《应用光学》第2章课后答案解析

合集下载

《应用光学》第2章课后答案全文

《应用光学》第2章课后答案全文

12. 由两个透镜组成的一个倒像系统,设第一组透镜的焦距 为f1′,第二组透镜的焦距为f2′,物平面位于第一组透镜 的物方焦面上,求该倒像系统的垂轴放大率。
解:
1
1
1
1
F2
1
1
第一组透镜
第二组透镜
1
第二组透镜
13. 由两个同心的反射球面(二球面球心重合)构成的光学系 统,按照光线反射的顺序第一个反射球面是凹的,第二个 反射球面是凸的,要求系统的像方焦点恰好位于第一个反 射球面的顶点,求两个球面的半径r1,r2和二者之间的间隔 d之间的关系。
B′
面,如图示.
l ′ = 2f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −f′
B
……
F
F′
A
H H′
像平面在像 空间无限远 处.
l′=∞
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l f' 2
B′
r1 无穷远物点
r2
r1/2
最终像点
11 2
l2 l2 r2
l2
l2
2 r2
(l2l2 )
14. 假定显微镜物镜由相隔20mm的两个薄透镜组构成,物平 面和像平面之间的距离为180mm,放大率β=-10×,要求近 轴光线通过二透镜组时的偏角Δu1和Δu2相等,求二透镜 组的焦距。
y n1u1 u1 10
l = −f′
B
……
F′
F
H H′
A
像平面在像 空间无限远 处.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.

应用光学课后习题答案

应用光学课后习题答案

应用光学课后习题答案应用光学课后习题答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。

应用光学是将光学原理应用于实际问题的学科,广泛应用于光学仪器、光学通信、光学材料等领域。

在学习应用光学的过程中,习题是巩固知识、提高应用能力的重要途径。

下面是一些应用光学课后习题的答案,希望对大家的学习有所帮助。

1. 一束入射光线从空气射向玻璃,入射角为30°,玻璃的折射率为1.5。

求折射光线的入射角和折射角。

解答:根据折射定律,入射角和折射角之间满足的关系是:n₁sinθ₁ =n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和折射角。

已知n₁ = 1(空气的折射率),θ₁ = 30°,n₂ = 1.5(玻璃的折射率),代入折射定律得:1sin30° = 1.5sinθ₂,解得θ₂ ≈ 19.47°。

所以,折射光线的入射角为30°,折射角为19.47°。

2. 一束光线从空气射入水中,入射角为60°,水的折射率为1.33。

求折射光线的入射角和折射角。

解答:同样利用折射定律,已知n₁ = 1(空气的折射率),θ₁ = 60°,n₂ = 1.33(水的折射率),代入折射定律得:1sin60° = 1.33sinθ₂,解得θ₂ ≈ 45.05°。

所以,折射光线的入射角为60°,折射角为45.05°。

3. 一束光线从玻璃射入空气,入射角为45°,玻璃的折射率为1.5。

求折射光线的入射角和折射角。

解答:同样利用折射定律,已知n₁ = 1.5(玻璃的折射率),θ₁ = 45°,n₂ = 1(空气的折射率),代入折射定律得:1.5sin45° = 1sinθ₂,解得θ₂ ≈ 30°。

所以,折射光线的入射角为45°,折射角为30°。

应用光学第二版胡玉禧第二章作业参考题解

应用光学第二版胡玉禧第二章作业参考题解

第二章作业参考题解1. 习题2-2;解:依题意作图如图。

mm r 50=,n= ,n '=1 1)对球心处气泡,mm l 50'=,据rnn l n l n -=-''' 将数值代入解得 mm l 50=;2)对球心与前表面间的一半处气泡,mm l 25'=,据rn n l n l n -=-''',将数值代入得 505.115.1251-=-l ,解得:mm l 30=2. 习题2-6(c),(d),(f );3. 用作图法求下列各图中物体AB 的像A ′B ′4. 习题2-75. 习题2-10 解: 据题意有2111-=-=x f β (1) 122-=-=x f β (2) 10012+=x x (3) 联立(1)(2)(3)式解得 )(100mm f -=; 或据 ''f x -=β 和题目条件可以解得 )(100'mm f = (说明:本题也可以用高斯公式求解) 6. 习题2-13解:由于两透镜密接,故d = 0 , 所求 ''x f f x L ++--= ,或 'l l L +-=把透镜看成光组,则此为双光组组合问题。

