第六章_微分方程的稳定性模型(第2版)

合集下载

第六章李亚普诺夫稳定性分析

第六章李亚普诺夫稳定性分析

如图5-3李雅普诺夫意义下的稳定性示意图
2.古典理论稳定性定义(渐近稳定性)
设 xe 是系统 的一个孤立平衡状态,如果
(1) xe 是李雅普诺夫意义下稳定的;
(2)
则称此平衡状态是渐近稳定的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
- 初始状态 - 平衡状态
图6-2 二维空间渐近稳定性的几何解释示意图
3.内部稳定性与外部稳定性的关系
1)若系统是内部稳定(渐近稳定)的,则一定是外部稳定( BIBO稳定)的。
2)若系统是外部稳定(BIBO稳定)的,且又是可控可观测的, 则系统是内部稳定(渐近稳定)的。此时内部稳定和外部稳定 是等价的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
(外部稳定性也称为BIBO(Bounded Input Bounded Output )稳定性)
说明:
(1) 所谓有界是指如果一个函数 ,在时间区间[0,∞] 中,它的幅值不
会增至无穷,即存在一个实常数k ,使得对于所有的t∈ [0 ∞] ,恒有
|h(t)| ≤ k ≤ ∞成立。 (2) 所谓零状态响应,是指零初始状态时非零输入引起的响应。
若对所有t,状态x满足
,故有下式成立:
,则称该状态x为平衡状态,记为
(5-2)
由平衡状态在状态空间中所确定的点 ,称为平衡点。
2.平衡状态的求法
(1)线性定常系统
其平衡状态xe满足Ax=0
A非奇异,则存在唯一的一个平衡状态xe =0 。 (2)非线性系统
方程
的解可能有多个。
2009-08
CAUC--空中交通管理学院

9-第六章 非线性微分方程(1)

9-第六章 非线性微分方程(1)

当 f (t , x) 在某域 G 内 兹条件. 存在唯一性定理
∂f 存在且连续,则 f (t , x) 在 G 上关于 x 满足局部李普希 ∂x
如 f (t , x) 在某域 G 内连续,且关于 x 满足局部李普希茨条
件,则方程组(1)在区间 t − t0 ≤ h 上存在唯一解 x = ϕ (t , t0 , x0 ), ϕ (t0 , t0 , x0 ) = x0 ,其中
6 -- 4
dV 可表为 dt
dV = μV + W ( x) 且当 μ = 0 时 W 为定正函数,当 μ ≠ 0 时 W 为常负函数或恒为零, dt
又在 x = 0 的任意小邻域内至少存在某个 x 使得 V ( x ) > 0 ,则方程组(1)的零解是 不稳定的. (3) 二次型 V 函数的构造 如果 n 维一阶常系数线性微分方程组
∂f 在域 G 内连续, 则方程组(1)的满足初值条件 (2) ∂x
的解 x = ϕ (t , t0 , x0 ) 作为 t , t0 , x0 的函数在它的存在范围内是连续可微的. (2) 李雅普诺夫稳定性 (a) 零解 可以通过变换 x = y − ϕ (t ) 化为方程组 对方程组
dy = g (t , y ) 的某特解 y = ϕ (t ) , dt
6 -- 1
⎛ b h = min ⎜ a, ⎝ M
⎞ f (t , x ) . ⎟ , M = (max t , x )∈R ⎠
解的延拓与连续性定理
如 f (t , x) 在某域 G 内连续且关于 x 满足局部李普希
茨条件, 则方程组(1)的满足初值条件 (2) 的解 x = ϕ (t , t0 , x0 ) ((t0 , x0 ) ∈ G ) 可以延拓, 或者延拓到 +∞ (或 −∞ );或者延拓到使点( (t ,ϕ (t , t0 , x0 )) )任意接近 G 的边界.而方 程组(1)的解 x = ϕ (t , t0 , x0 ) 作为 t , t0 , x0 的函数在它的存在范围内是连续的. 可微性定理 如 f (t , x) 和

