png)
专题勒贝格积分及相关理论主要内容1.勒贝格积分的研究背景2.点集的勒贝格测度3.可测函数4.勒贝格积分的概念及相关理论1902年“积分、长度、面积”第1讲勒贝格积分的研究背景勒贝格: 1902年博士论文“积分、长度、面积”(Lebesgue, 法,1875-1941)求积问题四边形求积问题八边形求积问题十六边形一、定积分的进展概述柯西的积分理论是对于闭区间上连续函数来定义的, a b x y o ?A a b x yo 不足: 若闭区间上具有无限多不连续点, 柯西积分就不适用了.重新定义定积分为一个分割的和的极限 1821年柯西 (Cauchy, 法, 1789-1857)()[,].f x a b 设是定义在上的有界函数 1854年黎曼 (Riemann, 德, 1826-1866) 重新定义定积分(后也称黎曼积分)01:,i n T a x x x x b =<<<<<=step1.分割区间 1max{}i i n T x ≤≤=∆1,i i i x x x -∆=-step2. 近似作和黎曼和1()n ii i f x ξ=∆∑=(,)i S T ξ记作依赖于划分T , 以及点的取法 i ξ01()d lim ().n bi i a T i f x x f x ξ→==∆∑⎰step3. 求极限得黎曼积分,0,,()[,],i T T f x a b ξ→不论和如何选择 当时黎曼和都趋于同一个值则称该值为函数在区间上的积分即达布大和 1[,]sup {()}.i i i x x x M f x -∈=1,nT i i i S M x ==∆∑ 1875年达布 (Darboux, 法, 1842-1917) 提出了达布大和、小和达布小和1[,]inf {()}.i i i x x x m f x -∈=1,nT i i i S m x ==∆∑上积分与下积分()d inf ,bT a Tf x x S =⎰()d sup .b T a T f x x S =⎰结论 1 黎曼可积 ( 存在) 的充要条件 ()d ba f x x ⎰()d ()d .bb a a f x x f x x =⎰⎰01lim 0,ni i T i x ω→=∆=∑1()[,i i i i i M m f x x x ω-=-其中为在]上的振幅.结论 2 黎曼可积 ( 存在) 的充要条件 ()d ba f x x ⎰x i -1 x i(1) 对被积函数和积分域要求过于严格 要求积分域为区间,对一般点集而言, R 积分无定义;二、 黎曼积分的局限性 (一维情形为例)01()[,]lim 0ni i T i f x a b x ω→=⇔∆=∑函数在区间上可积 要求被积函数在区间[a , b ]上的变化不能太快, 至少急剧变化的点不能太多, 可积函数是“差不多连续”.(黎曼积分意义下可积的函数类太小)例1 [0,1]上的狄利克雷函数1,[0,1]()0,[0,1]\x D x x ∈⎧=⎨∈⎩不是R 可积的. 证明 对任意的划分T , 1,i ω=总有从而0011lim lim 1n ni i i T T i i x x ω→→==∆=∆=∑∑故D (x )在[0,1]上不是R 可积的..0≠狄利克雷( Dirichlet, 德, 1805-1859)在很强的条件下(可积函数列一致收敛)才能交换极限运算与积分运算次序(见数学分析教材);(2)积分与极限可交换的条件太严格问题⇒? O y x()y f x =()n y f x =ba ()y f x ε=-()y f x ε=+一致收敛的几何直观例210lim (d ).n n f x x →∞=⎰所以1x εyxO 2x 113x ε- 函数列一致收敛的要求过分强.10(d im )l n n f x x →∞⎰1231231,{,,,,}(),1,2,3,0,[0,1]\{,,,,}n n n x r r r r f x n x r r r r ∈⎧==⎨∈⎩例3 设{r n }为[0,1]中全体有理数(因为其为可数集, 故可把它排成序列), 构造[0,1]上的函数列 1,[0,1]lim ()()0,[0,1]\n n x f x D x x →∞∈⎧==⎨∈⎩不R 可积. 可积函数列的极限函数(逐点收敛)未必可积. {()}[0,1]R ,n f x 则在上可积但(3)关于微积分基本定理()[]()[](),,(),a f x a b b f x a b 假设在上是可微的 条件1 在上是连续的.' 1821年柯西 (Cauchy, 法, 1789-1857) ()d ()(),[,]xa f t t f x f a x ab '=-∈⎰()[]()[](),,(),a f x a b b f x a b 假设在上是可微的 条件2 在上是可积的.' 1875年达布 (Darboux, 法, 1842-1917) 在满足以下条件之一下是成立的:()[](),,,f x a b f x 假设在上是可微的 且是有界的'⇒? ()d ()(),[,].xa f t t f x f a x ab '=-∈⎰ 1881年沃尔泰拉 (Volterra, 意, 1860-1940) 为了扩充可积函数类, 拓宽积分与其它运算交换的条件, 需要将传统的黎曼积分定义推广.做出了一个可微函数, 其导函数有界, 但导函数不是R 可积的.假设 (b )的必要性?问题感谢大家的聆听!。
勒贝格积分的计算方法
![勒贝格积分的计算方法](https://img.taocdn.com/s3/m/bf1dfdd8ce2f0066f5332225.png)
E
infS (D , f ) = sup s (D . f ) 。
D D
( 2) 当函数非负可测 ( 集合测度不限) 时, 定义积分为: ( 3) 一般情形。 当 f
E
f ( x ) d x = li m ∫ ∫[ f (x ) ] dx
E n →∞ E n n
( x ) d x 至少有一个有限时, 定义积分为: f ∫ (x ) d x 和 ∫ (x ) d x (x ) d x 。 f (x ) d x = f f ∫ ∫ ∫
2005年11月
安庆师范学院学报 ( 自然科学版)
J ourna l of A nq ing Te a che rs C o lle ge (N a tura l S c ie nce )
N ov. 2 0 0 5
第 11 卷第 4 期
Ξ Ξ Ξ Ξ Ξ Ξ
. 11 NO. 4 Vol
勒贝格积分的计算方法
・90・
安庆师范学院学报 ( 自然科学版)
n →∞
2005 年
积分。 当然, 这样的分法 D 不见得总能找得到, 但如果能选取一列可测分划 {D n }, 使得 lim S (D n , f ) =
n →∞
lim s (D n , f ) , 则这个共同值便是所求的积分。 对于非负可测函数也可以直接用定义求积分。 如下例:
x
∫
解 由于 Can to r 集的测度为零, 由上面性质 1 和性质 3 得 1 1 1 1 1 3 (L ) f ( x ) d x = (L ) d x = (R ) dx = 3 0 0 0 3 2 x x 注: 例 5 中的函数 f ( x ) 不是 R 可积的, 因为它在 [ 0, 1 ] 上虽是几乎处处连续的, 但它在 [ 0, 1 ] 上无 界。 但 f ( x ) 却是广义 R 可积的, 且积分值也为 3 2。 下例则不同。
勒贝格可积性研究
![勒贝格可积性研究](https://img.taocdn.com/s3/m/6ecbac6eb5daa58da0116c175f0e7cd18525187b.png)
勒贝格可积性研究勒贝格可积性(Lebesgue integrability)是数学分析中的一个重要概念,由法国数学家亨利·勒贝格在20世纪初提出。
勒贝格可积性是测度论的核心内容之一,并在实分析、概率论和数论等领域中有着广泛的应用。
具体地说,假设我们有一个定义在测度空间上的函数f:E→R,其中E是测度空间,R是实数集。
我们想要判断f是否是可积的,也就是说,我们想要找到一个值来“衡量”f在E上的积分是否存在。
∫f*(x)dx = sup{∫g(x)dx , g是一个简单函数,且0≤g(x)≤f(x)}而f的上积分(upper integral)定义为:∫f*(x)dx = inf{∫g(x)dx , g是一个简单函数,且f(x)≤g(x)}如果f的下积分和上积分都相等且有限,我们则称函数f是可积的,其积分等于下积分或上积分的值。
这就是勒贝格可积性的定义。
勒贝格可积性的实质是通过数列逼近来对函数进行近似。
简单函数可以看作是定义在有限测度空间上的分段常值函数,通过对定义域进行分割,并在每个子集上取常值来近似原函数。
我们用这些简单函数的积分值的下确界和上确界来近似原函数的积分值,如果这两个值相等且有限,那么我们就认为原函数是可积的。
勒贝格可积性的研究主要涉及了对可积函数的性质和定理的探讨。
例如,勒贝格可积性具有线性性质,即两个可积函数的线性组合仍然是可积的。
此外,如果一个函数在一些测度为零的集合上取值为零,则它是可积的。
还有,如果一个函数是有界的,则它也是可积的。
另一个与勒贝格可积性相关的重要结果是勒贝格收敛定理(Lebesgue convergence theorem)。
该定理认为,如果一个函数序列在测度空间上逐点收敛于另一个函数,并且这个函数序列都可积,则收敛函数也是可积的,并且其积分等于逐点收敛的函数序列的积分值。
总而言之,勒贝格可积性是测度论的重要内容,它为实分析、概率论和数论等领域中的积分理论提供了坚实的基础。
勒贝格积分
![勒贝格积分](https://img.taocdn.com/s3/m/12abcba6d1f34693daef3e54.png)
勒贝格积分(2007-09-03 00:39:01)转载▼标签:分类:科普知识/探索数学积分是“和”的概念。
即将东西加起来。
所以积分早期是从面积,路程等计算中发展起来。
比如计算面积,将X轴的区间分成若干小区间,将小区间的高度(Y值)乘以小区间的长度,然后加起来。
用极限法就可以求得精确的面积。
这是传统的积分概念(黎曼积分)。
勒贝格从另一个角度来考虑积分概念,导致勒贝格积分和测度概念。
比如计算面积,可以将小区间的高度(Y值)乘以对应的所有小区间的长度的和(测度),然后加起来。
又比如现有硬币:25,25,10,5,10,1,5,25。
用黎曼积分来求和:25+25+10+5+10+1+5+25 =106。
用勒贝格积分来求和:25*3+10*2+5*2+1=106。
结果是一样。
但对于一些“坏”函数,结果是不一样。
比如在X轴[0,1]闭区间上定义函数:Y=1,当X是无理数;Y=0,当X是有理数。
求该函数覆盖的面积。
黎曼积分无法定义,因为任意小的区间都包含无理数和有理数。
用勒贝格积分来求和: 1*1+0*0 = 1。
[0,1]闭区间的长度(测度)是1;有限点集的长度(测度)是0;无限可数点集(如,有理数)的长度(测度)是0。
而[0,1]闭区间的长度(测度) = 有理数集的长度 + 无理数集的长度。
所以,[0,1]闭区间的无理数集的长度(测度) 是1。
这就解释了上述计算结果。
由此可见,勒贝格积分比黎曼积分广义。
很多数学概念和思想就是从貌似相同的概念和思想中推导出来。
这启发我们在做研究时应从不同角度来考虑一些现有概念和理论,有时可能导致新的概念和理论。
第七讲 勒贝格积分的概念
![第七讲 勒贝格积分的概念](https://img.taocdn.com/s3/m/013709050242a8956aece412.png)
第7讲勒贝格积分的概念研究内容1.非负可测简单函数的积分2.非负可测函数的积分3.一般可测函数的积分4.积分的性质3c 1. 非负可测简单函数的L 积分(),nx E ϕ⊆若是上的非负简单可测函数即1():()d ().pi i Ei x E x x c m L E ϕϕ==∑⎰定义在上积分的为一、勒贝格积分(L 积分)的概念1E 2E 3E O()y x ϕ=(1,2,),i i p E c i =它在子集上取值1.()()i pi E i x c x ϕχ==∑也即1c 2c 定义11, (),pi i j i E E E E i j ==⋂=∅≠其中0i c ≥[0,1]()d D x x⎰1,[0,1]()0,[0,1]\x D x x ∈⎧=⎨∈⎩例1 求Dirichlet 函数10010.=⋅+⋅=在[0,1]上的L 积分. 解([0,11])m =⋅([0,10]\)m +⋅{}121 (),()()()() lim ()(), ().nk k k k k f x E x x x x x f x x x E ϕϕϕϕϕϕ+→∞⊆≤≤≤≤≤=∀∈设是可测集上的当且仅当非负可测函数非负可测的简单存在得函数列:使简单函数逼近定理 回顾:非负函数可测性的等价描述 2. 非负可测函数的L 积分渐升列简单函数列构造如下:1 ···E()f x [0,1]y 对轴作二等分1 E 11E 12F 11()x ϕ11102E E f ⎛⎫=≤< ⎪⎝⎭1(1)F E f =≥12112E E f ⎛⎫=≤< ⎪⎝⎭112111()()()2i F E i i x x x ϕχχ=-=+∑E()f x [0,2]y 对轴作八等分2 · 1 2 · · · · ··· · E 21 E 22 E 23 E 24 E 28 F 22()x ϕ依次类推, 得到简单函数列 {}()k x ϕ[0,]2ky k k ⋅对轴作次等分1, 1,2,,2,22(),kki k k k i i E E f i k F E f k -⎛⎫=≤<=⋅ ⎪⎝⎭=≥(),k x ϕ作简单函数列其中211()()(),2kk ki k k F E k i i x k x x x Eϕχχ⋅=-=+∈∑可以证明 {}().k x ϕ即为所求(),nf x E ⊆定义2非 设是的负上可测函数():f x E L 定在上的积分义为()()()d sup {()d :() },EEx f x x Ef x x x x x E ϕϕϕ≤∈=⎰⎰为上的非负可测简单函数;+∞这里的积分可以是()d ,Ef x x <+∞⎰(),(),f x E L f x E L 则称在上是可积的或称是上的可积函数 简称可积函数.若3. 一般可测函数的L 积分(),f x E 是定义在上的广义实值函数设令()y f x =()y f x +=()y f x -=())()(,f x x f x f -+并分别称为正部函数的与负部.(())()f x f x x f +-=-{}{}max (),0,max ())),(0(,f f x f x f x x -+==-(),n f x E ⊆设是上的可测函定义3 数 若积分,中至少有一个是有限值则称()d ,()d E E f x x f x x +-⎰⎰().f x E L 为在上的积分()d ()d ()d E E Ef x x f x x f x x +-=-⎰⎰⎰()E E 在上可积的函数的全体记为.,().f x E 当上式右端两个积分值皆为有限时则称在上是可积的(())),(E E f x f ∈∈当且仅当且 ()()f x f x 的可积性与的可注积性是等价的. ()()();()()().f x f x f x f x f x f x +-+-=-=+提示 结论 ()d ()d .E E f x x f x x ≤⎰⎰2)(),(),().f x E m E f E <+∞∈ 若是上的有界可测函数且则1)(),().f E f x E ∈ 若则在上是几乎处处有限的二、勒贝格积分的性质——L 可积的必要条件1. L 可积的必要和充分条件——L 可积的充分条件3)(),(),()(), ,().f x E g E f x g x x E f E ∈≤∈∈ 若是上的可测函数且 则——L 可积的充分条件2. L 积分的基本性质,(),,,(),f g E f f g E λλ∈∈+∈若则且性质1(线性性) 性质2(有限可加性)(1)(),,();f E A E f A ∈∈若是的任一可测子集则(2),,,,E A B AB A B ==∅又若且为可测子集则 ()d ()d ; (()())d ()d ()d .EE E E Ef x x f x x f xg x x f x x g x x λλ=+=+⎰⎰⎰⎰⎰()d ()d ()d .E A B f x x f x x f x x =+⎰⎰⎰,(),()(),,f g E f x g x x E ∈≤∀∈ 设且则性质3(保序性)()d ()d .E Ef x xg x x ≤⎰⎰,(),(),, ()()d ().Em E b f x B x E bm E f x x Bm E <+∞≤≤∀∈≤≤⎰特别的若且则性质4 零测度集上的任何函数的积分为零, 即()0()d 0.Em E f x x =⇒=⎰推论 ),()(()() a.e.,f x f xg x E E ∈= 若且于3. L 积分的几个特殊重要性质(),g E ∈则且()d ()d .E Ef x xg x x =⎰⎰1()(,(1,2,)(),,)i i i i j f x E E E i E E i j E ∞=∈===∅≠若均为可测集则且,性质5 (可数可加性)性质6(可积性与绝对可积性等价) ()(( ()d ()d .)),E E f x f f x x f x x E E ∈∈≤⎰⎰当且仅当且1()d ()d .i E E i f x x f x x ∞==∑⎰⎰性质7(绝对连续性)(),0,0,,(),f E e E m e εδδ∈∀>∃>⊆< 若则使得任何可测子集当时有|()d ||()|d .e ef x x f x x ε≤<⎰⎰即:当积分区域很小时, 积分值也很小.注 反映了L 积分值与积分域之间的一种依赖关系:()0()d 0.em e f x x →⇒→⎰三、黎曼积分和勒贝格积分的关系 注 黎曼可积性取决于函数的不连续点集的测度. 定理2 [,]()([,]),()([,]),()()d ()()d .ba b a f x a b f x a b L f x x R f x x ∈∈=⎰⎰若则且 ——R 积分与L 积分的关系定理1 ()[,],()([,])()[,]f x a b f x a b f x a b ∈⇔若是上的有界函数则在上的不连续点集是零测集.定理2表明: 黎曼积分的相关问题可以转化为勒贝格积分后, 再利用其有关理论, 这是因为相较于黎曼积分理论来说, 勒贝格积分理论限制更少, 使用起来更为方便有效. 关于这一点, 我们将在下一讲展开叙述并举例说明.感谢大家的聆听!。