可由∆-='''21f f f 和∆=21f f f 计算组合后系统的焦距:)(31005010050100'''21mm f f f =+⨯-=∆-= ,)(310050100)50(10021mm f f f -=---⨯-=∆= 又 (法一)101''-=-=-=x f f x β, 所以 )(310'101'mm f x =-= ,)(3100010mm f x -== )(3.403312103103100310031000''mm x f f x L ≈=+++=++--=又 (法二)101'-==l l β, 所以 '10l l -= ,代入高斯公式得 1003'1011=--'l l 解得 )(311031001011'mm l =⨯=, )(31100'10mm l l -=-=所以 )(3.40331210311031100'mm l l L ≈=+=+-=7. 习题2-18解:据题意透镜为同心透镜,而r 1=50mm ,d =10 mm ,故有 r 2= r 1-d = 40 mm ,所以,由dn r r n dr l H )1()(121-+--=得)(50163.5163.1550010)15163.1()5040(5163.15010mm l H =+--=⨯-+-⨯-=dn r r n dr l H )1()('122-+--=得)(40163.5163.1540010)15163.1()5040(5163.14010'mm l H =+--=⨯-+-⨯-=10)15163.1()5040(5163.1)15163.1(40505163.1)1()()1('221221⨯-+-⨯-⨯⨯=-=-+--=f d n r r n n r nr f)(37168.587163.56.3032665656.2828656.76.3032mm -=-=+-=。

应用光学【第二章】习题第三部分

应用光学【第二章】习题第三部分

10.一个双凸透镜,两面的曲率半径为r1=15cm, r2=10cm, 透镜玻璃的折射系数n=1.5,透镜厚度d=3cm, 透镜置于空气中,求透镜的主焦点及主平面的位置。

11.凸透镜焦距为10厘米,凹透镜焦距为4厘米,两个透镜相距12厘米,已知物在凸透镜左方20厘米处,计算像的位置和横向放大率。

12.空气中双凹厚透镜的两个凹面半径r1和r2分别为-8厘米和7厘米,沿主轴的厚度为2厘米,玻璃折射率n为1.5。

求焦点和主平面的位置。

13.已知两透镜的像方焦距分别为5厘米和10厘米,两镜光学间隔为10厘米,物离透镜为15厘米,用复合光组法求最后的像的位置。

14.一焦距为20厘米的薄透镜与一焦距为20厘米的薄凹透镜相距6厘米,求(1)复合光组焦点及主平面的位置。

(2)若物放在凸透镜前30厘米处,求像的位置和放大率。

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案

由式(1-12)
2 所以有: ( E ) ) E
由式(1-16)得:
2
即 E 0
E 2 E 2 t
(1-17)
同理对式(1-15)两边 取旋度,得
2 2 D B E H ( D) 2 2 t t t t
即:
E E 2 t
2
(1-16)
利用矢量微分恒等式
2 ( A) ( A) A
有:
2 ( E ) ( E ) E
D 0
可知 E 0
同理,利用矢量微分恒等式,可得:
2 有以上两式得: H H 2 t
2
2 ( H ) H
(1-18)
v 令
1

可将式(1-17)式(1-18)变为:
2 1 2E 2 E 2 2 0 (1-19) 2 H 1 H 0 v t v 2 t 2
4.波动方程
麦克斯韦方程组描述了电磁现象的变化规律, 指出随时间变化的电场将在周围空间产生变化的磁 场,随时间变化的磁场将在周围空间产生变化的电 场,变化的电场和磁场之间相互联系,相互激发, 并且以一定速度向周围空间传播。因此,时变电磁 场就是在空间以一定速度由近及远传播的电磁波。
一、 电磁场波动方程:
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z

王文生——应用光学习题集答案

王文生——应用光学习题集答案

王⽂⽣——应⽤光学习题集答案第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H,则明亮圆半径R Htglc)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。