随机微分方程2种数值方法的稳定性分析_邱妍

随机微分方程2种数值方法的稳定性分析_邱妍

- g( Xn-
!h) ] [ ( !Wn) 2 -
h]
n = 0, 1, …;
! = 1, 2, …
( 6)
2 均方稳定性
根据式( 2) 的理论解 X( t) = exp[ ( " - 1 μ2) t + μ!W( t) ] , 得如下命题: 2
命题 1[3-4] X( t) 均方稳定, 即lim E( X( t) 2) = 0 的充要条件是 r( ") + 1 μ 2 < 0, 式中, r( ") 为 " 的实部.
n = 0, 1, …
( 9)
式中, Yn 为不依赖于 Xn 的随机变量. 数值方法的绝对稳定域 D = {!h|r( !) <0, 且|G( !h) | < 1}.
定义 1[5] 若数值方法的绝对稳定域包含整个左半平面, 即 r( !) < 0 #|G( !h) |<1, 则称数值方法是 A! 稳
定的.
3.1 向后 Milstein 法的 A! 稳定性
将数值方法式( 5) 应用到式( 3) 得: ( 1 - !h) Xn+1 = Xn + "#Wn. 根据式( 9) 有 G( !h) = ( 1 - !h) -1, 其中 ! = " + i #, 由定义 1 可得
|G( !h) | = |( 1 - !h) -1| < 1#( 1 - "h) 2 + ( #h) 2 > 1
p) -1

= ( 1 + q2 + 1 q4) ( 1 - p) -2 2
故向后 Milstein 法均方稳定的充要条件是( 1 + q2 + 1 q4) ( 1 - p) -2 < 1, 即( 1 + q2 ) 2 - 2( 1 - p) 2 +1< 0 ; 相应的 2

微分方程的稳定性模型_图文_图文

微分方程的稳定性模型_图文_图文
甲乙两种群的相互依存有三种形式
1) 甲可以独自生存,乙不能独自生存;甲 乙一起生存时相互提供食物、促进增长。
2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。
3) 甲乙均不能独自生存;甲乙一起生存 时相互提供食物、促进增长。
模型 假设
• 甲可以独自生存,数量变化服从Logistic规律 ; 甲乙一起生存时乙为甲提供食物、促进增长 。 • 乙不能独自生存;甲乙一起生存时甲为乙 提供食物、促进增长;乙的增长又受到本身 的阻滞作用 (服从Logistic规律)。
假设
• 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一 方军备增加越快;
2)由于经济实力限制,一方军备越大,对 自己军备增长的制约越大;
3)由于相互敌视或领土争端,每一方都存
在增加军备的潜力。
进一步 假设
1)2)的作用为线性;3)的作用为常数
建模 x(t)~甲方军备数量, y(t)~乙方军备数量
r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18
相轨线趋向极限环 结构稳定
实质上,我们并不需求解上面的微分方程以得到x(t) 的动态变化过程,只希望知道渔场的稳定鱼量和保 持稳定的条件,即时间 t 足够长以后渔场鱼量 x(t) 的趋向,并由此确定最大持续产量。为此可以直接 求上面常微分方程的平衡点并分析其稳定性。
不求x(t), 判断x0稳定性的方法——直接法
由于
讨论方程(1)的稳定性时,可用
对于消耗甲的资源而言
,乙(相对于N2)是甲(相
对于N1)的1 倍。
对甲增长的阻滞 作用,乙小于甲 乙的竞争力弱
2>1 甲的竞争力强
甲达到最大容量,乙灭绝

电力系统暂态分析:第六章 电力系统稳定性问题概述

电力系统暂态分析:第六章 电力系统稳定性问题概述

M E max
2M E max S Scr
Scr S
• 四、自动调节励磁系统包括: • 1、自动调节励磁系统包括: • 主励磁系统和自动调节励磁装置
• 主励磁系统是从励磁电源到发电机励磁绕组的励 磁主回路:
• 自动调节励磁装置根据发电机的运行参数,如端 电压、电流等,自动地调节主励磁系统的参数。
➢两机系统
PE1 E12G11 E1E2 Y12 sin(12 12 ) PE12 E22G22 E1E2 Y12 sin(12 12 )
PE1 PE2 δ12
• 三、异步电动机转子运动方程和电磁转矩
• 异步电动机组的转子运动方程为
TJ
0
d*
dt
(M E
Mm)
• TJ 为异步电动机组的惯性时间常数,一般约为
Re
E i
n

jYˆij
j1
n
n
Ei E j (Gij cos ij Bij sin ij ) Ei2Gii Ei Ej Yij sin( ij ij )
j 1
j 1
ji
导纳角 ij
tg1
Gij Bij
➢任一台发电机的功率角的改变,将引起全系统各机 组电磁功率的变化。稳定分析是全系统的综合问题。
➢ 机电暂态过程主要是电力系统的稳定性问题。电力系 统稳定性问题就是当系统在某一正常运行状态下受到某种干 扰后,能否经过一定的时间后回到原来的运行状态或者过渡 到一个新的稳态运行状态的问题。
如果能够,则认为系统在该正常运行状态下是稳定
的。
反之,若系统不能回到
原来的运行状态或者不能建
立一个新的稳态运行状态,
J02 SB
Wk