第四章勒贝格积分
![第四章勒贝格积分](https://img.taocdn.com/s3/m/81aa5cee964bcf84b8d57bdb.png)
第四章 勒贝格积分本章介绍勒贝格积分理论.定义勒贝格积分有多种方法,本处采用从非负简单函数到非负可测函数,然后到一般可测函数的方法逐步建立勒贝格积分理论.§1 非负简单函数的勒贝格积分定义1 设n R E ⊂是可测集,)(x ϕ是E 上的非负简单函数,即E x x c x nk E k k∈=∑=,)()(1χϕ,其中 nk k E E 1==,k E 是互不相交的可测集,k c 是非负实数(1≤k ≤n ),记⎰∑==Enk kk mEc dx x 1)(ϕ称⎰Ex dx x )()(ϕϕ为在E 上的勒贝格积分.显然,当⎰==Edx x mE 0)(,0ϕ时.下面的定理1说明非负简单函数的勒贝格积分值与其表示无关.定理1 设)(),(x x ψϕ是可测集E 上的非负简单函数,如果E x x x ∈=),()(ψϕ,则⎰⎰=EEdx x dx x )()(ψϕ证明 设E x x a x nk E k k∈=∑=,)()(1χϕ,nk k k E E n k a 1),1(0==≤≤≥,E k 是互不相交的可测集,又E x x b x jF mj j ∈=∑=),()(1χψ,mj j j j F F E m j b 1,),1(0==≤≤≥是互不相交的可测集. 因为在E 上,)()(x x ψϕ=,所以对任何k 和),1,1(m j n k j ≤≤≤≤ 总有)()(j k j j k k F E m b F E m a ⋂=⋂,于是∑∑∑∑====⎪⎪⎭⎫ ⎝⎛⋂=⋂=nk m j j k k k nk k nk k k F E m a E E m a mE a 1111)()()()(1111j k m j nk j j kmj kn k F E m b F Em a ⋂=⋂∑∑∑∑=====∑=mj j j mF b 1即⎰⎰=EEdx x dx x )()(ψϕ .定理2 设)(),(x x ψϕ是E 上的非负简单函数,则 (1)对任何非负实数c,有⎰⎰=EEdx x c dx x c )()(ϕϕ ;(2) ()⎰⎰⎰+=+EEEdx x dx x dx x x )()()()(ψϕψϕ ; (3)若,),()(E x x x ∈≤ψϕ则⎰⎰≤EEdx x dx x )()(ψϕ ,特别地,mE x dx x E⋅≤⎰)(max )(ϕϕ ;(4)若A 、B 是E 的两个不相交的可测子集,则⎰⎰⎰+=⋃BABA dx x dx x dx x )()()(ϕϕϕ .证明 仅证(2)式,其余作为习题.设 E x x a x ni A i i ∈=∑=)()(1χϕ,,)()(1E x x b x mj B j j∈=∑=χψ其中}{},{),1,1(0,j i j i B A m j n i b a ≤≤≤≤≥均为互不相交的可测集列,且 n i mj j i B A E 11====.易知jiB A n i mj i i b a x x ⋂==∑∑+=+χψϕ11)()()(所以())()()()(11j i Eni mj j iB A m b adx x x ⋂+=+⎰∑∑==ψϕ=)()(1111j i ni m j i j i ni mj i B A m b B A m a ⋂+⋂∑∑∑∑=====∑∑∑∑====⎪⎭⎫⎝⎛⋂+⎪⎪⎭⎫ ⎝⎛⋂m j n i j i j j i m j ni i B A m b B A m a 1111)()(=⎰⎰∑∑+=+==EEmj j j i n i i dx x dx x mB b mA a )()(11ψϕ定理3 设})({)},({x x n n ψϕ是E 上单调增的非负简单函数列,如果E x x x n n n n ∈=∞→∞→)(lim )(lim ψϕ,那么 ⎰⎰∞→∞→=En n En n dx x dx x )(lim )(lim ψϕ .证明 不妨设)(lim x n n ϕ∞→在E 上几乎处处有限,因为)}({x n ψ在E 上单调增,所以对任何自然数m ≥1,有)(lim )(lim )(x x x n n n n m ϕψψ∞→∞→=≤ .令 )}(),(m in{)(x x x f n m n ϕψ=,则非负简单函数列)}({x f n 收敛,且,)()(lim E x x x f m n n ∈=∞→ψ当+∞<mE 时,由Egoroff 定理,0>∀ε,存在可测集)(),()(,\,∞→<→→n x x f E E mE E m n ψεεεε上在使,于是存在N ≥1,当n>N 时,对一切εE E x \∈,)()()(x x f x n n m ϕεεψ+≤+<从而dx x dx x n E E m E E ))(()(\\ϕεψεε+≤⎰⎰dx x mE E n ⎰+≤)(ϕε因此, dx x mE dx x En E E n m⎰⎰∞→+≤)(lim )(\ϕεψε另外, )(m ax )(m ax )(x mE x dx x m m E m ψεψψεε⋅<≤⎰故 dx x dx x dx x m E m E E E m)()()(\ψψψεε⎰⎰⎰+=dx x mE x n En m )(lim ))((max ϕψε⎰∞→++<令0→ε,),1()(lim )(≥∀≤⎰⎰∞→m dxx dx x En n Emϕψ当+∞=mE 时,存在可测集列)1(,,,},{121≥+∞<=⊂⊂⊂⊂∞=k mE E E E E E E k k k k k 使.由上述证明知,对每个k ≥1, ⎰⎰⎰∞→∞→≤≤En n E n n E m dx x dx x dx x kk)(lim )(lim )(ϕϕψ .记 Tj j j Tj F j m F F E E x x a x j 11}{,,,)()(===∈=∑其中χψ是互不相交的可测集,)1(,0T j a j ≤≤≥,则由积分定义,∑⎰==Tj k j j E m E F m a dx x k1)()( ψ ,因为 j k j k mF E F m =∞→)(lim ,所以⎰⎰∑===∞→Em E Tj j j m k dx x mF a dx x k)()(lim1ψψ,于是 ⎰⎰∞→≤En n Emdx x dx x )(lim )(ϕψ,因此⎰⎰∞→∞→≤EEn n m n dx x dx x )(lim )(lim ϕψ .同理可证相反的不等式,故⎰⎰∞→∞→=EEn n m n dx x dx x )(lim )(lim ϕψ .§2 非负可测函数的勒贝格积分定义1 设)(x f 是E 上的非负可测函数,)}({x n ϕ是E 上单调增收敛于)(x f 的非负简单函数列,记⎰⎰∞→=En En dx x dx x f )(lim )(ϕ,称 )()(x f dx x f E为⎰在E 上的勒贝格积分,或L 积分,如果⎰+∞<Edx x f )(,则称)(x f 在E 上是勒贝格可积的,或L可积,简记为)(E L f ∈.由§1定理3知,非负可测函数的勒贝格积分值与非负简单函数列)}({x n ϕ选取无关.显然,若⎰=∈=Edx x f E x x f 0)(,,0)(则;若mE =0,则对于E 上的任何非负可测函数)(x f , ⎰=Edx x f 0)( .定理1 设)(x f ,)(x g 是E 上的非负可测函数, 则 (1) 若 E x x g x f ∈≤),()(,则⎰⎰≤EEdx x g dx x f )()( ;(2) 若A 、B 是E 的可测子集,且B A ⊂,则⎰⎰≤ABdx x f dx x f )()( ;(3)若A 、B 是E 的可测子集,且φ=B A ,则⎰⎰⎰+=BA ABdx x f dx x f dx x f )()()( ;(4)若E e a x g x f 于..)()(=,则⎰⎰=EEdx x g dx x f )()( ;(5)对任何非负实数c ,⎰⎰=EEdx x f c dx x cf )()( ;(6)()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 证明由定义即得.定理2 (Levi 单调收敛定理)设)}({x f n 是E 上的非负可测函数列,满足 (1) 1,..)()(1≥≤+n E e a x f x f n n 于;(2),..)()(lim E e a x f x f n n 于=∞→则⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 因为)(x f n 是E 上非负可测函数(n ≥1),所以E x x x f n kk n ∈=∞→),(lim )()(ϕ,其中)}({)(x n k ϕ是单调增的非负简单函数列,于是⎰⎰∞→=En k k En dx x dx x f )(lim )()(ϕ ,令)}(,),(),(max {)()()2()1(x x x x k k k k k ϕϕϕψ = ,则对每个)(,1x k k ψ≥是E 上的非负简单函数,且E x x x x k ∈≤≤≤≤,)()()(21 ψψψ ,E x k n x x k n k ∈≤≤≤),1(),()()(ψϕ ,又 E x x f x f x f x f x k k k ∈=≤),()}(,),(),(max {)(21 ψ ,所以 E x k n x f x x k k n k ∈≤≤≤≤,1),()()()(ψϕ, (1) 从而dx x f dx x dx x Ek EEk n k ⎰⎰⎰≤≤)()()()(ψϕ .(2)固定n ,令∞→k ,由(1)和(2)式,有E x x f x f x x f k k k k n ∈=≤≤∞→∞→),()(lim )(lim )(ψ ,和dx x f dx x dx x f k Ek Ek k n E)(lim )(lim )(⎰⎰⎰∞→∞→≤≤ψ ,进一步,令∞→n ,则)(lim )(lim )(x x f x f k k n n ψ∞→∞→== ,及dx x dx x f k Ek En n )(lim )(lim ψ⎰⎰∞→∞→= .(3)于是,由非负可测函数勒贝格积分定义和(3)式,有⎰⎰∞→=En n Edx x f dx x f )(lim )( .定理3 (逐项积分定理)设)}({x f n 是E 上的非负可测函数列,则⎰∑⎰∑∞=∞==⎪⎭⎫⎝⎛En n E n n dx x f dx x f )()(11 .证明 由定理1,对每个n ≥1⎰∑⎰∑===⎪⎭⎫⎝⎛Ek nn E n k k dx x f dx x f )()(11令 )}({,)()(1x S x f x S n nk k n 则∑==是非负可测函数列,且 E x x S x S n n ∈≤+),()(1 ,E x x f x S n n n n ∈=∑∞=∞→1)()(lim ,由Levi 单调收敛定理知,dx x S dx x f n E n E n n )(lim )(1⎰⎰∑∞→∞==⎪⎭⎫⎝⎛ =⎰∑⎰⎪⎭⎫ ⎝⎛==∞→∞→En k k n n En dx x f dx x S 1)(lim )(lim=()⎰∑⎰∑∞==∞→=Enn k Enk n dx x f dx x f 11)(lim .推论 设{E n }是可测集列,互不相交,∞==1n n E E 如果)(x f 是E 上的非负可测函数,则⎰∑⎰∞==En E ndx x f dx x f 1)()( .证明 令)1(,),()()(≥∈=n E x x x f x f n E n χ,则 )(x f n 是E 上的非负可测函数,且 ∑∞==1)()(n n x f x f ,⎰⎰=EnEn dx x f dx x f )()( .由逐项积分定理知∑⎰⎰∑⎰∞=∞===11)()()(n EnEn n Edx x f dx x f dx x f .定理4 设)(x f 是E 上几乎处处有限的非负可测函数,),0[}{,+∞⊂+∞<n y mE ,满足)(,01∞→+∞→<<<<=n y y y y n n o其中 δ<-+n n y y 1,令,1,0],)(|[1=<≤=+n y x f y x E E n n n则)(x f 在E 上是勒贝格可积的充分必要条件是∑∞=∞<0n nn mEy ,此时⎰∑=∞=→En n n dx x f mE y )(lim 0δ .证明 不妨假设)(x f 在E 上处处有限,因为在E n 上,)0(,)(1≥<≤+n y x f y n n ,所以由定理1,对每个n ≥0,n n Enn n mE y dx x f mE y 1)(+≤≤⎰,由定理3的推论知,∑⎰⎰∞==0)()(n E Endx x f dx x f ,所以⎰∑∑∞=+∞=≤≤En n n n nn mE y dx x f mEy 010)(=∑∑∞=∞=++-01)(n n n n n n n mE y mE y y∑∞=+<0n n n mE y mE δ,因此结论成立.定理5(Fatou 定理) 设{})(x f n 是E 上的非负可测函数列,则⎰⎰∞→∞→≤En n nE n dx x f dx x f)(lim )(lim .证明 令1,),(inf )(≥∈=≥n E x x f x g k nk n ,则 g n (x)是E 上的非负可测函数,且E x x g x g n n ∈≤+),()(1,于是,由Levi 单调收敛定理知,⎰⎰⎰∞→∞→∞→==En n n E n n n Edx x g dx x g dx x f )(lim )(lim )(lim .因为 E x x f x g n n ∈≤),()(所以 dx x f dx x gEn En⎰⎰≤)()( ,从而⎰⎰∞→∞→≤En n n En dx x f dx x g )(lim )(lim ,因此,⎰⎰∞→∞→≤En n n n Edx x f dx x f )(lim )(lim .Fotou 定理中的严格不等式有可能成立,例如设⎪⎩⎪⎨⎧-∈∈=]1,0[]1,0[0]1,0[)(n x n x n x f n ,易知 )1(,1)(],1,0[,0)(lim ]1,0[≥=∈=⎰∞→n dx x f x x f n n n ,所以1)(lim 0)(lim ]1,0[]1,0[=<=⎰⎰∞→∞→x f dx x f n n n n .§3 一般可测函数的勒贝格积分定义1 设)(x f 是E 上的可测函数,如果积分⎰⎰-+EEdx x f dx x f )(,)(中至少有一个是有限值,记⎰⎰⎰-+-=EEEdx x f dx x f dx x f )()()(,则称)()(x f dx x f E为⎰在E 上的勒贝格积分.如果上式右端两个积分值均是有限的,则称)(x f 在E 上是勒贝格可积的,或称)(x f 是E 上的勒贝格可积函数.通常把区间[a ,b ]上的勒贝格积分记成dx x f a b L )()(⎰,或 dx x f ab)(⎰.定理1 设)(x f 是E 上的可测函数,则 (1))(x f 在E 上勒贝格可积的充分必要条件是)(x f 在E 上勒贝格可积,此时⎰⎰≤EEdx x f dx x f |)(||)(|;(2)若)(x f 在E 上勒贝格可积,则)(x f 在E 上几乎处处有限;(3)若)()(x g x f = ..e a 于E ,且)(x f 在E 上勒贝格可积,则)(x g 在E 上勒贝格可积,且⎰⎰=EEdx x g dx x f )()(.证明 (1))(x f 与)(x f 在E 上勒贝格可积的等价性由定义1和)()()(x f x f x f -++=即得,另外,由§2 定理1, ⎰⎰⎰⎰-+-++=+=EEEEdx x f dx x f dx x f x fdx x f )()())()((|)(|⎰⎰⎰=-≥-+EEEdx x f dx x f dx x f |)(||)()(| .(2)若)(x f 在E 上勒贝格可积,则⎰⎰+∞<+∞<-+EEdx x f dx x f )(,)( ,对任何n ≥1,记])(|[n x f x E E n ≥=,则⎰⎰⎰⋅≥=≥++EE E n nnmE n dx x f dx x f dx x f )()()( ,所以 0lim =∞→n n mE ,而n n n E E x f x E ⊂=+∞=∞= 1])(|[ ,于是 0])(|[=+∞=x f x mE ,同理可证 0])(|[=-∞=x f x mE ,因此0]|)(||[=+∞=x f x mE ,即)(x f 在E 上是几乎处处有限的.