3、⼀束在空⽓中波长为589.3nm的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:n —;,' 442nm 不变4、⼀⾼度为1.7m的⼈⽴于路灯边(设灯为点光源)1.5m远处,路灯⾼度为答:设影⼦长x,有:x 17x=0.773mx 1.5 55、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。

6为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。

同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。

当光线穿过⼤⽓层射向地⾯时,由于n逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。

我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。

另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。

⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。

第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。

图2-652、如图2-66所⽰,MM '为⼀薄透镜的光轴,B为物点,B'为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。

B'(a)(b)图 2 -663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。

图2 -674、已知⼀对共轭点B, B'的位置和系统像⽅焦点F'的位置,如图2-68所⽰,假定物像空间介质的折射率相同,试⽤作图法求出该系统的物、像⽅主平⾯的位置及其物⽅焦点位置。

物理光用与应用光学习题解答(整理后全)

物理光用与应用光学习题解答(整理后全)
第一章 光的电磁波理论
1-1.计算由 E = ( -2i + 2 3 j ) exp éi ( 3 x + y + 6 ´ 108 t ) ù 表示的平面波电矢量的振动方向、
ê ë
ú û
传播方向、相位速度、振幅、频率、波长。 解:由题意: E x = -2e
i ( 3 x + y + 6 ´ 108 t )
解: (1)∵ k = w / v ∵ k = 2p / l ∴ vg = v - l ∴ vg =
d (kv) dv =v+k dk dk
∴ dk = -( 2p / l2 ) dl
dv b 2l =v-l dl c 2 + b 2 l2
2 2
= c +b l 2
b 2 l2 c 2 + b 2 l2
1-4 题用图 - 2( Ex '2 sin a cos a - E y '2 sin a cos a + E x ' E y ' cos 2 a - E x ' E y ' sin 2 a ) E x 0 E y 0 cos j = E 2 E2 sin 2 j x0 y0 ( E x '2 cos 2 a + E y '2 sin 2 a - E x ' E y ' sin 2a ) E 2 + ( E x '2 sin 2 a + E y '2 cos 2 a + E x ' E y ' sin 2a ) E 2 y0 x0
i ( 3 x + y + 6 ´ 108 t )
v v ky = 1