《电力系统暂态分析》第六章提纲

《电力系统暂态分析》第六章提纲

第六章 电力系统静态稳定第一节 概述一、运动系统稳定性的一般定义运动系统都存在稳定性问题。

定义如下:一个运动系统处于平衡状态,若遭受某种扰动,经过一定的时间变化后,能恢复到原有平衡状态或新的平衡状态下运行,则称该运动系统是稳定的,否则是不稳定的。

【例6-1】b二、电力系统稳定性的特定含义电力系统中发电机都是同步发电机,电力系统的平衡状态是指所有发电机以同步(相同)速度运行。

当电力系统处于某种平衡状态(即发电机以相同速度)运行,遭受某种扰动后,发电机的速度发生变化,经历一定时间速度的变化,若所有发电机能恢复到同步(相同)速度下运行,则该系统是稳定的,否则是不稳定的。

在正常运行时(平衡状态),发电机输入机械功率T P 等于发电机发出的电磁功率E P (机械损耗很小,因此忽略不计),即E T P P =,发电机保持恒定速度运行。

当受到某种扰动(例如:负荷波动,导线发热、电阻变化、短路、切除线路等),发电机输出功率E P 要发生变化,但T P 不能跟随变化(因为调速系统由机械组成,不能瞬间完成),导致输入与输出功率不平衡,从而引起速度的变化。

受扰动各发电机E P 变化不一样,因此各发电机速度变化不一样,经过一段时间调整,若能够恢复到相同速度下运行,则系统是稳定的,否则是不稳定的。

三、电力系统稳定性的分类按扰动量的大小,电力系统稳定分为⎩⎨⎧大扰动下的稳定—暂态稳定小扰动下的稳定—静态稳定小扰动—如负荷正常变化、导线发热引起参数变化等。

其扰动量很小,因而可以对描述系统运动过程的非线性微分方程进行线性化处理,从而可用线性系统稳定性理论进行分析。

大扰动—如短路、切机、投切线路、投切变压器等。

其扰动量大,因而不能对描述系统运动过程的非线性微分方程进行线性化处理,从而只能用非线性系统稳定性理论进行分析。

四、如何判别稳定1. 以速度,即各机组频率。

2. 以相对转子位置角)(ij t δ的变化过程,即摇摆曲线。

若)(ij t δ能够回复到某一个稳定值则系统是稳定的。

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。

通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。

通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。

并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。

【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。

第二节数学建模的重要意义基本要求:了解数学建模的重要性。

第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。

第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。

第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。

第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。

第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。

第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。

难点:建立模型的过程。

第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。

第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。

第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。

常微分方程定性与稳定性方法

常微分方程定性与稳定性方法

常微分方程定性与稳定性方法.第2版
常微分方程定性与稳定性方法是研究动力系统及其变化规律的重要手段,此第二版收录了最新的理论发展与实际应用相结合的一系列定性与稳定性方法完整的介绍,旨在启发读者的全新思考,为他们在动力系统解决方案的设计和实现提供有价值的支持。