(3)因为..)()(e a x g x f =于E ,所以..)()(),()(e a x g x f x g x f --++==于E ,再由勒贝格积分定义和§2定理1知结论成立.由定理1知,对于可测函数而言,其勒贝格可积性和积分值大小与零测集无关,因而我们总可以假定可积函数是处处有限的. 定理2 设)(),(x g x f 是E 上的勒贝格可积函数,则 (1) )(,1x cf R c ∈∀在E 上勒贝格可积,且⎰⎰=EEdx x f c dx x cf )()( ;(2) )()(x g x f +在E 上勒贝格可积,且()⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()()()( .证明 (1)当0≥c 时,),())((),())((x cf x cf x cf x cf --++==于是 ⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf ))(())(()(⎰⎰-+-=EEdx x cf dx x cf )()(=()⎰⎰⎰=--+EEEdx x f c dx x f dx x f c )()()( ;当0<c 时, ()())()(),()(x cf x cf x cf x cf +--+-=-=, 所以()()⎰⎰⎰-+-=EEEdx x cf dx x cf dx x cf )()()(=()()⎰⎰+----EEdx x cf dx x cf )()(=[]⎰⎰⎰=--+-EEEdx x f c dx x f dx x f c )()()( .(2)因为|)(||)(||)()(|x g x f x g x f +≤+,所以当)(),(x g x f 在E 上勒贝格可积时,)(,)(x g x f 在E 上勒贝格可积,从而)()(x g x f +在E 上勒贝格可积,故)()(x g x f +可积.另外,由于-++-+=+))()(())()(()()(x g x f x g x f x g x f , 又 ))()(())()(()()(x g x g x f x f x g x f -+-+-+-=+ ,所以 ,))()(())()(()()()()(-+-+-++-+=-+-x g x f x g x f x g x g x f x f 从而)()())()(())()(()()(x g x f x g x f x g x f x g x f --+-+++++=+++ .于是由§2定理1(6),⎰⎰⎰-+++++EEEdx x g x f dx x g dx x f ))()(()()(=⎰⎰⎰--++++EEEdx x g dx x f dx x g x f )()())()((因此⎰⎰⎰+=+EEEdx x g dx x f dx x g x f )()())()((定理3 设函数)(x f 在E 上勒贝格可积, ∞==1n n E E ,E n 是可测集(n ≥1),且互不相交,则)(x f 在每个E n 上勒贝格可积,且dx x f dx x f Enn E⎰∑⎰∞==)()(1.证明 对每个n ≥1,)(x f 在E n 上勒贝格可积,(留作习题).因为)(x f 在E 上勒贝格可积,所以由非负可测函数积分的可数可加性,+∞<=⎰⎰∑++∞=dx x f dx x f EE n n)()(1 ,+∞<=⎰⎰∑--∞=dx x f dx x f EE n n)()(1 ,于是⎰⎰∑⎰∑-+∞=∞=-=nnnE E n E n dx x f dx x f dx x f ))()(()(11=⎰∑⎰∑-∞=+∞=-nnE n E n dx x f dx x f )()(11=⎰⎰-+-EEdx x f dx x f )()(=dx x f E)(⎰ .定理4 (勒贝格控制收敛定理) 设)(x f 、)1)((≥n x f n 是E 上的可测函数,如果(1))()(x f x f n →a . e.于E ,(2)存在E 上的勒贝格可积函数g (x ),使),()(x g x f n ≤ a. e.于E ,则)1)((),(≥n x f x f n 在E 上勒贝格可积,且⎰⎰=∞→EEn n dx x f dx x f )()(lim .证明 由(2),f (x ), f n (x )(n ≥1)在E 上勒贝格可积,且g (x )+f n (x )≥0 (n ≥1), a .e.于E . 由Fatou 定理,⎰⎰+≤+∞→∞→E n n E nn dx x f x g dx x fx g ))()((lim ))()((lim ,于是 ⎰⎰⎰⎰∞→∞→+≤+E n En En n Edx x f dx x g dx x f dx x g )(lim )()(lim )( , 从而⎰⎰⎰∞→∞→≤=E n En n n Edx x f dx x f dx x f )(lim )(lim )( .同理,由g (x )-f n (x )≥0,(n ≥1),a.e.于E 知,()⎰⎰-≤-∞→Enn Edx x fdx x f )(lim ))(( ,即⎰⎰∞→-≤-En n Edx x f dx x f )(lim )(,所以, ⎰⎰∞→≥En n Edx x f dx x f )(lim )( ,因此⎰⎰∞→=En n Edx x f dx x f )(lim )( .推论 设)(,x f mE n +∞< )1(≥n 是E 上的可测函数,如果 (1)..),()(e a x f x f n →.于E ,(2)M x f n ≤)(, a.e.于E ,(n ≥1) ,则 可积,且上在L E x f )(⎰⎰∞→=En n Edx x f dx x f )(lim )(.定理5 (积分的绝对连续性)设f (x )在E 上勒贝格可积,则对任何ε>0,存在δ>0,对E 的任何可测子集A ,当mA<δ时,ε<⎰Adx x f )(证明 不失一般性,设f (x )在E 上非负可积. 令⎩⎨⎧>≤=nx f nn x f x f x f n )()()()(,则 )1,(),()(0≥∈≤≤n E x x f x f n ,且)()(lim x f x f n n =∞→,)()(1x f x f n n +≤.因为f (x )勒贝格可积,所以对每个n ,f n (x )是勒贝格可积的,于是由Levi 单调收敛定理,有⎰⎰∞→=EEn n dx x f dx x f )(lim )( ,因此,对任意正数ε>0, 存在N ≥1,使⎰<-≤EN dx x f x f 2))()((0ε.令 N2εδ=,则对E 的任何可测子集A ,当mA<δ时,()⎰⎰⎰+-=AAN AN dx x f dx x f x f dx x f )()()()(<εεεε=+<⋅+222mA N . 定理6 设f (x )是1R E ⊂上的L 可积函数,mE<+∞,则对任何ε>0,存在R 1上的连续函数g (x ),使⎰<-Edx x g x f ε)()(.证明 令[]n x f x E E n >=)(|,则1+⊃n n E E ,且[] ∞=+∞==1)(|n n x f x E E . 因为f (x )在E 上勒贝格可积,所以f (x )在E 上几乎处处有限. 又mE <+∞,故由可测集性质,[]0)(|lim =+∞==∞→x f x mE mE n n ,因此,由积分的绝对连续性,对任何ε>0,存在N ≥1,使⎰<≤NE N dx x f NmE 4)(ε.对于E\E N ,由第三章§3定理3,存在R 1上连续函数)(x g 和闭集N N E E F \⊂,使(1)[]NF E E m N N 4\)\(ε<,(2)f (x )=g (x ), ,N F x ∈ 且,)(sup 1N x g R x ≤∈ 于是⎰⎰⎰-+-=-EE E E NNdx x g x f dx x g x f dx x g x f \)()()()()()(⎰⎰⎰---++≤NNN NE F E E E dx x g x f dx x g dx x f )(|)()(||)(|)([]N N N F E E Nm NmE \)\(24++<εεεεε=++<244.例1 证明dy y f y x a b dy y f y x abdx d )()cos()()sin(+=+⎰⎰ , 其中f (x )是[a ,b ]上的勒贝格可积函数. 证明 对任何1R x ∈,|)(|)()sin(y f y f y x ≤+所以函数 sin(x+y )f (y )在[a ,b ]上勒贝格可积,对任何0→n ε,令[])()sin()()sin(1)(y f y x y f y x y f n nn +-++=εε ,则|)(||)(|y f y f n ≤,且 )()cos()(lim y f y x y f n n +=∞→,由控制收敛定理,dy y f y x a b dy y f y x ab dx d )()cos()()sin(+=+⎰⎰. 例2证明 0101lim 2223=+⎰∞→dx x n xn n .证明 易知]1,0[,01lim2223∈=+∞→x x n xn n ,令xx g xn xn x f n 2)(,1)(2223=+=,则)1()12(2)()(222323x n x xn nx x f x g n +-+=-, 当 0)12(2,1412323>-+≤<x n nx x n时;当 时nx 410≤≤,()04122122232323232323>⎪⎭⎫⎝⎛-≥-≥-+n n x n x n nx ,所以 1],1,0[),()(0≥∈≤≤n x x g x f n ,由习题6, g (x )在[0,1]上勒贝格可积,所以由控制收敛定理,0001101lim 2223==+⎰⎰∞→dx dx x n xn n .§4 黎曼积分与勒贝格积分本节介绍黎曼积分与勒贝格积分的关系,并给出黎曼可积函数的特征性质. 定理1 设f (x )是闭区间[a ,b ]上的有界函数,如果f (x )在[a ,b ]上黎曼可积,则f (x )在[a ,b ]上勒贝格可积,且⎰⎰=bab adx x f L dx x f R )()()()( .证明 设|,)(|sup ],[x f M b a x ∈= 则0≤M<+∞.作[a ,b ]的分划D n 如下:D n : b x x a x n k n n n=<<<=)()(1)(0 , 使1+n D 比n D 更细密,并且())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n.记 )(sup )(inf ],[)(],[)(11x f M x f m j j j j x x x n j x x x n j --∈∈==,作简单函数[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n j n n n n x x x m x x x m x L ,n k j ≤≤2,[](]⎪⎩⎪⎨⎧∈∈=-)()(1)()(1)(0)(1,,)(n jn j n jn n n n x x x M x x x M x U ,n k j ≤≤2,易知简单函数列{L n (x )}和{U n (x )}满足 )()(1x L x L n n +≤ , )()(1x U x U n n +≥ ,],[),()()(b a x x U x f x L n n ∈≤≤ .令 )(lim )(),(lim )(x U x U x L x L n n n n ∞→∞→==,则],[),()()(b a x x U x f x L ∈≤≤ .因为对每个n ,],[,|)(|,|)(|b a x M x U M x L n n ∈≤≤,所以由有界控制收敛定理, ⎰⎰∞→=],[],[)(lim )(b a b a n n dx x L dx x L ,⎰⎰∞→=],[],[)(lim )(b a b a n n dx x U dx x U .另外,由简单函数勒贝格积分定义知,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D s x x m dx x L ,()⎰∑=-=-=],[1)(1)()(),()(b a k j n n j n j n j n nf D S x x M dx x U ,其中s (D n , f )与S(D n , f )分别是f (x )关于分别D n f (x )在[a ,b ]上黎曼可积,所以),(lim ),(lim )()(f D S f D s dx x f R n n n n ba∞→∞→==⎰ ,从而 ⎰⎰⎰==],[],[)()()()(b a b a badx x U dx x L dx x f R ,注意到 ()⎰=-≥-],[,0)()(0)()(b a dx x L x U x L x U 及于是 U (x )-L (x )=0 a .e .于[a ,b ], 因此 f (x )=U (x )=L (x ) a .e .于[a ,b ].故f (x )在[a ,b ]上L 可积,并且⎰⎰⎰==],[],[)()()()(b a b a ba dx x U dx x L dx x f L ,于是 ⎰⎰=b a dx x f L dx x f abR )()()()(.以下我们给出黎曼可积函数的充分必要条件,先给出如下引理.引理 函数f (x )在],[0b a x ∈处连续的充分必要条件是对任意ε>0,存在包含x 0的开区间I ,使f (x )在I 上的振幅.ε<-=∈∈)(inf)(sup )(],[],[x f x f I w Ib a x Ib a x f证明 由连续函数的定义即得.定理2 设f (x )为[a ,b ]上的有界函数,则f (x )在[a ,b ]上黎曼可积的充分必要条件是它的不连续点的全体是零测集,即f (x )在[a ,b ]上几乎处处连续.证明 必要性 因为f (x )黎曼可积,所以同于定理1的证明,做[a ,b ]的分划列{D n }和简单函数列{L n (x )}与{U n (x )},得知.],[),()()(b a x x U x f x L ∈≤≤, 进而],[..),()()(b a e a x f x L x U 于==,其中 )(lim )(),(lim )(x L x L x U x U n n n n ∞→∞→== .记D 是分划{D n }的所有分点所成之集,令 )}()()()(],,[|{x U x f x L x f b a x x E <>∈=或 ,E DF = ,则mF =0,下证f (x )在[a ,b ]-F 上连续.事实上,设E x D x F b a x ∉∉-∈000,,],[且则. 若f (x )在x 0处不连续,则由引理知,存在00>ε,对任何包含x 0的开区间I ,有0)(ε≥I w f . 因为D x ∉0,所以对每个n ,存在)1(00n k k k ≤≤,使())()(1000,n k n k x x x -∈,于是()0)()(100),()()(00ε≥=--n k n k f n n x x w x L x U , 而 )(lim )(),(lim )(0000x L x L x U x U n n n n ∞→∞→==,所以0)()(000>≥-εx L x U ,这与E x ∉0矛盾,故f (x )在x 0处连续. 充分性设f (x )在[a ,b ]上几乎处处连续,且|f (x )|≤M ,],[b a x ∈. 作[a ,b ]上的一列越来越细密的分划{D n },D n :b x x x a n k n n n=<<<=)()(1)(0 , 满足:())(0max )(1)(1∞→→-=-≤≤n x x D n j n j k j n n同于定理1的证明,做简单函数列{U n (x )}和{L n (x )},使1],,[,)(,)(≥∈≤≤n b a x M x L M x U n n , 并且].,[),(lim )()(lim b a x x U x f x L n n n n ∈≤≤∞→∞→下证对于f (x )的任何连续点x ,有).()(lim )(lim x f x U x L n n n n ==∞→∞→事实上,设f (x )在x 处连续,则由引理,任给0>ε,存在开区间I =(α,β),使ε<∈)(,I w I x f 且. 因为0→n D ,所以存在N ≥1,当n ≥N 时,},min{x x D n --<βα,另外,存在k 0(1≤k 0≤k n ),使[]I x x x n k n k ⊂∈-)()(100,,因此[]()ε<≤=--)(,)()()()(100I w x x w x L x U f n k n k f n n , 由ε的任意性知,).()(lim )(lim x f x L x U n n n n ==∞→∞→因为f (x )在[a ,b ]上几乎处处连续,所以].,[..)()(lim )(lim b a e a x f x L x U n n n n 于==∞→∞→又 ⎰=],[),()(b a n n f D S dx x U ,⎰=],[),()(b a n n f D s dx x L ,于是由勒贝格有界控制收敛定理, ⎰⎰==∞→∞→bab a n n n n dx x f L dx x U f D S )()()(lim ),(lim ],[,⎰⎰==∞→∞→bab a n n n n dx x f L dx x L f D s )()()(lim),(lim ],[,因此 ()0),(),(lim =-∞→f D s f D S n n n ,故f (x )在[a ,b ]上黎曼可积.