《应用光学基础》思考题部分参考解答

《应用光学基础》思考题部分参考解答

《应用光学基础》思考题部分参考解答《应用光学基础》思考题参考答案第一章几何光学的基本定律和成像概念1-1 (1)光的直线传播定律:例子:影子的形成。

应用:射击瞄准。

实验证明:小孔成像。

(2)光的独立传播定律:例子:两束手电灯光照到一起。

应用:舞台灯光照明;无影灯。

实验证明:两束光(或两条光线)相交。

(3)光的反射定律:例子:照镜子;水面上的景物倒影。

应用:制镜;汽车上的倒车镜;光纤通讯。

实验证明:平面镜成像;球面反射镜成像。

(4)光的折射定律:例子:插入水中的筷子出现弯折且变短;水池中的鱼看起来要比实际的位置浅。

应用:放大镜;照相机;望远镜等实验证明:光的全反射;透镜成像;用三棱镜作光的色散。

1-2 否。

这是因为光线在棱镜斜面上的入射角I2 = 45°,小于此时的临界角I m= 62.46°。

1-3小孔离物体有90cm远。

1-4此并不矛盾,这是因为光在弯曲的光学纤维中是按光的全反射现象传播的,而在光的全反射现象中,光在光学纤维内部仍按光的直线传播定律传播。

第二章平面成像2-1 略。

2-2 以35°的入射角入射。

2-3 二面镜的夹角为60°。

2-4 双平面镜夹角88.88°。

2-5 平面镜的倾斜角度为0.1°。

2-6 实际水深为4/3 m。

2-7 平板应正、反转过0.25rad的角度。

2-8 (1)I = 55.59°;(2)δm = 51.18°。

2-9 光楔的最大折射角应为2°4′4〞。

2-10 略。

第三章球面成像3-1 该棒长l′= 80mm。

3-2l = -4.55 mm,D = 4.27 mm。

3-3最后会聚点在玻璃球后面l2′= 15 mm (或离球心45 mm的右侧)处。

3-4l2′=7.5cm。

3-5l2′= -105.96 mm(即位于第一面前97.96mm处),y′= 14.04mm。

3-6n = 1.5,r = 7.5 mm(或r = -7.5 mm)。

最新《应用光学》第二版 胡玉禧 第二章 作业参考题解

最新《应用光学》第二版 胡玉禧 第二章 作业参考题解

第二章作业参考题解1. P.53习题2-2;解:依题意作图如图。

mm r 50=,n=1.5 ,n '=1 1)对球心处气泡,mm l 50'=,据rnn l n l n -=-''' 将数值代入解得 mm l 50=;2)对球心与前表面间的一半处气泡,mm l 25'=,据rn n l n l n -=-''',将数值代入得 505.115.1251-=-l ,解得:mm l 30=2. P.54习题2-6(c),(d),(f );3. 用作图法求下列各图中物体AB 的像A ′B ′4. P.54习题2-7l 1 l 2rAH H ′F ′ (c ) A ′ F FH H ′ (d )F ′AA ′F 1 (f )F 2′AA ′ F 1′F 2B F AH H ′ F ′ (a )A ′B ′ A ' B 'H H ′ (b )FF ′ ABFA 'B ' H H ′ F ′ABA 'B 'H ′ H (a )F F ′ A B5. P.55习题2-10 解: 据题意有2111-=-=x f β (1) 122-=-=x f β (2) 10012+=x x (3) 联立(1)(2)(3)式解得 )(100mm f -=; 或据 ''f x -=β 和题目条件可以解得 )(100'mm f = (说明:本题也可以用高斯公式求解) 6. P.55习题2-13解:由于两透镜密接,故d = 0 , 所求 ''x f f x L ++--= ,或 'l l L +-=把透镜看成光组,则此为双光组组合问题。

可由∆-='''21f f f 和∆=21f f f 计算组合后系统的焦距:)(31005010050100'''21mm f f f =+⨯-=∆-= ,)(310050100)50(10021mm f f f -=---⨯-=∆= 又 (法一)101''-=-=-=x f f x β, 所以 )(310'101'mm f x =-= ,)(3100010mm f x -== )(3.403312103103100310031000''mm x f f x L ≈=+++=++--=又 (法二)101'-==l l β, 所以 '10l l -= ,代入高斯公式得 1003'1011=--'l l 解得 )(311031001011'mm l =⨯=, )(31100'10mm l l -=-=所以 )(3.40331210311031100'mm l l L ≈=+=+-=7. P.55习题2-18解:据题意透镜为同心透镜,而r 1=50mm ,d =10 mm ,故有 r 2= r 1-d = 40 mm ,所以,由dn r r n dr l H )1()(121-+--=得)(50163.5163.1550010)15163.1()5040(5163.15010mm l H =+--=⨯-+-⨯-=dn r r n dr l H )1()('122-+--=得)(40163.5163.1540010)15163.1()5040(5163.14010'mm l H =+--=⨯-+-⨯-=10)15163.1()5040(5163.1)15163.1(40505163.1)1()()1('221221⨯-+-⨯-⨯⨯=-=-+--=f d n r r n n r nr f)(37168.587163.56.3032665656.2828656.76.3032mm -=-=+-=绿叶对根的情意——学会与父母沟通【教学对象】初中二年级【教学时间】一节课,40分钟 【教学理念分析】人际交往和沟通是个体社会和人格发展成熟的重要标志。

王文生——应用光学习题集答案

王文生——应用光学习题集答案

王⽂⽣——应⽤光学习题集答案习题第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。

3、⼀束在空⽓中波长为nm 3.589=λ的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:'λλ=n ,nm 442'=λ不变 4、⼀⾼度为m 7.1的⼈⽴于路灯边(设灯为点光源)m 5.1远处,路灯⾼度为m 5,求⼈的影⼦长度。

答:设影⼦长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。

6、为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。

同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。

当光线穿过⼤⽓层射向地⾯时,由于n 逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。

我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。

另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。

⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。

第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。

图2-652、如图2-66所⽰,'MM为⼀薄透镜的光轴,B为物点,'B为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。

BMB 'M ′ BM M ′B' ●●●●(a) (b)图2-663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。

物理光学与应用光学习题解第二章

物理光学与应用光学习题解第二章

第二章习题2-1. 如图所示,两相干平行光夹角为α,在垂直于角平分线的方位上放置一观察屏,试证明屏上的干涉亮条纹间的宽度为: 2sin2αλ=l 。

2-2. 如图所示,两相干平面光波的传播方向与干涉场法线的 夹角分别为0θ和R θ,试求干涉场上的干涉条纹间距。

2-3. 在杨氏实验装置中,两小孔的间距为0.5mm ,光屏离小孔的距离为50cm 。

当以折射率为1.60的透明薄片贴住小孔S2时,发现屏上的条纹移动了1cm ,试确定该薄片的厚度。

2-4. 在双缝实验中,缝间距为0.45mm ,观察屏离缝115cm ,现用读数显微镜测得10个条纹(准确地说是11个亮纹或暗纹)之间的距离为15mm ,试求所用波长。

用白光实验时,干涉条纹有什么变化?2-5. 一波长为0.55m μ的绿光入射到间距为0.2mm 的双缝上,求离双缝2m 远处的观察屏上干涉条纹的间距。

若双缝距离增加到2mm ,条纹间距又是多少?2-6. 波长为0.40m μ~0.76m μ的可见光正入射在一块厚度为1.2×10-6 m 、折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强?2-7. 题图绘出了测量铝箔厚度D 的干涉装置结构。

两块薄玻璃板尺寸为75mm ×25mm 。

在钠黄光(λ=0.5893m μ)照明下,从劈尖开始数出60个条纹(准确地说是从劈尖开始数出61个明条纹或暗条纹),相应的距离是30mm ,试求铝箔的厚度D = ?若改用绿光照明,从劈尖开始数出100个条纹,其间距离为46.6 mm ,试求这绿光的波长。

2-8. 如图所示的尖劈形薄膜,右端厚度h 为0.005cm ,折射率n = 1.5,波长为0.707m μ的光以30°角入射到上表2-1题用图2-2题用图2-7题用图2-8题用图面,求在这个面上产生的条纹数。

若以两块玻璃片形成的空气尖劈代替,产生多少条条纹?2-9. 利用牛顿环干涉条纹可以测定凹曲面的曲率半径,结构如图所示。

应用光学答案(二、三、六、九)

应用光学答案(二、三、六、九)

十、由一个正透镜组和一个负透镜组构成的摄远 系统,前组正透镜的焦距为100,后组负透镜的焦 距为 -50,要求由第一组透镜到组合系统像方焦点 的距离与系统的组合焦距之比为1:1.5,求二透镜 组之间的间隔d应为多少,组合焦距等于多少?


无论是什么类型的透镜组合,均按课本中给出的 组合系统图来考虑各量之间的关系,符号和公式 均如此。 计算出间隔Δ 为正负两种情况,依此带来焦距为 正负两种情况。因为是摄像用系统,显然系统不 能是负焦距,因此负值舍弃。
十一、如果将上述系统用来对 10m 远的物平面成像,用移 动第二组透镜的方法,使像平面位于移动前组合系统的像 方焦平面上,问透镜组移动的方向和移动的距离。

是第十题的继续,因为已经知道各组合透镜之间的关系, 设定一个移动量S,符号自己确定。

依次对第一透镜和第二透镜分别按物像位置高斯公式代 入各量,由此整理求出移动量S,根据你自己的符号标 准判断移动方向。 移动方向是向右移动1.5mm
第二章习题
一、1.根据双胶合棱镜参数计算两条实际光线光路
(1) (2) L1 300 L1 U1 2 h 10
(1)对三个面依次应用近轴光线光路计算公式,中间变量用入射角和折射角
l r u r n i i n i
u u i i ri l r u
九、已知航空照相机物镜的焦距为 500mm ,飞机飞行高度为 6000m ,相机的幅面为 300×300mm2 ,问每幅照片拍摄的地 面面积。