例1 设⎩⎨⎧=,]1,0[1,]1,0[0)(中有理数为中无理数为x x x D 则D (x )在[0,1]上黎曼不可积.证明 因为D (x )在[0,1]上处处不连续,所以由定理2,D (x )在[0,1]上黎曼不可积. 例2 黎曼函数⎪⎩⎪⎨⎧=,]1,0[0,1)(上其它数为为任约真分数x q px qx ξ则ξ(x )在[0,1]上黎曼可积.证明 因为ξ(x )不连续点的全体为(0,1)中的有理数集,而该集合为零测集,所以由定理2,ξ(x )在[0,1]上黎曼可积.§5 重积分与累次积分在黎曼积分中,重积分可化为累次积分. 例如设D =[a ,b ]×[c ,d ], f (x ,y )是D 上的连续函数,则⎰⎰⎰⎰⎰⎰==Ddx y x f abdy c d dy y x f c d dx a b dxdy y x f ),(),(),(本节我们在勒贝格积分中建立相应的定理——即富比尼(Fubini )定理,由此看到,在勒贝格积分中重积分化为累次积分,以及积分次序的交换等问题中,勒贝格积分要求的条件比在黎曼积分时要求的条件弱得多,这再次显示了勒贝格积分的优越性. 一、富比尼定理设p 、q 是正整数,n =p +q ,此时R n 可以看成R p 和R q 的直积,即R n =R p ×R q . R n上的函数f 可以用f (x ,y )表示,其中,,q p R y R x ∈∈相应的积分可写成⎰⨯qp R R dxdy y x f ),(,称为重积分. 另一方面,固定),(,y x f R x p ∈看成q R y ∈的函数,令⎰=q Rdy y x f x F ),()(,则称[]⎰⎰⎰⎰⎰∆=p q ppqRRR R R dy y x f dx dx dy y x f dx x F ),(),()(为累次积分. 富比尼定理给出了等式⎰⎰⎰⨯=p q qp RRR R dy y x f dx dxdy y x f ),(),(成立的条件. 定理1 (Tonelli )设f (x ,y )是R p ×R q 上的非负可测函数,则 (1)对几乎所有的q p R y y x f R x ∈∈作为),(,的函数是非负可测的; (2)⎰∈=q RP R x dy y x f x F 作为),()(的函数是非负可测的;(3).),(),(⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f证明 由于非负可测函数是非负单调增简单函数列的极限,我们只需证)(x f 是R p ×R q 中可测集E 的特征函数的情形即可.以下分五种情形加以证明.情形1 E=I 1×I 2,其中I 1和I 2分别是R p 和R q 中的区间; 当1I x ∉时,f (x ,y )=0;当,1时I x ∈⎩⎨⎧∉∈=,,1),(22I y I y y x f所以对一切q p R y y x f R x ∈∈作为),(,的函数是非负可测的,并且⎰⎩⎨⎧∉∈==q R I x I x I dy y x f x F ,0,||),()(112于是 ⎰⎰⨯==p RI I I dx I dx x F 1||||||)(212 . 而⎰⨯⨯==qp R R I I mE dxdy y x f ||||),(21 ,所以⎰⎰⎰⨯=qp p q R R RRdy y x f dx dxdy y x f ),(),( .情形2 E 是开集;由开集结构知, ∞==1)(k k I E ,其中I (k) (k ≥1)是R p ×R q 中互不相交的半开半闭区间,记)(2)(1)(k k k I I I ⨯=,其中)(2)(1k k I I 和分别是R p 和R q 中的区间,令⎩⎨⎧⨯∉⨯∈=,),(0,),(1),()(2)(1)(2)(1k k k k k I I y x I I y x y x f 则 ∑∞==1),(),(k k y x f y x f .由情形1,每个f k (x ,y )满足(1)~(3),于是对一切qp R y y x f R x ∈∈作为),(,的函数是非负可测的,从而由逐项积分定理,∑∑⎰⎰⎰∞=∞====11),(),(),()(k k Rk kRRq q qdy y x f dy y x fdy y x f x F在R p 上非负可测,仍由逐项积分定理,∑⎰⎰∞=⨯⨯=1),(),(k kR R R R dxdy y x fdxdy y x f qp qp=[]∑∑⎰⎰⎰∞=∞=⨯=11),(),(k k R R k k R R pqqp dx dy y x f dxdy y x f=⎰⎰⎰∑∑⎰⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∞=∞=p p q q R RR k k k R k dx dy y x f dx dy y x f 11),(),( =[]⎰⎰⎰⎰=pp q qR RRR dy y x f dx dx dy y x f ),(),( .情形3 E 是有界闭集; 令 },1)),,((0),{(1<<⨯∈=E y x d R R y x G q p},1)),,((),{(2<⨯∈=E y x d R R y x G qp则G 1和G 2是R p ×R q 中的有界开集,且E =G 2\G 1,21G G ⊂,及,0),(),(),(12≥-=y x f y x f y x f其中f 1, f 2分别是G 1与G 2的特征函数,由情形2,f 1, f 2均满足(1)~(3),并且对一切),(,y x f R x p ∈关于p R y ∈是非负可积的,从而dy y x f dy y x f dy y x f x F q q q RRR),(),(),()(12⎰⎰⎰-==在R p 上非负可积,并且[]dy y x f dx dy y x f y x f dx dx x F q p p q pRRRRR ),(),(),()(12⎰⎰⎰⎰⎰=-= .另外,由f i (x ,y )在R p ×R q 上非负可积及情形2知(i=1,2),⎰⎰⎰⨯⨯⨯-=qp qp qp R R R R R R dxdy y x f dxdy y x f dxdy y x f ),(),(),(12=⎰⎰⎰⎰-p q p q RRRRdy y x f dx dy y x f dx ),(),(12=[]⎰⎰⎰⎰=-pq qRRRR dy y x f dx dy y x f y x f dx ),(),(),(112.情形4 E 是零测集;因为E 是零测集,所以存在递减开集列{G k },使)1(≥⊂k G E k 且)(0∞→→k mG k ,令k k G H ∞==1,则.0,=⊂mH H E 且令⎩⎨⎧∉∈=kkk G y x G y x y x f ),(0),(1),(, 则由控制收敛定理和情形2, 0=⎰⎰⨯⨯∞→=qP qp R R RR k k H dxdy y x f dxdy y x ),(lim ),(χ =[]⎰⎰⎰⎰∞→∞→=p q p qRRR R k k k k dx dy y x f dy y x f dx ),(lim ),(lim=[]⎰⎰⎰⎰=∞→pp q q R RRH R k k dy y x dx dx dy y x f ),(),(lim χ .因此,对几乎所有的p R x ∈,有⎰=q RH dy y x 0),(χ,从而对几乎所有p R x ∈,q H R y y x ∈关于),(χ几乎处处为零,但),(),(),(0y x y x y x f H E χχ≤=≤,因而对几乎所有的p R x ∈,几乎处处为零关于q R y y x f ∈),(,因此对几乎所有的p R x ∈,⎰==0),()(dy y x f x F q R ,于是⎰⎰⎰==⨯0),(),(dy y x f dx dxdy y x f q p qp R R R R .情形5 E 是一般可测集.由可测集结构知,存在有界单增的闭集列Z F k 和零测集}{,使φ=⎪⎪⎭⎫ ⎝⎛=∞= Z F Z F E k k k ,1(k ≧1),记()则的特征函数和分别为和,1≥k F Z f f k k o),(),(lim ),(),(y x f y x f y x y x f o k k E +==∞→χ.由情形3和4,)1(,≥k f f o k 满足定理(1)~(3),故由单调收敛定理和可积函数性质知),(y x f 也满足(1)~(3).至此我们证明了q p R R ⨯中任何可测集E 上的特征函数)3(~)1()(满足定理x f ,从而易知任何非负简单函数和非负可测函数都满足定理(1)~(3). 定理2 (Fubini ),设),(y x f 在q p R R ⨯上可积,则(1)对几乎所有的q R x ∈,),(y x f 作为q R y ∈ 的函数在q R 上可积; (2)⎰=q Rdy y x f x F 在),()(q R x ∈上可积;(3)⎰⎰⎰⨯=qp qpR R R R dy y x f dx dxdy y x f ),(),(.证明 因为),(),(),(y x f y x f y x f -+-=,而q P R R f f ⨯-+都是,上的非负可积函数,所以由定理1即得结论.推论 设),(y x f 在q p R R ⨯上非负可测(L 可积),则dx y x f dy dxdy y x f dy y x f dx pqqp qpR R R R R R ),(),(),(⎰⎰⎰⎰⎰==⨯ .证明 在定理1和定理2的证明中交换y x 与的位置即得结论. 二、富比尼定理的应用以下我们介绍富比尼定理在函数的卷积和分布函数方面的应用.为此先给出如下引理:引理 设上的可测函数是则上的可测函数是n n n n R R R y x f R x f 2)(,)(=⨯-. 证明 因为函数上可测在n R x f )(,所以对任何})({,1αα>∈=∈x f R x A R n 是n R y x y x g -=),(,则})(),{(a y x f R R y x n n >-⨯∈)(}),{(1A g A y x R R y x n n -=∈-⨯∈=. 为证引理,只需证明 中可测集是n R A g 21)(-. 分三种情形证明:(1)若A 为中n R Borel 集,因为n n R R g →2:是连续映射,则)(1A g -为n R 2中Borel 集,从而)(1A g -是可测集. (2)若A 是中n R 零测集,即mA=0,则存在δG 型集G ),(,0,1G g B mA mG A -===⊃令且则B 的特征函数B χn R 2是上的非负可测函数,由推论及有,0}){(==+mG y G m.0}){(),(),(),(}{2=+=====⎰⎰⎰⎰⎰⎰⎰⎰+dy y G m dxdy dx y x dy dyy x dx dxdy y x mB nnnn nnn R y G R B R R B R R B R χχχ另外,由A G ⊃知,从而所以,0))((,)()(111==⊂---A g m B G g A g )(1A g -是n R 2中可测集.(3)若A 是n R 中任一可测集,则存在,0)\(,=⊂F A m A F F 使型集σ因为知所以由集型集是)1(,Borel F σ,)2(,)(1知又由是可测集F g -)\(1F A g -是可测集,从而)\()()(111F A g F g A g ---= 是可测集.定义 设n R x g x f 是)(),(上的可测函数,如果对几乎所有的n R x ∈,积分dy y g y x f nR )()(-⎰存在,则称dy y g y x f x g f nR )()())(*(-=⎰为)()(y g x f 与的卷积.定理3 设)(x f ,)(x g 在n R 上可积,则对几乎所有的n R x ∈,))(*(x g f 存在,并且))()()(()(*dx x g dx x f dx x g f nnnR R R ⎰⎰⎰≤.证明 先设0)(≥x f ,0)(≥y g ,由引理,)()(y g y x f -在n n R R ⨯上是非负可测的,由推论,).)()()(())()((])()([))()(())(*(dy y g dx x f dydx y x f y g dydx y g y x f dxdy y g y x f dx x g f nnnnnn nnnR R R R R R R R R ⎰⎰⎰⎰⎰⎰⎰⎰⎰=-=-=-=一般情形由下式即得:dx x g Rdx x f Rdx x g f Rdx x g f Rnnnn)()())(*())(*(⎰⎰⎰⎰=≤.定理4 设n R E ⊂是可测集,)(x f 是E 上几乎处处有限的可测函数,对每个0>λ,令 }))(({)(λλ>∈=x f E x m F ,称的分布函数为)()(x f F λ,则当∞<≤p 1时,λλλd F p dx x f E p p)(0)(1-⎰⎰∞=.证明 令⎩⎨⎧≤>=,)(0,)(1),(λλλx f x f x g固定的函数是可测集合作为时x x g ),(,0λλ>})({λ>∈x f E x 的特征函数,所以由定理1,⎰⎰⎰-=λλd p x f dx dx x f p E pE10)()(().)(.),(101010λλλλλλλλλd F p dx x g d p d x g p dx p E p p E -∞-∞-∞⎰⎰⎰⎰⎰===习 题1、证明§1定理2中(1)、(3)、(4).2、证明§2定理1中(2)、(4)、(6).3、设则上可测在,)(E x f 对任何0>η,有,)(])([dx x f x f x mE E ⎰≤≥ηη4、设上在E x f )(非负可测,且⎰=0)(dx x f E,则E e a x f 于,,0)(=5、设令上可测在,0)(E x f ≥,)(,)(0)()]([n x f n x f x f x f n >≤⎩⎨⎧= 若则于,..)(E e a x f +∞<[]⎰⎰=∞→dx x f dx x f E n En )()(lim .6、设(]⎪⎩⎪⎨⎧=∈=⎪⎩⎪⎨⎧=,00,1,02)(,]1,0[,]1,0[1)(4x x xx g x x x xx f 中有理数为中无理数为证明并求可积上在,]1,0[)(),(L x g x f ⎰⎰dx x g dx x f )()(]1,0[]1,0[和.7、 设中任一点至少属于如果的可测子集是]01[,]1,0[,,,21n E E E 这n 个集合中的q个,证明必有一个集合,它的测度大于或等于nq. 8、设是上可积的充分必要条件在证明上非负可测在E x f E x f mE )(,)(,+∞<级数])([1n x f x mE n ≥∑∞=)收敛, +∞=mE 时,结论是否成立?9、设()x f 在可测集E 上L 可积,1E 是E 的可测子集,则()x f 在1E 上L 可积. 10、设+∞<mE ,()x f 在E 上有界可测,则()x f 在E 上L 可积,从而[ a ,b ]上的连续函数是L 可积的.11、设()x f ,()x g 是E 上的可积函数,则)()(22x g x f +,也在E 上可积.12、设]1,0[0为P 中康托集,⎪⎩⎪⎨⎧∈∈=阶邻接区间n x P x n x f 0100)( ,证明 3)(]1,0[=⎰dx x f .13、设()x f 在E 上L 可积,mE mE mE n E E n n n =+∞<≥⊂→∞lim ,),1(且,证明dx x f dx x f E E n n )()(lim ⎰⎰=→∞.14、设.0lim ],)([,)(,=≥=+∞<∞→n n n nmE n x f x E E L E x f mE 证明记可积上在15、设mE ≠0,()x f 在E 上L 可积,如果对于任何有界可测函数)(x ϕ,都有0)()(=⎰dx x x f Eϕ,则()x f =0,a.e.于E16、设+∞<mE ,0,,)}({⇒n n f E E x f 上证明在函数列上几乎处处有限的可测为的充要条件为 0)(1)(lim =+⎰∞→dx x f x f n n En .17、设{})(x f n 为E 上非负可测函数列,且)1()()(1≥≥+n x f x f n n ,若)()(lim x f x f n n =∞→,且存在0k ,使⎰+∞<Ek dx x f )(0,则dx x f dx x f En En )()(lim ⎰⎰=∞→ .18、设()x f 在[a ,b ]上L 可积,则对任意ε>0,存在[a ,b ]上的连续函数()x g ,使ε<-⎰dx x g x f b a )()(],[.19、若()x f 是),(+∞-∞上的L 可积函数,则0)()(lim ],[0=-+⎰→dx x f h x f b a h .。
[0,1]的勒贝格积分
![[0,1]的勒贝格积分](https://img.taocdn.com/s3/m/773fc92cf08583d049649b6648d7c1c708a10b14.png)