因为已经知道物距和焦距,由物像位置关系高斯式或牛 顿式非常容易求出。
1、由高斯物像公式得:
y -x
1 1 1 1 1 0.3 -L=600 l f l 0.5 6000 f´=0.5 l 0 .5 相当于在像方焦平面上 y l 再由= 求得y 即y y 3600 mm 面积S y 2 13km2 y l f 0.5 2、由 x l f 6000 0.5 求得= = x 6000 0.5 y 再由= 求得y 3600 m y

《应用光学》第二版胡玉禧第二章作业参考题解

《应用光学》第二版胡玉禧第二章作业参考题解

《应用光学》第二版胡玉禧第二章作业参考题解1.P.53习题2-2;解:依题意作图如图。

r50mm,n=1.5,n'=11)对球心处气泡,l'50mm,据n'nn'nl'lr将数值代入解得l50mm;2)对球心与前表面间的一半处气泡,l'25mm,据n'nn'n,将数值代入得l'lr11.511.5,解得:l30mm25l502.P.54习题2-6(c),(d),(f);3.用作图法求下列各图中物体AB的像A′B′4.P.54习题2-75.P.55习题2-10解:据题意有1f1f(1)21(2)某2某1100(3)某12某2联立(1)(2)(3)式解得f100(mm);或据某'和题目条件可以解得f'100(mm)f'(说明:本题也可以用高斯公式求解)6.P.55习题2-13解:由于两透镜密接,故d=0,所求L某ff'某',或Lll'把透镜看成光组,则此为双光组组合问题。

可由f'统的焦距:fff1'f2'和f12计算组合后系f'f1'f2'ff10050100100(50)100(mm),f12(mm)100503100503又(法一)某'f1110,所以某'f'(mm),f'某101031000(mm)31000100100101210L某ff'某'403.3(mm)33333l'1113又(法二),所以l10l',代入高斯公式得l10l10l'100111001101100解得l'(mm),l10l'(mm)1033311001101210所以Lll'403.3(mm)333某10f7.P.55习题2-18解:据题意透镜为同心透镜,而r1=50mm,d=10mm,故有r2=r1-d=40mm,所以,由lHdr1n(r2r1)(n1)d得lH105050050(mm)1.5163(4050)(1.51631)1015.1635.163dr2n(r2r1)(n1)d得lH'lH'104040040(mm)1.5163(4050)(1.51631)1015.1635.163f'nr1r21.51635040f(n1)n(r2r1)(n1)2d(1.51631)1.5163(4050)(1.51631)210 3032.63032.6587.37168(mm)7.8286562.6656565.163。

应用光学 课后题,作业答案

应用光学 课后题,作业答案

第二章作业:1、一个玻璃球直径为400mm,玻璃折射率为1.5。

球中有两个小气泡,一个在球心,一个在1/2半径处。

沿两气泡连线方向,在球的两侧观察这两个气泡,它们应在什么位置?如在水中观察(水的折射率为1.33)时,它们又应在什么位置?答案:空气中:80mm、200mm;400mm、200mm水中:93.99mm、200mm;320.48mm、200mm3、一个玻璃球直径为60mm,玻璃折射率为1.5,一束平行光射到玻璃球上,其汇聚点在何处?答案:l'=15mm4、一玻璃棒(n=1.5),长500mm,两端面为凸的半球面,半径分别为r1=50mm, r2= -100mm,两球心位于玻璃棒的中心轴线上。

一箭头高y=1mm,垂直位于左端球面顶点之前200mm处,垂直于玻璃棒轴线。

试画出结构简图,并求a)箭头经玻璃棒成像在什么位置(l2')?b)整个玻璃棒的垂轴放大率为多少?答案:l2'= -400mm、-3第三章作业:1、已知一个透镜把物体放大-3⨯,当透镜向物体移近18mm时,物体将被放大-4⨯,试求透镜的焦距。