[0,1]的勒贝格积分(原创版)目录1.引言:介绍勒贝格积分的定义和重要性2.勒贝格积分的定义:详述 [0,1] 上的勒贝格积分概念3.勒贝格积分的性质:讨论勒贝格积分的线性性、连续性、可积性等性质4.勒贝格积分的应用:举例说明勒贝格积分在实际问题中的应用5.结论:总结勒贝格积分的重要性和在数学领域的地位正文1.引言勒贝格积分是实分析中的一种重要积分形式,其在数学分析、物理学、经济学等领域具有广泛的应用。
特别是在区间 [0,1] 上的勒贝格积分,由于其具有很好的性质和实际应用价值,成为了数学研究的热点问题之一。
本文将从勒贝格积分的定义、性质和应用等方面进行介绍和讨论。
2.勒贝格积分的定义勒贝格积分是一种对函数在区间上的积分进行描述的方式,其定义如下:设 f(x) 是定义在区间 [0,1] 上的有界函数,将区间 [0,1] 划分为若干子区间,每个子区间选取一个代表点ξ,计算函数在这些代表点处的值与子区间长度的乘积之和。
当子区间长度趋于 0 时,若极限存在,则称 f(x) 在 [0,1] 上勒贝格可积,其极限值为 f(x) 在 [0,1] 上的勒贝格积分。
3.勒贝格积分的性质勒贝格积分具有以下重要性质:(1)线性性:若 f(x) 和 g(x) 在 [0,1] 上可积,则(c1f(x)+c2g(x)) 也在 [0,1] 上可积,且其积分值为 c1∫f(x)dx+c2∫g(x)dx。
(2)连续性:若 f(x) 在 [0,1] 上连续,则∫f(x)dx 存在。
(3)可积性:若 f(x) 在 [0,1] 上有界,则 f(x) 在 [0,1] 上可积。
4.勒贝格积分的应用勒贝格积分在实际问题中有广泛的应用,例如求解变化率、计算曲线长度、求解面积等。
例如,求解函数 f(x)=x^2 在区间 [0,1] 上的面积,可以通过勒贝格积分求解:∫f(x)dx=∫(0^1)x^2dx=[1/3]x^3|(0^1)=1/3。
第五章,第二节 Lesbesgue积分的极限定理
![第五章,第二节 Lesbesgue积分的极限定理](https://img.taocdn.com/s3/m/8735e15f804d2b160b4ec01b.png)
= 0 0 +
∑
∞
n =1
( 1 ) n 2 n 1 n = 3 3
4.Fatou引理 4.Fatou引理 若fn(x)为E上非负可测函数列,则 ∫ lim f ( x)dx ≤ lim ∫ f ( x)dx
E n n →∞ n →∞ E n
lim f n ( x) = sup inf { f m ( x)}
∫
a
例
试从
证明
1 = (1 x) + ( x 2 x 3 ) + K + ( x 2 n 2 x 2 n 1 ) + K ,0 < x < 1 1+ x
1 1 1 ( 1) n +1 + + K + + K ln 2 = 1 2 3 4 n
解:令 f n ( x ) = x 2 n 2 x 2 n 1 , x ∈ ( 0 ,1), n = 1, 2 ,3, L
解:令Gn 为Cantor集P的余集中长度为1/3n 的构成区间的并,由条件知f(x)是[0,1]上的 非负可测函数,根据积分的可数可加性知
∫
[ 0 ,1 ]
f ( x ) dx =
∞
∫
P0 ∪ ( ∪ G
n =1
∞
n
)
f ( x ) dx
=
∫
P0
f ( x ) dx + ∑
n =1
∫
Gn
f ( x ) dx
f ( x)dx = ∫ f ( x)dx + ∫ f ( x)dx
E1 E2 E1 E2
= ∫ g ( x)dx + ∫ g ( x)dx = ∫ g ( x)dx
勒贝格积分_高等教育-微积分
![勒贝格积分_高等教育-微积分](https://img.taocdn.com/s3/m/612bd6c1185f312b3169a45177232f60ddcce71f.png)
第5章 勒贝格积分到现在我们为了建立勒贝格积分已经做了必要的准备工作,我们有了可测集,可测函数的概念和理论,定义Lebesgue 积分的条件已经成熟. 本章我们讨论Lebesgue 积分的基本内容.§5.1 测度有限集上有界可测函数的积分1.有界可测函数积分的定义定义5.1.1 设n E R ⊂,mE <∞,f 是定义在E 上的有界可测函数,即存在,,R αβ∈,使()(,)f E αβ⊂. 若01:n D l l l αβ=<<<= 是[,]αβ的任一分点组,则记11()max()k k k nD l l δ-≤≤=-,1[]k k kE E l f l -=<≤.对任意的1[,]k k k l l η-∈,作和式1()nk k k S D mE η==∑,称()S D 为f 关于分点组D 的一个和数.如果存在常数A ,使得对任意的0ε>,总有0δ>,当任意分点组D 满足()D δδ<时,有|()|S D A ε-<.换句话说,()0lim ()D S D A δ→=时,则称f 在E 是Lebesgue 可积的,并称A 为f 在E 上的Lebesgue 积分,记作()EA f x dm =⎰.有时为了简便也记()EA f x dx =⎰,若[,]E a b =,则记[,]()a b A f x dx =⎰. 当()f x 是Riemann 可积函数时,其Riemann 积分仍沿用数学分析中的记法,记作()b af x dx ⎰.对[,]αβ的任意分点组01:n D l l l αβ=<<<= ,有两个特殊的和数尤其重要:11()[]nk k k k S D l mE l f l -==<≤∑,111()[]nk k k k S D l mE l f l --==<≤∑.称()S D 和()S D 分别为f 关于分点组D 的大和数与小和数. 显然对于f 的任一和数()S D ,有()()()S D S D S D ≤≤.因此,极限()0lim ()D S D δ→存在当且仅当()0lim ()D S D δ→和()0lim ()D S D δ→都存在且相等.定理 5.1.1 设n E R ⊂,mE <∞,f 是E 上的有界可测函数,则f 在E 上Lebesgue 可积.证明 因为()f x 是有界可测函数,所以有,R αβ∈,使()(,)f E αβ⊂.设sup{()}DS S D =,inf{()}DS S D =. 即S 是对(,)αβ的所有分点组D 的小和的上确界,S 是对(,)αβ的所有分点组D 的大和的下确界.往证S S =.首先证明:S S ≤,设01:n D l l l <<< ,01:m D l l l ''''<<< . 是对(,)αβ任意的两个分点组,则()S D S ≤,()S D S ≥.将D 和D '合并起来构成一个新的分点组,记为D '',D ''可以看成分点组D 中又加进了一些分点,称为D 的一个加细,假设对任意k ,1k l -与k l 之间加入了某些分点1j l -',1,,,k j j j j l l l ++''' ,(把1k l -和k l 算在内)即 111k k j j j j j k l l l l l l --++''''=<<<<= ,于是 111()[]nk k k k S D lmE l f l --==<≤∑111[]kj j n k i i k i j lmE l f l +--==''=<≤∑∑111[]kj j ni i i k i jl mE l f l +--=='''≤<≤∑∑()()S DS D ''''=≤ 11[]kj j n ii i k i j l mE l f l +-=='''=<≤∑∑11[]kj j nki i k i j l mE l f l +-==''≤<≤∑∑11[]nk k k k l mE lf l -==<≤∑()S D =. 这样,有()()()()S D S D S D S D ''''≤≤≤,同样的方法,有()()()()S D S D S D S D ''''''≤≤≤.这说明,对于任一分点组D ,加细后的分点组D '',其大和数不增,小和数不减. 且由()()()S D S D S D '''≤≤, ()()()S D S D S D '''≤≤.说明对于任意一个分点组的小和数不超过其它任意一个分点组的大和数. 此即sup{()}inf{()}DDS D S D ≤,于是S S ≤.再证明S S =.设D 为任意的分点组,则由于()()S D S S S D ≤≤≤,有0()()S S S D S D ≤-≤-111()[]nkk k k k ll mE l f l --==-<≤∑()D mE δ≤.这样对任意的0ε>. 取分点组*D ,使*()D mEεδ<,则0S S ε≤-<. 由0ε>是任意的,有S S =. 令S S S ==,往证()0lim ()D S D S δ→=. 注意到()()S D S S D ≤≤,()()()S D S D S D ≤≤,所以()()()()S S D S D S D D mE δ-≤-≤, ()()()()S D S S D S D D mE δ-≤-≤.因此|()|()()()S D S S D S D D mE δ-≤-≤.所以()0lim ()D S D S δ→=.即f 在E 上Lebesgue 可积.注:本定理还证明了()f x 在E 上Lebesgue 可积,则()sup{()}inf{()}EDDf x dx S D S D ==⎰.例1 考察[0,1]上的Dirichlet 函数()D x .1,[0,1]()0,[0,1]x D x x ∈⎧=⎨∈⎩则()D x 在[0,1]上Lebesgue 可积,且[0,1]()0D x dx =⎰.证明 ([0,1]){0,1}[D =⊂-,对于(1,2)-的任一组分点:D 0112n l l l -=<<<= .当11()max{}0k k k nD l l δ-≤≤=-→时,0和1不能在同一个小区间上.设10(,]i i l l -∈,11(,]j j l l -∈,则1i j n ≤<≤. 取1[,]i i i l l η-∈,则是有理数;是无理数.1|||0|||()i i i i l l D ηηδ-=-≤-≤,因此当()0D δ→时,0i η→. 而1[()]j j E l D x l Q -<≤⊂(有理数集),所以1[()]0j j mE l D x l -<≤=.当,k i j ≠时,由于1[()]k k E l D x l φ-<≤=,则1[()]0k k mE l D x l -<≤=.因此11()[()]nk k k k S D mE l D x l η-==<≤∑11[()][()]i i i j j j mE l D x l mE l D x l ηη--=<≤+<≤ 1[()]i i i m E l D x l η-=<≤ 于是1()0()0lim ()lim [()]i i i D D S D mE l D x l δδη-→→=<≤0=,即[0,1]()0D x dx =⎰.我们知道()D x 在[0,1]不是Riemann 可积的,所以Lebesgue 可积函数类比Riemann 可积函数类要广.2.有界可测函数积分的性质定理5.1.2 设nE R ⊂,mE <∞,()f x 、()g x 都是E 上的有界可测函数,则 (i )对任意的a R ∈,()()EEaf x dx a f x dx =⎰⎰;(ii )若1,,m E E 是E 的可测子集,()i j E E i j φ=≠ ,1mi i E E ==,则1()()()mEE E f x dx f x dx f x dx =++⎰⎰⎰;(iii )(()())()()EEEf xg x dx f x dx g x dx +=+⎰⎰⎰;(iv )当()()..f x g x a e ≤于E 时,()()EEf x dxg x dx ≤⎰⎰;证明 证(ii ). 只须就2m =的情形证明.设()(,)f E αβ⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 令111[]i i i E E l f l -=<≤,221[]i i i E E l f l -=<≤,1,2,,i n = . 那么121[]i i i i i E E E E l f l -==<≤ ,且12i i E E φ= ,所以12i i i mE mE mE =+,1,2,,i n = .对于分点组D ,用12(),(),()E E E S D S D S D 分别表示f 在12,,E E E 上对应D 的大和数.1()nE i i i S D l mE ==∑1211nniiiii i l mE l mE===+∑∑12()()E E S D S D =+ 该等式对任意的分点组D 成立.对任意的0ε>,存在(,)αβ的分点组1D ,使得111()inf{()}2E E DS D S D ε<+,也存在(,)αβ的分点组2D ,使得222()inf{()}2E E DS D S D ε<+.设*12D D D = ,则*D 即是1D 也是2D 的加细,因此12***()inf{()}()()()E E E E EDf x dx S D S D S D S D =≤=+⎰121212()()()()E E E E S D S D f x dx f x dx ε≤+<++⎰⎰由0ε>是任意的,所以12()()()EE E f x dx f x dx f x dx ≤+⎰⎰⎰.同样考虑小和数和()sup{()}EDf x S D =⎰可证相反的不等式,所以12()()()EE E f x dx f x dx f x dx =+⎰⎰⎰.证(iii ). 设()(,)f E αβ⊂,()(,)g E αβ''⊂,对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,对(,)αβ''的任一分点组01:m D l l l αβ''''''=<<<= . 令1[]i i i E E l f l -=<≤,1[]j j j E E l g l -'''=<≤ 1[]ij i j j E E l g l -''=<≤11[,]i i j j E l f l l g l --''=<≤<≤1[]j i i E l f l -'=<≤,(1,2,,;1,2,,.)i n j m == 由此可知,E 可分解为有限个互不相交的可测集的并.1111n m n mij i j i j i j E E E E ===='=== .于是()()iji j ij E f g dx l l mE '+≤+⎰i ij j ij l mE l mE '=+.11()()ijn mEE i j f g dx f g dx ==+=+∑∑⎰⎰11nmiijji j l mE l mE ==''≤+∑∑()()f g S D S D'=+. 该不等式对(,)αβ的任意分点组D 和(,)αβ''的任意分点组D '都成立. 因为inf{()}f EDfdx S D =⎰,inf{()}g ED gdx S D ''=⎰.所以对任意的0ε>,有(,)αβ的分点组1D 和(,)αβ''的分点组1D ',使 1()()2f E S D f x dx ε<+⎰, 1()()2g ES D g x dx ε'<+⎰.因此可得11()()()f g Ef g dx S D S D '+≤+⎰()()EEf x dxg x dx ε<++⎰⎰由0ε>是任意的,有()()()EEEf g dx f x dx g x dx +≤+⎰⎰⎰.同样考虑小和数及所有小和数的上确界可得相反的不等式. 因而()()()EEEf g dx f x dx g x dx +=+⎰⎰⎰.证(i ). 引理1 若()f x c ≡(常数),x E ∈. 则()Ef x dx cmE =⎰.因为存在,R αβ∈,使c αβ<<. 对(,)αβ的任一分点组01n l l l αβ=<<<= . 若1(,]i i c l l -∈,1i n ≤≤,则1[]i i mE l f l -<≤mE =,任取1(,]i i i l l η-∈,则1||()i i i c l l D ηδ--≤-≤.因此当()0D δ→时,i c η→.而当k i ≠时,1[]k k E l f l φ-<≤=,因而1[]0k k mE l f l -<≤=,于是11()0()01lim[]lim []nk k k i i i D D k mE lf l mE l f l δδηη--→→=<≤=<≤∑c mE =⋅.以下证明()()EEaf x dx a f x dx =⎰⎰.若0a =,则()0af x ≡,x E ∈. 由引理1,()000()()EEEaf x dx mE f x dx a f x dx =⋅===⎰⎰⎰.若0a >,设()af x αβ<<,对(,)αβ的任一分点组01:n D l l l αβ=<<<= .由于()f x aaαβ<<,分点组D 相当于(,)a aαβ的一个分点组011:n l l l D a a a a aαβ=<<<= .任取1[,]i i i l l η-∈,则1,ii i l l a a a η-⎡⎤∈⎢⎥⎣⎦. 1111[]nni i i i i i i i l l mE l af l mE f aa ηη--==⎡⎤<≤=<≤⎢⎥⎣⎦∑∑,而1111()0()011lim lim nnii i i i i D D i i l l ll a mE f a mE f a a a aa a δδηη--→→==⎡⎤⎡⎤<≤=<≤⎢⎥⎢⎥⎣⎦⎣⎦∑∑()E a f x dx =⎰,并且1()0()0D D δδ→⇔→,因此1()01()lim[]ni i i ED i af x dx mE laf l δη-→==<≤∑⎰11()01l i m ()nii iD E i l l amE f a f x dx a a a δη-→=⎡⎤=<≤=⎢⎥⎣⎦∑⎰.若0a <,则0a ->. 则0[()]Eaf a f dx =+-⎰()EEafdx a fdx =+-⎰⎰()EEafdx a fdx =+-⎰⎰于是()EEafdx a fdx =--⎰⎰Ea fdx =⎰.综上,对任意的a R ∈,有()()EEaf x dx a f x dx =⎰⎰.证(iv ). 引理2 定义在零测度集上的任何有界函数是可积的,而且积分为零. 事实上,设()f x 定义在E 上,0mE =,设()f x αβ<<,x E ∈. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= ,则由1[]i i E l f l E -<≤⊂,所以1[]0,1,2,,i i mE l f l i n -<≤== .于是,任取1[,]i i i l l η-∈,11[]0ni i i i mE lf l η-=<≤=∑,因此1()01()lim[]0ni i i ED i f x dx mE lf l δη-→==<≤=∑⎰.为证(iv ),令()()()F x g x f x =-,则()0..F x a e ≥于E . 由引理2,不妨设()0,F x x E ≥∈.设()(,)F E αβ⊂. 对(,)αβ的任一分点组01:n D l l l αβ=<<<= . 对每一个1i n ≤≤,考察1[]i i i mE l F l η-<≤,其中1[,]i i i l l η-∈,若0i η<,则当()0D δ→时,0i l <,此时1[]i i E l F l φ-<≤=,因而1[]0i i i mE l F l η-<≤=.若0i η≥,则由1[]0i i mE l F l -<≤≥知1[]0i i i mE l F l η-⋅<≤≥,因此1()01()lim[]0ni i i ED i F x dx mE lF l δη-→==<≥≥∑⎰,于是()(()())EEF x dx g x f x dx =-⎰⎰ [()(())]Eg x f x dx =+-⎰ ()()EEg x dx f x dx =+-⎰⎰()()0EEg x dx f x dx =-≥⎰⎰. 因而()()EEg x dx f x dx ≥⎰⎰.推论 设mE <∞,且()f x 是E 上的有界可测函数,则||||EEfdx f dx ≤⎰⎰.证明 因为||||f f f -≤≤,所以由定理5.1.2的(iv )和(i )有||||EEEf dx fdx f dx -≤≤⎰⎰⎰,即||||EEfdx f dx ≤⎰⎰.定理 5.1.3 设mE <∞,()f x 是E 上的有界可测函数,若()0..f x a e ≥于E ,且()0Ef x dx =⎰,则()0..f x a e =于E .证明 因为()0..f x a e ≥E ,则[0]0mE f <=,且[0]()0E f f x dx <=⎰,若能证明[0]0mE f >=,则定理得证.[0][0][0]E E f E f E f ==<> .令1,1,2,n E E f n n ⎡⎤=≥=⎢⎥⎣⎦ ,则1[0]n n E f E ∞=>= ,对任意取定的n N +∈,有 0()Ef x dx =⎰[0][0]()()E f E f f x dx f x dx <≥=+⎰⎰[0]()E f f x dx ≥=⎰[0]()()nnE E f E f x f x dx ≥-=+⎰⎰1()nn E f x mE n≥≥⎰所以0,1,2,n mE n == ,因此11[0]0n n n n mE f m E mE ∞∞==⎛⎫>=≤= ⎪⎝⎭∑ ,于是()0..f x a e =于E .§5.2 一般可测集上一般可测函数的积分对于广义Riemann 积分,有积分区间无限的广义积分和无界函数的广义积分,对于Lebesgue 积分也有无限测度集上的积分和无界可测函数的积分的情形.本节的任务就是讨论这种一般情形的积分.1.有限可测集上无界可测函数的积分(i )非负函数情形 设nE R⊂,mE <∞,()f x 是E 上的非负可测函数.N R +∈,称[]()m i n {(N f x f x N =为()f x 的N -截断函数.有了N -截断函数的概念,我们可以构造有界可测函数列{()}n f x .其中()[]()n n f x f x =.1,2,n = .显然,这样构造的函数列{}n f 满足:12()()()n f x f x f x ≤≤≤≤ ,x E ∈.并且lim ()()n f x f x =.因而12()()()n EEEf x dx f x dx f x dx ≤≤≤≤⎰⎰⎰ ,所以极限lim()n n Ef x dx →∞⎰存在(可能是+∞).定义 5.2.1 设n E R ⊂,mE <∞,()f x 是E 上的非负可测函数.()[]()n n f x f x =,,1,2,x E n ∈= .称lim ()n n Ef x dx →∞⎰为()f x 在E 上的Lebesgue 积分.记为:()lim ()n En Ef x dx f x dx →∞=⎰⎰.若()n Ef x dx ⎰是有限数,称()f x 在E 上可积,若()n Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )一般函数情形定义5.2.2 设()f x 在n E R ⊂上可测,如果()f x +和()f x -中至少有一个在E 上可积,那么称()()EEf x dx f x dx +--⎰⎰为()f x 在E 上的Lebesgue 积分.记为:()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.当()f x +和()f x -都在E 上可积时,称f 在E 上可积.定义中要求()f x +和()f x -中至少有一个在E 上可积是因为如果()f x +和()f x -在E 上都不可积时,()Ef x dx +=+∞⎰且()Ef x dx -=+∞⎰.此时()Ef x dx +-⎰()()()Ef x dx -=+∞-+∞⎰,没有意义,因而没有积分值.若()f x +和()f x -中至少有一个在E 上可积时,()Ef x dx +-⎰()Ef x dx -⎰有意义,但可能为+∞或-∞.无论()Ef x dx ⎰是有限数,+∞或-∞,我们都说()f x 在E 上有积分值,当|()|Ef x dx <+∞⎰时,称f 在E 上可积.2.非有限测度可测集上的积分(i )()f x 是非负可测函数设nE R ⊂,mE =∞.设12{(,,,):||,1,2,,}m n i x x x x m i n K =≤= .令m m E E =K ,则m mE <∞,1,2,m = ,且12m E E E ⊂⊂⊂⊂ 是单调增加集列,有1lim m mm m E EE ∞→∞=== .由前面讨论,()f x 在每个m E 上有积分值()mE f x dx ⎰.记()mm E J f x dx =⎰.则{}m J 是单调增加数列,极限lim m m J →∞存在(可能是+∞).定义5.2.3 设n E R ⊂,mE =∞,()f x 是E 上的非负可测函数.称lim lim ()mm m m E J f x dx →∞→∞=⎰(m E 如上说明)为()f x 在E 上的Lebesgue 积分,记为()lim ()mEm E f x dx f x dx →∞=⎰⎰.若()Ef x dx ⎰是有限数,称()f x 在E 上可积,若()Ef x dx ≤+∞⎰,称()f x 在E 上有积分值.(ii )()f x 是一般可测函数定义5.2.4 设nE R ⊂,mE =∞,()f x 是E 上的可测函数.如果()Ef x dx +⎰和()Ef x dx -⎰至少有一个是有限数,则称()Ef x dx +⎰()Ef x dx --⎰为()f x 在E 上的Lebesgue 积分,记为()()()EEEf x dx f x dx f x dx +-=-⎰⎰⎰.若()Ef x dx +⎰和()Ef x dx -⎰都是有限数,称()f x 在E 上可积.至此,非有限测度集和无界可测函数积分的概念已经建立,以下继续讨论积分的性质. 定理5.2.1 (1)设()f x 是E 上的函数,0mE =,则()0Ef x dx =⎰.(2)设()f x 在E 上可积,则[||]0mE f =∞=,即()f x 是E 上几乎处处有限的函数. 证明 (1)由0mE =,()f x 在E 上可测,所以[]n f +和[]n f -都是E 上的有界可测函数(1,2,)n = ,从而[]()0n Ef x dx +=⎰,[]()0n Ef x dx -=⎰,(1,2,)n = .所以()Ef x dx +=⎰lim []()0n n Ef x dx +→∞=⎰,()Ef x dx -=⎰lim []()0n n Ef x dx -→∞=⎰.于是()Ef x dx =⎰()Ef x dx +-⎰()0Ef x dx -=⎰.(2)令1[]E E f ==+∞,2[]E E f ==-∞.往证120mE mE ==.用反证法,若10mE δ=>,则对任意的正整数n ,有()[]()n EE f x dx f x dx ++≥≥⎰⎰1[]()n E f x dx n δ+=⎰,1,2,n = ,所以()Ef x dx +=+∞⎰,这与()f x 在E 上可积矛盾.因此必须有10mE =.同理可证20mE =.于是1212[||]()0mE f m E E mE mE =∞=≤+= .定理5.2.2 设()f x 在E 上可测,()g x 在E 上非负可积,|()|(),f x g x x E ≤∈,则()f x 也在E 上可积,且|()|()EEf x dxg x dx ≤⎰⎰.证明 因为|()|()()f x f x f x +-=+,所以()()f x g x +≤,()()f x g x -≤.对任意的正整数,k n 有[]()kn E f x dx +≤⎰[]()kn E g x dx ≤⎰()Eg x dx <+∞⎰,所以对每一个正整数k ,{[]()}kn E f x dx +⎰,(1,2,)n = 是单调增加有上界的数列,有有限极限()kE f x dx +=⎰lim []()kn n E f x dx +→∞≤⎰()kE g x dx <+∞⎰.而{()}kE f x dx +⎰,(1,2,)k = 也是单调增加有上界的数列,也有有限极限()Ef x dx +=⎰lim ()kk E f x dx +→∞≤⎰lim ()kk E g x dx →∞⎰()Eg x dx =<+∞⎰.同理可证()Ef x dx -≤⎰()Eg x dx <+∞⎰. 因此()f x 在E 上可积.由|()|()f x g x ≤,x E ∈,有[||]()[](),1,2,n n f x g x n ≤= ,所以对每一个正整数k ,有[||]kn E f dx ≤⎰[](),1,2,kn E g x dx n =⎰ .令n →∞,有|()|kE f x dx ≤⎰(),1,2,kE g x dx k =⎰.令k →∞,有|()|Ef x dx ≤⎰()Eg x dx ⎰.定理5.2.3 设E 是可测集,则(i )当12,,,m E E E 是E 的互不相交的可测子集,1mi i E E ==,()f x 在E 上有积分值时,()f x 在每一个i E 上有积分值,且()Ef x dx =⎰1()E f x dx +⎰2()()mE E f x dx f x dx ++⎰⎰.特别地,当()f x 是E 上的非负可测函数时,()Ef x dx ⎰()iE f x dx ≥⎰,1,2,,i m = ;(ii )对任意常数c ,()Ecf x dx =⎰()Ec f x dx ⎰;(iii )若()f x ,()g x 都是E 上的可积函数,则[()()]Ef xg x dx +=⎰()Ef x dx +⎰()Eg x dx ⎰;(iv )若()f x 在E 上有积分值,且()()f x g x =..a e 于E ,则()Ef x dx =⎰()Eg x dx ⎰;(v )当()f x ,()g x 都在E 上可积,且()()f x g x ≤()x E ∈时,()Ef x dx ≤⎰()Eg x dx ⎰.证明 证(i ). 只须就2m =的情形证明,一般情形利用归纳法可证. 由定理5.1.2的(ii ),对任意的正整数,k m ,有[]km E f dx +=⎰12[][]k k m m E E E E f dx f dx +++⎰⎰ , []k m E f dx -=⎰12[][]k k m m E E E E f dx f dx --+⎰⎰ ,先对m 后对k 取极限,有Ef dx +=⎰12E E f dx f dx +++⎰⎰, Ef dx -=⎰12E E f dx f dx --+⎰⎰.若()f x 在E 上有积分值,则Ef dx +⎰和Ef dx -⎰至少有一个是有限数,不妨设Ef dx+⎰是有限数,那么1E f dx +⎰2E f dx ++⎰是有限数.从而1E f dx +⎰和2E f dx +⎰都是有限数,因而()f x 在1E 和2E 上都有积分值,且()Ef x dx =⎰Ef dx +-⎰Ef dx -⎰()12E E f dx f dx ++=+⎰⎰()12E E f dx f dx ---+⎰⎰1()E f x dx =⎰2()E f x dx +⎰.当()f x 是E 上非负可测函数时,由()i i E E E E =- ,且()i i E E E φ-= ,1,2i =.则()Ef x dx =⎰()()iiE E E f x dx f x dx -+⎰⎰(),1,2iE f x dx i ≥=⎰.为证明(ii )和(iii ),先证明如下结果:引理1 若(),()f x g x 是E 上的非负函数,0c >,则对任意正整数n 成立. (1)2[][][][]n n n n f g f g f g +≤+≤+; (2)[][]1[][][]n n nccc f cf c f +≤≤,其中[]nc 表示不超过nc的最大整数,而[]n f 等表示f 的n -截断函数.证明 (1)先证[][][]n n n f g f g +≤+. 设0x E ∈,若0()f x n <且0()g x n <,则000000[()()]()()[()][()]n n n f x g x f x g x f x g x +≤+=+.若0()f x 和0()g x 中至少有一个不小于n ,例如0()f x n ≥,则000[()()][()]n n f x g x n n g x +=≤+00[()][()]n n f x g x =+.再证2[][][]n n n f g f g +≤+.由于[][]n n f g f g +≤+,[][]2n n f g n +≤,所以[][]min{,2}n n f g f g n +≤+2[]n f g =+. (1)得证. (2)[]min{,}min{,}n n cf cf n c f c==, 而min{,[]}min{,}min{,[]1}n n nf f f c c c≤≤+.所以min{,[]}min{,}min{,[]1}n n nc f c f c f c c c≤≤+.于是[][]1[][][]n n n ccc f cf c f +≤≤. (2)得证.证(ii ). 若0c =,则0cf =()x E ∈.对任何正整数,k m 有()000kkk E E cf dx dx mE ===⎰⎰,所以()lim ()0kEk E Ecf dx cf dx c fdx →∞===⎰⎰⎰.若0c >,则()cf cf ++=,()cf cf --=,由引理1的(2),[][]1[][][]m m mc cc f cf c f ++++≤≤,因此()()lim []km EEm E k cf dx cf dx cf dx +++→∞→∞==⎰⎰⎰[]1l i m[]km m E c k c f dx +→∞+→∞≤⎰Ec fd x +=⎰.另外()()EEcf dx cf dx ++=⎰⎰l i m[]km m E k cf dx +→∞→∞=⎰[]lim[]km m E c k c f dx +→∞→∞≥⎰Ec f dx +=⎰.因此()EEcf dx c f dx ++=⎰⎰.同理1()EEcf dx c f dx --=⎰⎰.所以()EEcf dx c fdx =⎰⎰.当0c <,可按定理5.1.2中的(i )相应的情形证明.证(iii ). 先设()f x 和()g x 都是非负可测函数.由引理1的(1),对任意的正整数m ,有2[][][][]m m m m f g f g f g +≤+≤+,所以对任意的正整数k ,有[][][]kkkm m m E E E f g dx f dx g dx +≤+⎰⎰⎰2[]km E f g dx ≤+⎰,由f 和g 是可积的,有lim[[][]]kkm m m E E k f dx g dx →∞→∞+⎰⎰()()EEf x dxg x dx =+⎰⎰,所以,lim []()()km m E EEk f g dx f x dx g x dx →∞→∞+≤+⎰⎰⎰2lim []km m E k f g dx →∞→∞≤+⎰.