答案:216mm2、一个薄透镜对某一物体成实像,放大率为-1⨯。

以另一薄透镜紧贴此薄透镜,则见像向透镜方向移动了20mm,放大率为原来的3/4,求两薄透镜的焦距。

答案:40mm、240mm3、一束平行光入射到平凸透镜上,汇聚于透镜后480mm处。

如在此透镜凸面上镀反射膜,则平行光汇聚于透镜前80mm处,求透镜折射率和凸面曲率半径。

答案:1.5、-240mm5、一块厚透镜,n=1.6,r1=120mm,r2=-320mm,d=30mm,试求该透镜的焦距及基点位置。

如果物距l1= -5m,像在何处?如果平行光入射时,使透镜绕一和光轴垂直的轴转动,而要求像点位置不变,问该轴安装在何处?答案:f'=149.27mm、l F'=135.28mm、l F= -144.02mm、l H'= -13.99mm、l H=5.25mm l2'=139.87mm像方节点,即像方主点6、由两薄透镜组成的对无穷远物成像的短焦距物镜,已知其焦距为35mm,筒长T=65mm,后工作距为50mm,求系统结构。

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案
干涉条件
相干光波、有相同的频率、有恒 定的相位差、有相同的振动方向 。
双缝干涉与多缝干涉
双缝干涉
两束相干光波分别通过两个平行狭缝 后,在屏幕上产生的明暗交替的干涉 条纹。
多缝干涉
多个狭缝产生的相干光波在屏幕上产 生的明暗交替的干涉条纹。
薄膜干涉与干涉滤光片
薄膜干涉
光波在薄膜表面反射和透射时产生的干涉现象,常用于增反 膜和增透膜的设计。
摄像机的原理
摄像机通过镜头将光线聚焦在电荷耦合器件(CCD)或互补金属氧化物半导体( CMOS)传感器上,记录下动态影像。
照相机与摄像机的比较
照相机和摄像机在结构和工作原理上存在差异,但它们都是用于记录影像的光学仪器。
光学信息处理系统
1 2
光学信息处理系统的原理
光学信息处理系统利用光的干涉、衍射、全息等 原理对信息进行处理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
光学仪器及应用
透镜与成像原理
透镜的分类
01
根据透镜的形状和焦距,可以将透镜分为凸透镜、凹透镜和凹
凸透镜等。
成像原理
02
透镜通过改变光线的传播路径,使光线会聚或发散,从而形成
实像或虚像。
像距与物距
03
透镜成像时,像距与物距之间的关系遵循“1/f = 1/u + 1/v”
干涉滤光片
利用薄膜干涉原理设计的滤光片,具有特定波长范围的透过 或反射特性。
干涉系统的应用
光学干涉仪
干涉光谱技术
利用光的干涉原理测量长度、角度、表面 粗糙度等物理量。
通过干涉原理分析物质吸收、发射和散射 光谱,用于物质成分分析和光谱测量。

应用光学总复习与习题解答.

应用光学总复习与习题解答.

总复习第一章 几何光学的基本定律 返回内容提要有关光传播路径的定律是本章的主要问题。

折射定律(光学不变量)及其矢量形式反射定律(是折射定律当时的特殊情况)费马原理(极端光程定律) (实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例,由费马原理导出折射定律和反射定律第二章 球面与球面系统 返回内容提要球面系统仅对细小平面以细光束成完善像基本公式:阿贝不变量放大率及其关系:拉氏不变量反射球面的有关公式由可得。

第三章 平面与平面系统返回内容提要平面镜成镜像夹角为 α 的双平面镜的二次像特征 平行平板引起的轴向位移反射棱镜的展开,结构常数,棱镜转像系统折射棱镜的最小偏角,光楔与双光楔关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。

第四章 理想光学系统返回内容提要主点、主平面,焦点、焦平面,节点、节平面的概念高斯公式与牛顿公式:当时化为,并有三种放大率,,拉氏不变量,,厚透镜:看成两光组组合。

++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。

--组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。

第五章 光学系统中的光束限制 返回内容提要本部分应与典型光学系统部分相结合进行复习。

孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴第六章 光能及其计算 返回内容提要本章重点在于光能有关概念、单位和像面照度计算。

辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失, 通过光学系统的光通量,像面照度总之,第七章 典型光学系统 返回内容提要本章需要熟练掌握各类典型光学系统的成像原理、放大倍率、光束限制、分辨本领以及显微镜与照明 系统、望远镜与转像系统的光瞳匹配关系,光学系统的外形尺寸计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l = 2f′
B F′ B′ A A′ H H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平A′ H
H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
第二章 部分习题答案
牛顿公式 一、物像位置关系 二、物像大小关系 1、垂轴放大率 2、轴向放大率 3、角放大率 三、物方像方焦距关系 四、物像空间不变式
f' n' f n

y nl y nl
高斯公式
f' f 1 l' l
nuy n' u' y'
2. 有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反
f' l 2
B
B′ A F′ A′ H H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=0
B
B′
F′ H A
A′ H′
F
像平面为: 像方主平面
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
考虑物镜组二主面之间的距离)。 解:
9. 已知航空照相机物镜的焦距f′=500mm,飞机飞行高度为
6000m,相机的幅面为300×300mm2,问每幅照片拍摄的地
面面积。 解:
10. 由一个正透镜组和一个负透镜组构成的摄远系统,前组
正透镜的焦距f1′=100,后组负透镜的焦距f2 ′=-50,要 求由第一组透镜到组合系统像方焦点的距离D与系统的组合 焦距之比为1∶1.5,求二透镜组之间的间隔d应为多少?组 合焦距等于多少?
l ′ = f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −2f′
B
F A H H′
F′
A′
B′
像平面为 A’B’所在平 面,如图示.
l ′ = 2 f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=∞
F H H′
F′
像平面为:
像方焦平面.
l ′ = f′
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −∞
F′ H H′
F
像平面为: 像方焦平面
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
f' l 2
B′
B H H′
A
F A′
F′
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −f ′
B
… …
F′ H H′
F A
像平面在像 空间无限远 处.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
光镜反射以后成像在投影物平面上。光源长为10mm,投影物高
为40mm,要求光源像等于投影物高;反光镜离投影物平面距离 为600mm,求该反光镜的曲率半径等于多少?
解:
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −∞
F H H′
F′
像平面为:
像方焦平面.
l = −2f′
B
A′
F′ H H′
F A
B′
像平面 为A’B’ 所在平 面,如图 示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=∞
F′ H H′
F
像平面为: 像方焦平面.
l ′ = f′
6. 已知照相物镜的焦距f′=75mm,被摄景物位于距离x=-
∞,-10,-8,-6,-4,-2m处,试求照相底片应分别放在离物镜
的像方焦面多远的地方? 解:
7. 设一物体对正透镜成像,其垂轴放大率等于-1,
试求物平面与像平面的位置,并用作图法验证。
解:
8. 已知显微物镜物平面和像平面之间的距离为180mm,垂轴
放大率等于-5,求该物镜组的焦距和离开物平面的距离(不
1 1 1 l2 f 2 l2
) l 2 l2 f 2(l2 l2
d x x f 2(l1 F f 2 x) (l1 d x)(xF f 2 x)
l = f′
B B′ F H H′ A ′ F′ A
像平面为 A’B’所在平 面,如图示.
l ′ = f′/2
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = 2f′
B B′ F′ H H′
F
A′
A
像平面为 A’B’所在平 面,如图示.
l ′ = 2f′/3
l=0
B B′
F H A
A′ H′
F′
像平面为:
像方主平面
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
f' l 2
B B′ F H A′ H′ A F′
像平面为 A’B’所在平 面,如图示.
l ′ = f′/3
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
解:
D d x F f2
D 2 f 3
d1 f1 f 2 28.87 78.87 d 2 f1 f 2 28.87 21.13
11. 如果将上述系统用来对10m远的物平面成像,用移动第二
组透镜的方法,使像平面位于移动前组合系统的像方焦平 面上,问透镜组移动的方向和移动距离。
l = −f ′
B
… …
F A
F′ H H′
像平面在像 空间无限远 处.
l′=∞
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l f' 2
B′
B
A′ F A H F′ H′
像平面为 A’B’所在平 面,如图示. l ′ = −f ′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
相关文档
最新文档