由左边不等式知f g +可积,有()EEEf g dx fdx gdx +≤+⎰⎰⎰.由右边不等式,有()EEEfdx gdx f g dx +≤+⎰⎰⎰.因此()EEEf g dx fdx gdx +=+⎰⎰⎰.再设()f x 和()g x 都是一般的函数.由于()f g f g ++++≤+,()f g f g ---+≤+.因此若,f g 都在E 上可积,则f g +也在E 上可积.因为()()()()f g f g f g f g f g +-++--+-+=+=+-+,所以()()f g f g f g f g +--++-+++=+++,因而[()][()]EEf g f g dx f g f g dx +--++-+++=+++⎰⎰,由已证结果,有[()()EEEEEEf g dx f dx g dx f dx g dx f g dx +--++-+++=+++⎰⎰⎰⎰⎰⎰,所以[()()()()EEEEEEf g dx f g dx f dx f dx g dx g dx +-+-+-+-+=-+-⎰⎰⎰⎰⎰⎰.此即()EEEf g dx fdx gdx +=+⎰⎰⎰.证(iv ). 设()()f xg x =..a e 于E ,()f x 在E 上有积分值,记1[()()]E f x g x ==,2[()()]E f x g x =≠,则20mE =,12E E φ= ,12E E E = .由(i ),12EE E fdx fdx fdx =+⎰⎰⎰12E E gdx fdx =+⎰⎰因为零测度集上的有界函数积分为零(§5.1引理2).所以对任何正整数m ,2[]0m E f dx +=⎰,2[]0m E f dx -=⎰,因而22lim []0m E m E f dx f dx ++→∞==⎰⎰,22lim []0m E m E f dx f dx --→∞==⎰⎰.所以2()0E f x dx =⎰,同理2()0E g x dx =⎰.因为f 在E 上有积分值,所以由(i ),f 在1E E ⊂也有积分值,而在1E 上,f g ≡,因此g 在1E 上有积分值.对任意的正整数,m k ,由k mE <∞,[]m g +和[]m g -都是有界函数,依测度有限集上有界函数的积分定义,有121[][][][]kk k k m m m m E E E E E E E g dx g dx g dx g dx ++++=+=⎰⎰⎰⎰.令m →∞,k →∞,则1EE g dx g dx ++=⎰⎰.同理,1EE g dx g dx --=⎰⎰.因为g 在1E 上有积分值,所以g 在E 上有积分值.并且_EEEgdx g dx g dx +=-⎰⎰⎰11E E g dx g dx +-=-⎰⎰11E E gdx fdx ===⎰⎰12E E Efdx fdx fdx +=⎰⎰⎰.证(v ). 设()()()F x g x f x =-,则()0()F x x E ≥∈,并且()F x 在E 上可积,且()0EF x dx ≥⎰,而(),()f x g x 都在E 上可积,并且()()()g x F x f x =+.由(iii )()[()()]()()EEEEg x dx F x f x dx F x dx f x dx =+=+⎰⎰⎰⎰()Ef x dx ≥⎰.至此定理证毕.定理 5.2.4(积分的绝对可积性) 设()f x 是E 上的可测函数,则()f x 在E 上可积的充要条件是|()|f x 在E 上可积,并且|()||()|EE f x dx f x dx ≤⎰⎰.证明 若()f x 在E 上可积,则Ef dx +⎰和Ef dx -⎰都是有限数,即f +和f -都在E 上可积,而|()|()()f x f x f x +-=+,由定理5.2.3的(iii )有|()|()()EEEf x dx f x dx f x dx +-=+<∞⎰⎰⎰,因而|()|f x 在E 上可积.反之,若|()|f x 在E 上可积,则由||f f +≤,||f f -≤,由定理5.2.2,f +和f -都在E 上可积,所以f 在E 上可积.并且由||||f f f -≤≤,有||||EEEf dx fdx f dx -≤≤⎰⎰⎰, 此即||||EEfdx f dx ≤⎰⎰.定理5.2.5(积分的绝对连续性) 设()f x 在E 上可积,则对任意的0ε>,存在0δ>,使得对于E 的任意子集A ,当mA δ<时,就有|()|Af x dx ε<⎰.证明 (1)先证明在mE <∞,且()f x 在E 上有界的条件下结论成立.设|()|()f x x E ≤K ∈,则任取可测集,A E ⊂|()|Af x dx ⎰|()|Af x dx mA ≤≤K ⋅⎰.对任意的0ε>,取εδ≤K,则当mA δ<时,有|()|Af x dx mA εε≤K ⋅<K ⋅=K⎰.(2)一般情形()f x 在E 上可积,则|()|f x 也在E 上可积,由lim [|()|]|()|nn n E Ef x dx f x dx →∞=⎰⎰知,对任意的0ε>,存在正整数N ,使|()|[|()|]2NN EE f x dx f x dx ε-<⎰⎰.另一方面,由情形(1),对这个0ε>,存在0δ>,使当N A E ⊂,且mA δ<时,有[|()|]2N A f x dx ε<⎰,因此,当A E ⊂且mA δ<时,便有()|()||()||()||()|N NAAA A E A E f x dx f x dx f x dx f x dx -≤=+⎰⎰⎰⎰()||(||[||])[||]N NNN N A A E A E A E f dx f f dx f dx -=+-+⎰⎰⎰,因为()N N N A A E A E E E -=-⊂- ,所以|()|||(||[||])[||]NN NN N AE E E A E f x dx f dx f f dx f dx -≤+-+⎰⎰⎰⎰(||[||])[||]22NNN N EE A E f dx f dx f dx εεε=-+<+=⎰⎰⎰.例 1 设()f x 在[,]E a b =上可积,则对任何0ε>,必存在E 上的连续函数()x ϕ,使|()()|b af x x dx ϕε-<⎰.证明 设[||]n e E f n =>,则1[||]nn E f e∞==∞=.因为{}n e 是单调减少集列,所以1lim n n n n e e ∞→∞== .而由mE b a =-<∞知,1me <∞,因而1lim (lim )()[||]0n n n n n n me m e m e mE f ∞→∞→∞=====∞=由积分的绝对连续性,对任意的0ε>,必存在正整数N ,使||4NN e N me f dx ε⋅<<⎰.令N N B E e =-,在N B 上由Lusin 定理,存在闭集N N F B ⊂和R 上的连续函数()x ϕ,使得(1)()4N N m B F Nε-<;(2)当N x F ∈时,()()f x x ϕ=,且sup |()|sup |()|NRF x f x N ϕ=≤.所以|()()||()()||()()|NNb ae Bf x x dx f x x dx f x x dx ϕϕϕ-=-+-⎰⎰⎰|()||()||()()|NNN Ne e B Ff x dx x dx f x x dxϕϕ-≤++-⎰⎰⎰|()()|NF f x x dx ϕ+-⎰2044N N me N Nεε≤+⋅+⋅+442εεε<++ε=.§5.3 Lebesgue 积分的极限定理本节讨论如下的问题,假设{}n f 是集E 上的一个函数序列,按某种意义收敛到f ,如果每个n f 在某种意义下都有积分,()f x 是否有积分?如果()f x 也有积分,n f 的积分之极限是否等于()f x 的积分?也就是极限与积分是否可以交换顺序的问题.我们会看到这个问题在Lebesgue 积分范围内得到比在Riemann 积分范围内更为完满的解决,这也正是Lebesgue 积分的最大成功之处.定理5.3.1(Lebesgue 控制收敛定理) 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,即|()|()..n f x F x a e ≤于(1,2,)E n = ,且()F x 在E 上可积,如果()()mn f x f x −−→,则()f x 在E 上是可积的,并且lim ()()n n EEf x dx f x dx →∞=⎰⎰.证明 若0mE =,结论显然成立,因此不妨设0mE >.由于mn f f −−→,由F·Riesz 定理,存在{()}n f x 的子列{()}i n f x ,使 lim ()()..i n i f x f x a e →∞=于E ,由|()|()..i n f x F x a e ≤于E 知|()|()..f x F x a e ≤ 于E . 因为()F x 在E 上可积,所以()f x 在E 上可积.往证lim()()n n EEf x f x dx →∞=⎰⎰.(1)mE <∞因为()F x 在E 上可积,由积分的绝对连续性,对任意的0ε>,存在0δ>,使当e E ⊂且me δ<时,有()4eF x dx ε<⎰.又因为m n f f −−→,所以存在N N +∈,使当n N ≥时,有[||]2n n mE mE f f mEεδ=-≥<,所以当n N ≥时,()4nE F x dx ε<⎰,因此|()()|n EEf x dx f x dx -=⎰⎰|(()())|n Ef x f x dx -⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|nnn n E E E f x f x dx f x f x dx -=-+-⎰⎰2()()2nnE F x d x m EE mEε≤+⋅-⎰22εεε<+=.因此,lim()()n n EEf x f x dx →∞=⎰⎰.(2)设mE =∞因为()F x 在E 上可积,对任意的0ε>,取,k m 充分大,使()[]()4km EE F x dx F x dx ε-<⎰⎰,所以()()()kkE E EE F x dx F x dx F x dx -=-⎰⎰⎰()[]()4km EE F x dx F x dx ε≤-<⎰⎰另一方面,在k E 上可测函数列{||}n f f -满足:||2..n f f Fa e -≤于,1,2,k E n = ,||0mn f f -−−→,k mE <∞.因此,由(1)的结果,存在正整数N ,使当n N ≥时||2kn E f f dx ε-<⎰.所以|()()|n EEf x dx f x dx -⎰⎰|()()|n Ef x f x dx ≤-⎰|()()||()()|kkn n E E E f x f x dx f x f x dx -=-+-⎰⎰ 2()2kE EF x dx ε-≤+⎰.242εεε<⋅+=因此lim ()()n n EEf x dx f x dx →∞=⎰⎰.综上定理得证.定理5.3.1' 设{()}n f x 是E 上的可测函数列,()F x 是可积的控制函数,若lim ()()..n n f x dx f x a e →∞= 于E ,则()f x 在E 上可积且lim ()()n n Ef x dx f x dx →∞=⎰.定理5.3.1''(勒贝格有界收敛定理) 设mE <∞,{()}n f x 是可测集E 上的可测函数列且测度收敛于()f x ,如果{()}n f x 一致有界,即存在常数M ,使得对任意的x E ∈和对任意的正整数n ,有|()|n f x M ≤,则()f x 在E 上可积,且有()lim ()n En Ef x dx f x dx →∞=⎰⎰.定理5.3.1''对于Riemann 积分不适用.例1 设12{,,,,}n r r r 是[0,1]中的全体有理数. 作如下函数列:1111,;()0,[0,1]{}.x r f x x r =⎧=⎨∈-⎩ 122121,,;()0,[0,1]{,}.x r r f x x r r =⎧=⎨∈-⎩ … … … … … … … …12121,,,,;()0,[0,1]{,,,}.n n n x r r r f x x r r r =⎧=⎨∈-⎩… … … … … … … …那么{()}n f x 在[0,1]上一致有界,|()|1,[0,1],1,2,n f x x n ≤∈= . 而且1,()()0,n f x D x ⎧→=⎨⎩因为每个()n f x 在[0,1]上只有有限个不连续点,因而Riemann 可积,然而()D x 在[0,1]上不是Riemann 可积的.定理5.3.2(勒维Levi ,1875-1961,意大利数学家) 设 (i ){()}n f x 是E 上非负可测函数列; (ii )1()()n n f x f x +≤ (,1,2,)x E n ∈= ; (iii )()lim ()n n f x f x →∞=,则()lim ()n En Ef x dx f x dx →∞=⎰⎰.证明 先设()Ef x dx <∞⎰,对任意的0ε>,取正整数,k m ,使[]()()2k m E E f x dx f x dx ε>-⎰⎰.此处k k E E =K ,12{(,,,)k n x x x K = :||,1,2,,}i x k i n ≤= .注意到k mE <∞,且在k E 上[]()lim[]()m n m n f x f x →∞=,由Egoroff 定理知,存在k E E ε⊂,使4mE mεε<,且在k E E ε-上[]()n m f x 一致收敛到[]()m f x .设正整0n 使0n n ≥时,对一切k x E E ε∈-,都有x 为[0,1]上的有理数;x 为[0,1]上的无理数.0[]()[]()4(1)m n m k f x f x mE ε≤-<+则当0n n ≥时,()[]()[]()4k k n n m m EE E E E f x dx f x dx f x dx εεε--≥≥-⎰⎰⎰,而[]()[]()[]()kk m m m E E E E f x dx f x dx f x dx εε-=+⎰⎰⎰[]()4k m E E f xdx εε-<+⎰,所以当0n n ≥时,()[]()4k n m EE E f x dx f x dx εε->-⎰⎰[]()44km E f xdx εε>--⎰()Ef x dx ε>-⎰.因此lim()()n n EEf x dx f x dx ε→∞≥-⎰⎰,由0ε>是任意的,有lim ()()n n EEf x dx f x dx →∞≥⎰⎰.另一方面,对任意的n ,显然有()()n f x f x ≤()x E ∈,所以()()n EEf x dx f x dx ≤⎰⎰,从而lim()()n n EEf x dx f x dx →∞≤⎰⎰.综上得lim ()()n n EEf x dx f x dx →∞=⎰⎰.当()Ef x dx =∞⎰时,由积分定义,对任意的0M >.存在,k m 使得[]()km E f x dx M ≥⎰,由[]()[]()n m m f x f x →()n →∞与[]()km E f x dx <∞⎰及上面的证明,知lim []()[]()kkn m m n E E f x dx f x dx M →∞=≥⎰⎰.于是lim ()lim []()n n m n En Ef x dx f x dx →∞→∞≥⎰⎰lim []()kn m n E f x dx →∞≥⎰M ≥.由0M >是任意的,有lim ()()n n EEf x dx f x dx →∞=∞=⎰⎰.定理得证.定理 5.3.3(Lebesgue 基本定理) 设{()}n f x 是可测集E 上的非负可测函数列,1()()n n f x f x ∞==∑,则1()()n EEn f x dx f x dx ∞==∑⎰⎰.证明 设1()(),1,2,nn i i g x f x n ===∑ ,则{()}ngx 是E 上非负可测函数列,且1()()(,1,2,)n n g x g x x E n +≤∈= ,1lim ()()n n n n g x f x ∞→∞==∑()f x =.由Levi 定理有1lim ()(())()n i n EEEi g x dx f x dx f x dx ∞→∞===∑⎰⎰⎰,而1lim ()lim (())nn i n En Ei g x dx f x dx →∞→∞==∑⎰⎰1lim ()ni n Ei f x dx →∞==∑⎰1()i Ei f x dx ∞==∑⎰.所以1()()n EEn f x dx f x dx ∞==∑⎰⎰.定理5.3.4(积分对区域的可数可加性) 若,1,2,i E i = 是E 的互不相交的可测子集列,1i i E E ∞== ,当()f x 在E 上有积分值时,则()f x 在每一个i E 上都有积分值,且1()()iEE i f x dx f x dx ∞==∑⎰⎰.。
勒贝格积分的分部积分和变量替换
![勒贝格积分的分部积分和变量替换](https://img.taocdn.com/s3/m/969933d02cc58bd63086bd00.png)
t 时,有 a (t ) b ,又 ( ) a, ( ) b,
b f ( x)dx f (t ) ' (t )dt 。 则 a
实变函数引入勒贝格积分是为了弥补黎曼积分的不足,扩大可积函数类,降 低逐项积分与交换积分顺序的条件。那么勒贝格积分是否也能进行分部积分和变 量替换呢?
m ( E) E ' (t )dt 。
定理 2(勒贝格积分的变量替换)设 f ( x ) 在 a, b 上 L 可积, (t ) 是在 , 上 严格单调增的绝对连续函数,且 ( ) a , ( ) b ,则 f t ' t 作为 t 的函数 在 , 上 L 可积,且
证明 续,所以
b a
b b ' f ( x) g ' ( x)dx f ( x) g ( x) a a f ( x) g ( x)dx 。
由于 f x 和 g x 都在 a, b 上绝对连续,故 f x g x 也在 a, b 上绝对连
b a
b b ( f ( x) g ( x))' dx a d ( f ( x) g ( x)) f ( x) g ( x) a 。
i 1 n
若 当 l (T ) 0 时 , 积 分 和 (T , ) 存 在 有 限 极 限 , 设
lim (T , ) lim
l (T ) 0
l (T ) 0
f (
k 1
n
k
)x k I ,且数 I 与分法 T 无关,也与 k 在 x k 1 , x k 的取
b b b ' f ( x) g ' ( x)dx f ( x) g ( x) a a f ( x) g ( x)dx。 即 a
lebesgue可积函数
![lebesgue可积函数](https://img.taocdn.com/s3/m/c321e4ac5ff7ba0d4a7302768e9951e79b8969a4.png)
lebesgue可积函数Lebesgue可积函数是现代数学分析中的一个重要概念,它是勒贝格测度与可积性的结合体现。
在这篇文章中,我们将探讨Lebesgue可积函数的定义、性质以及其在数学分析中的应用。
Lebesgue可积函数的定义源于勒贝格测度的概念。
勒贝格测度是一种更加一般化的测度,它能够对更多的集合进行测量。
Lebesgue可积函数是指在Lebesgue测度下,其绝对值的积分是有限的函数。
换句话说,一个函数f(x)是Lebesgue可积的,当且仅当其绝对值的积分小于无穷大。
Lebesgue可积函数具有一些非常重要的性质。
首先,Lebesgue可积函数的积分是可交换的,即对于可积函数f(x)和可积函数g(x),它们的积分的乘积等于它们的乘积的积分。
其次,Lebesgue可积函数的积分具有线性性质,即对于可积函数f(x)和可积函数g(x),以及任意实数a和b,有∫(af(x)+bg(x))dx = a∫f(x)dx + b∫g(x)dx。
Lebesgue可积函数在数学分析中有广泛的应用。
首先,Lebesgue可积函数是测度空间中的一个重要概念,它能够帮助我们对集合进行测量和分析。
其次,Lebesgue可积函数可以用来定义函数的平均值,通过对函数值进行积分和测度的比值。
此外,Lebesgue可积函数还可以用来描述概率论中的随机变量和概率密度函数。
Lebesgue可积函数的研究对于数学分析的发展具有重要意义。
通过引入Lebesgue测度和Lebesgue可积函数,我们能够更加深入地理解函数的性质和行为。
此外,Lebesgue可积函数也为其他数学分支如泛函分析、偏微分方程等提供了基础。
总结一下,Lebesgue可积函数是勒贝格测度与可积性的结合体现,其定义为在Lebesgue测度下,其绝对值的积分是有限的函数。
Lebesgue可积函数具有交换性和线性性质,广泛应用于数学分析中。
Lebesgue可积函数的研究对于数学分析的发展具有重要意义,为其他数学分支提供了基础。
实变函数中的勒贝格积分理论
![实变函数中的勒贝格积分理论](https://img.taocdn.com/s3/m/8c927f2749d7c1c708a1284ac850ad02df800769.png)
实变函数中的勒贝格积分理论实变函数中的勒贝格积分理论是数学中非常重要的一部分内容。
勒贝格积分理论为我们提供了一种有效的方法来计算函数的积分,不仅在理论上具有广泛的应用,也在实际问题的求解中起到了重要的作用。
本文将对实变函数中的勒贝格积分理论进行全面的介绍和论述。
1. 勒贝格积分的定义在介绍勒贝格积分之前,我们首先需要了解勒贝格可测集的概念。
勒贝格可测集是指具有良好性质的集合,可以用来刻画函数的不连续点和振荡现象。
基于勒贝格可测集的概念,我们可以定义勒贝格积分。
勒贝格积分具有广义积分所不具备的优良性质,如积分与函数几乎处处相等、线性性质、单调性等。
2. 勒贝格积分的性质勒贝格积分具有许多重要的性质。
其中包括积分的线性性、积分的单调性、积分的绝对收敛性等。
这些性质对于积分的计算和性质的分析起到了重要的作用。
此外,还有勒贝格积分的可加性、积分与极限的交换等性质也是勒贝格积分理论的重要内容。
3. 勒贝格积分与测度论测度论是研究测度的理论,而勒贝格积分则是测度的重要应用之一。
勒贝格积分理论可以看作是对测度论的应用和拓展,通过引入测度的概念来定义积分,从而使得积分更加通用和灵活。
测度论为勒贝格积分理论提供了严密的数学基础,使得我们能够对积分进行深入的研究和应用。
4. 勒贝格积分的应用勒贝格积分作为一种重要的积分方法,在实际问题的求解中有着广泛的应用。
例如,在物理学中,我们需要计算一些曲线、曲面或者体积的积分,勒贝格积分能够提供一种有效的方法来进行计算。
此外,勒贝格积分还在概率论、统计学等领域有着重要的应用。
总之,实变函数中的勒贝格积分理论是一门重要的数学理论。
通过勒贝格积分的定义和性质,我们可以更好地理解和计算函数的积分。
同时,勒贝格积分理论还与测度论相互联系,形成了一个完整的理论体系。
勒贝格积分理论的应用也非常广泛,为我们解决实际问题提供了有力的数学工具。
通过深入地研究和应用勒贝格积分理论,我们可以更好地理解实变函数的性质和特点,为我们的科学研究和工程实践提供有力支持。
勒贝格逐项积分定理证明勒贝格控制收敛定理
![勒贝格逐项积分定理证明勒贝格控制收敛定理](https://img.taocdn.com/s3/m/469e6056001ca300a6c30c22590102020740f2bb.png)
勒贝格逐项积分定理证明勒贝格控制收敛定理【原创实用版】目录一、引言二、勒贝格逐项积分定理的概念与相关背景三、证明勒贝格控制收敛定理的方法四、勒贝格控制收敛定理的应用与意义五、结论正文一、引言在数学分析领域,勒贝格积分和控制收敛定理是两个重要的概念。
其中,勒贝格逐项积分定理是勒贝格积分的一个基本定理,它表明在一定条件下,函数的逐项积分等于其勒贝格积分。
而勒贝格控制收敛定理则说明了,如果逐点收敛的函数列的每一项都能被同一个勒贝格可积的函数控制,那么函数列的极限函数的勒贝格积分等于函数列中每个函数的勒贝格积分的极限。
本文将从勒贝格逐项积分定理出发,探讨如何证明勒贝格控制收敛定理。
二、勒贝格逐项积分定理的概念与相关背景勒贝格逐项积分定理是指,如果一个函数列{fn}在区间 [a, b] 上逐项积分收敛,那么它的勒贝格积分也收敛,并且有:∫[a, b] fn(x) dx = lim(n→∞) ∫[a, b] fn_n(x) dx其中,fn_n(x) 是 fn 在区间 [a, b] 上的一个划分,每个小区间长度为 1/n。
这个定理是勒贝格积分理论的一个基本定理,它在实际应用中具有重要意义。
三、证明勒贝格控制收敛定理的方法为了证明勒贝格控制收敛定理,我们可以采用以下步骤:1.首先,假设有一个逐点收敛的函数列{fn},它的每一项都可以被同一个勒贝格可积的函数 g(x) 控制,即对变量的任何取值,函数的绝对值都小于另一个函数 g(x)。
2.然后,我们考虑函数列{fn}在区间 [a, b] 上的积分。
根据积分的定义,我们可以将 [a, b] 划分为若干个小区间,每个小区间的长度为Δx。
这样,我们可以将函数列{fn}的积分表示为:∫[a, b] fn(x) dx = Σ∫[a_i, a_(i+1)] fn(x) dx其中,a_i 是区间 [a, b] 的一个划分点,a_(i+1) 是 a_i 的相邻点。
3.接下来,我们考虑函数列{fn}中每一项的积分。
勒贝格积分相对于黎曼积分的优越性
![勒贝格积分相对于黎曼积分的优越性](https://img.taocdn.com/s3/m/2966212df02d2af90242a8956bec0975f465a4ed.png)
勒贝格积分相对于黎曼积分的优越性
刘晓辉;刘文菡
【期刊名称】《新余学院学报》
【年(卷),期】2006(011)003
【摘要】对勒贝格积分进行了深入研究,重点从三方面详细论述了勒贝格积分相对于黎曼积分的优越性,首先勒贝格可积函数的范围比黎曼积分广泛,其次在勒贝格积分意义下,积分与极限交换顺序的条件比较弱,最后从微积分基本定理的应用范围上再次加以证明.
【总页数】2页(P92-93)
【作者】刘晓辉;刘文菡
【作者单位】河北工程大学,理学院,河北,邯郸,056038;邯郸师院,数学系,河北,邯郸,056005
【正文语种】中文
【中图分类】O174
【相关文献】
1.黎曼积分和勒贝格积分的比较 [J], 顾滕
2.浅谈黎曼积分与勒贝格积分的区别 [J], 潘学锋
3.黎曼积分的局限性和勒贝格积分的优越性 [J], 刘松
4.黎曼积分的局限性和勒贝格积分的优越性 [J], 刘松;
5.勒贝格积分与黎曼积分的关系 [J], 张永立; 黄芳; 王学军; 范志勇
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (2)英文摘要 (2)1.引言 (3)2.勒贝格积分在数学分析中的应用 (3)2.1 在概念方面 (3)2.2 在定理方面 (3)3.勒贝格积分的计算 (3)3.1可测函数与连续函数有着密切的关系 (4)3.2连续函数与可积函数的关系 (5)4.勒贝格积分的优越性 (6)4.1从()R积分与()L积分对比中看()R积分 (6)4.2应用()L积分理论可以简便解决数学分析中的某些问题 (8)小结 (11)致谢 (11)参考文献…………………………………………………………………摘要勒贝格积分是变限积分函数中重要的一部分内容,实变函数是数学专业开设的一门重要课程。
山西财经大学的于秀兰,绍兴文理学院的倪仁兴等对勒贝格积分函数均有所论述,其中绍兴文理学院的倪仁兴从两个不同的角度深刻的说明了勒贝格积分应用范围之广。
本文在借鉴他们的基础上,主要从三个方面对勒贝格积分进行研究。
关键词:勒贝格()L积分,实变函数,数学分析,一致收敛AbstractLebesgue inteqral is an important part in integral, Real Variable Function is an important course in Mathematical analysis. Lebesgue integral is discussed by Shanxi University of Yu Xiulan, Shaoxing University of Ni Renxing .In this paper,they draw on the basis of three main areas to study the Lebesgue inteqra l.Keyword:Lebesgue integral, Real Variable Function, Mathematical analysis, unanimously Convergence1.引言勒贝格积分是实变函数中占有重要的地位,实变函数的理论是建立在实数理论和集合论的基础之上的。
实变函数与数学分析在概念.定理.证明方法等方面都有千丝万缕的联系。
如在概念方面,通过对比分析可以找到它们之间的异同点。
实变函数既是先前各类分析课程的深化和继续,同时又为继续学习其他后续课程打下必要的基础。
因此,实变函数与数学分析比任何课程更为密切的关系。
本文从三个不同的角度略加分析,以有助对勒贝格积分有更深一层的理解。
2.勒贝格积分在数学分析中的应用 2.1在概念方面在实变函数中,关于勒贝格积分有三种定义方式,我将在这里介绍一种比较常见的定义方式:设()f x 是E ⊂n R ()mE <+∞上的非负可测函数,我们定义()f x 是E 上的勒贝格积分()()()()(){}sup;nEEf x dx h x dx h x h x f x =≤⎰⎰是R 上的非负可测简单函数,这里的积分可以是+∞;若()E f x dx <∞⎰,则称()f x 在E 上勒贝格可积的。
设()f x 是E ⊂n R 上的可测函数,若积分()(),E E f x dx f x dx +-⎰⎰至少有一个是极限值,则称()()()E E E f x dx f x dx f x dx +-=+⎰⎰⎰为()f x 是E 上的勒贝格积分。
2.2 在定理方面在下面的定理中,是测度有限的可测集,等是定义在上的有界函数,可积就简称可积。
定理1 (1)设,在上可积,则+也在上可积且(2)设在上可积,则对任何常数,也在上可积且(3)设,在上可积,且,则特别当时有(4)设在上可积,则在上也可积,且3.勒贝格积分的计算极限方法是研究和解决数学分析问题的主要方法,从求极限到最后就积分,贯穿整个数学分析。
但极限方法在研究实变函数理论中得到更加充分的应用。
积分论的研究对象是定义可测集上的可测函数类,它与数学分析的主要研究对象—连续函数相比,有本质区别。
连续函数对极限运算不封闭,而可测函数在极限运算下是封闭的。
这就是说极限运算对可测集,可测函数可畅通无阻地使用,也正是由于这个原因,使极限运算在积分理论中得到充分的应用,而且使积分能克服()R 积分的局限性。
例如:Lebesgue 控制收敛定理提供了比()R 积分较弱的条件,使极限与积分次序可以交换,即它不要求验证极限函数()f x 的可积性,分析其原因正是基于“可测函数的极限函数仍是可测函数”这一特征。
因此,积分比()R 积分有更加广泛的应用。
以下我们举一个实例来说明极限方法在实变函数理论中的应用:例1若21:f R R ®连续且()111,2:R R L y y ®可测,则()()()()1112,:f t t R R L 为y y ®可测。
证明大意如下:1,2y y 都可表示为简单函数列的极限,连续函数符号f 与极限符号(在逐点意义下)可以交换,f 与简单函数的复合函数是简单函数,简单函数列的极限函数可测。
这里的过程完全由极限方法主导着。
3.1可测函数与连续函数有着密切的关系。
一方面,定义在可测集上的连续函数是可测函数;另一方面,由鲁津定理(若()f x 是E Ìn R 上的几乎处处有限的可测函数,则对任意的0d >,存在闭子集F E σ⊂,使()f x F 在d 上是连续函数,且()()\m E F s s <揭示了可测函数的结构:在可测集上几乎处处有限的可测函数是“基本”连续函数。
这样即使我们进一步了解可测函数,又为我们提供了利用连续函数研究可测函数的一种有效手段。
即把有关可测函数问题归结为连续函数问题而使问题简化。
连续函数对极限运算不封闭,但可测函数对极限运算封闭。
例2设()f x 是(,)I a b =上的实值函数,若()f x 具有中值凸性质:()()()22f x f y x yf++≤, ,x y I Î,则()f C I Î证明:根据数学分析的理论易知,若()f x 是I 上的有界函数,则()f C I Î.对此,假定()f x 在0X x I =?处不连续,且考察区间[]002,2x x I d d -+?,其中存在{k e },()()()00,,,1,2...k k k x x f K K n e e d d e ?+?.对于任意(),k k x εδεδ∈-+,显然有'000022,222kx x x x x def x x d d d e d -#+-??.由'2k x x e =+,可知(),k k x εδεδ∈-+,从而必有()()'f x K f x K ≥≥或者。
这说明m({x Î(k e -d ,k e +d ): ()f x K ≥})³d也就是说,对于任意大的自然数K ,均有(){}()0022:m x xx f x K d d d -#+吵从而导致()0f x =+?矛盾,即得所证。
3.2连续函数与可积函数的关系从可测函数与连续函数的密切关系中,可以导出可积函数与连续函数的一定关系:若f Î()L E ,则"e 0>,存在n R 上具有紧支集的连续函数g(x), ()()Ef xg x 使得|-|<e ò,它揭示了可测集E 上的可测函数f 对于给定0e >,可分解12f f 为+,基于连续函数与可积函数的这一关系,为研究可积函数的性质提供了有益的帮助。
例3设f Î()n L R ,若对一切n R 上具有紧支集的连续函数()x F 有()()0Rf x x dx F =ò,()0..n f x a ex R 则=?证明:采用反证法。
不妨设()f x 在有界可测集上有()0f x <,则可作具有紧支集连续函数列{k F (x )},使得lim (()nE k k R x x x |)-F |=0ò, ()()11,2,....x k F ?limk()E x x =()E x x ,a.e.x E Î,由于()().()k f x x f x |F |?,x E ∈故知()()()()0l i m 0E K k ERRf x dx f x x dx f x x dx →∞<==Φ=⎰⎰⎰ 矛盾4.勒贝格积分的优越性微分学和积分学是数学分析中的两大支柱,微积分基本定理是微积分的中枢,但它们中的有关概念,理论只有当实变函数理论建立后才能得到更加深刻的理解,并使有些问题得到明确的结论。
同时也对数学分析中某些问题用实变函数方法简捷解决的办法。
()R 积分是在约当测度基础上建立的,而积分是在Lebesgue 测度基础上建立的,而R 积分和的分划是把定义区间分成n 个小区间,不能使其振幅随分划区间的长度缩小而缩小,且()R 积分对连续性要求很高,而积分和的分划是对函数值域的分割,从而克服了对函数连续性的要求。
4.1从()R 积分与积分对比中看()R 积分4.1.1从积分理论建立中看()R 积分的局限性4.1.1.1()R 可积函数必须是几乎处处连续的,适用的范围较窄。
例如在[]0,1上定义()f x =()D x = 1[0,1]0[0,1]\x Q x Qì吻ïïíïÎïî (其中Q 是有理数集),则f 在[]0,1处处不连续的。
从而()R 不可积的,但却是可积的。
下面我们来说明()f x 在[]0,1是可积的。
首先()f x 为有界函数,区间[]0,1为可测集,即()f x 为可测集上的有界函数,对0"e >,取[]0,1上的分划D ,满足{}1,2D E E =,1E 为有理数集,2E 为无理数集,则()()11,,110S E f s E f -=-==i i imE w å<e4.1.1.2()R积分相对于积分极限可交换的条件太严,限制()R 积分运算的灵活性在数学分析中,都是用()R 可积函数列在所给区间上一致收敛定理,这个定理要求()R 可积函数列{()n f x }在区间[],a b 上一致有界,点点收敛于()f x ,且极限函数()f x 在[],a b 上必须()R 可积,则有lim ()()b b n naaf x dx f x dx =蝌,下列表明,即使函数列是渐升的也不能其极限函数的可积性。
例 4 设{n r }是[]0,1全体有理数列,作函数列()n f x =121,,0n x r r r ì=?ïïíïïî其他(n=1,2,¼)()n f x 显然有121()()()()1n n f x f x f x f x +#迹<?,且有1[0,l i m ()()0[0,1]\n n x Q f x f x x Q ì吻ïï==íïÎïî,这里每()n f x 个皆是[]0,1上的()R 可积函数且积分值为零,故有1lim ()n nf x dx ò=0,但极限()n f x 不是()R 可积的,这是因为1()f x dx ò=1,1()f x dx ò=0,从而也就谈不上积分号下取极限的问题。