常微分方程定性与稳定性方法是一类在多个科学领域中有效的数学解决方案。

这些方法可以在混沌系统中被用来描述不同形式的动态系统行为。

第2版的常微分方程定性与稳定性方法包括:
1. 计算函数法:采用各种数值方法求解二阶微分方程,可以快速解决定性和稳定性方法问题。

2. 拉格朗日差分方程法:使用有限差分步长比较,来解决定性和稳定性方法,从而帮助用户快速了解系统行为。

3. 高阶差分法:利用一组高阶差分方程以精确的高次近似形式描述稳定性模型,有效的解决定性和稳定性问题。

4. 代数方程法:可以把一系列定性和稳定性问题转化为一组代数方程,从而迅速获得解决方案。

这是第2版常微分方程定性与稳定性方法的概况,它们为计算动态系
统提供准确、可靠的数学解决方案,以模拟实际的动态系统行为。

常微分方程定性与稳定性方法.第2版

常微分方程定性与稳定性方法.第2版

常微分方程定性与稳定性方法.第2版#1.常微分方程常微分方程是数学中的一个分支,它研究的是关于函数的导数或微分方程的统称。

这些方程的解描述了在给定初始条件下系统的发展。

#2.定性方法定性方法是解析算法的一种中介技术,它通过描述系统的性质、特征和边界条件来确定系统的行为。

在常微分方程研究中,定性方法被广泛应用于解析和数值分析。

#3.稳定性分析稳定性分析是研究系统在给定条件下是否具有渐进稳定性的一种统计方法。

在常微分方程中,稳定性分析用于确定系统的稳定性和振荡性。

#4.常见稳定性在常微分方程中,常见的稳定性包括渐进稳定、渐进不稳定和中心稳定。

其中,渐进稳定是指一个系统在趋向于某一状态时,系统的所有状态都趋向于这一状态。

渐进不稳定则相反,表示系统对它的初始状态非常敏感,以至于无法达到某一个确定的状态。

中心稳定则是指系统的轨迹始终趋于一个固定点。

#5.定性分析的优点相比于解析算法,定性分析具有很多优点。

首先,它可以更容易地解决非线性问题。

其次,它可以更有效地揭示系统的行为和可能的趋势。

最后,它可以更快速地建立模型和进行检验。

#6.应用在物理、化学、生物和工程等领域,常微分方程是非常重要的工具。

定性方法和稳定性分析在这些领域中也得到了广泛应用。

例如,在环境科学中,常微分方程被用于描述环境中物种的数量、污染物的扩散以及气象变化等问题。

在自然灾害预测中,也经常使用定性方法来推断可能的发展趋势。

总之,常微分方程定性方法和稳定性分析在科学研究中占据着非常重要的地位,它们可以帮助我们预测系统的行为并建立更好的模型。

因此,我们应该加强对这些方法的学习和应用。

常微分方程式稳定性与稳定性方法.第2版

常微分方程式稳定性与稳定性方法.第2版

书籍推荐分享
《常微分方程式稳定性与稳定性方法.第2版》的作者是马知恩、周义仓、李承治,这书籍于2015年由科学出版社出版。

该书籍的主要内容为:随着教学计划的调整,本科生和研究生都没有足够的时间分3门课程来学习微分方程定性理论,稳定性方法和分支理论,大部分院校只能在40-60学时内学习这些知识。

《常微分方程定性稳定性方法》从2001年出版以来,满足了教学计划调整的需求,数学和应用数学专业的高年级本科生和研究生提供了一个简单明了的教材。

第六章 系统稳态误差及稳定性分析(1)

第六章 系统稳态误差及稳定性分析(1)

K为系统的开环总增益 A1(s) 和 B1(s) 分别为常数项为1的s的多项式
g 为开环传递函数所含积分环节 1/ 的个数 1/s
的值来划分系统的型号。 根据 g 的值来划分系统的型号。 ① 当g=0时,开环传递函数不含积分环节,系统称为 时 开环传递函数不含积分环节, 0型系统 ② 当g=1时,开环传递函数系统含有一个积分环节, 时 开环传递函数系统含有一个积分环节, 对应的闭环系统称为I型系统 对应的闭环系统称为 型系统 G(s)H(s) = KA1 ( s)
sB1 ( s )
③ 当g=2时,开环传递函数系统含有二个积分环节, 时 开环传递函数系统含有二个积分环节, 系统称为II型系统 系统称为 型系统 G(s)H(s) = KA1 ( s ) 2
其余依此类推
s B1 ( s )
一般来说,系统的型号愈高,系统愈不容易稳定,实际中一般 只用到Ⅱ型。
例1 二阶振荡系统的框图如下图所示。判别该系统 二阶振荡系统的框图如下图所示。 的阶次和型号

= lim
10 0.5s 10 1 1 − = lim = 5°C ° s →0 s 0.5s + 1 s→0 s 0.5s + 1
例6 系统如下图所示,其反馈通道传递函数为一积分环节。
试求其在单位恒速信号作用下的稳态误差,并分析这种 积分环节的设置是否合理。 Xi(s) + -
εss= lim ε (t ) = lim sε ( s)
t →∞
s →0
Xi(s) +
-
ε(s) G(s) H(s)
Xo(s)
ε ( s) = X i ( s) − F ( s)
= X i ( s ) − G ( s ) H ( s )ε ( s )

第六章 超前(迟后)校正解读

第六章 超前(迟后)校正解读
6
动 态
用开环频率特性进行系统设计,应注意以下几点: (1)稳态特性 要求具有一阶或二阶无静差特性,开环幅频低频斜率 应有-20或-40。为保证精度,低频段应有较高增益。 (2)动态特性 为了有一定稳定裕度,动态过程有较好的平稳性,一 般要求开环幅频特性斜率以-20穿过零分贝线,且有一定 的宽度。 (3)抗干扰性 为了提高抗高频干扰的能力,开环幅频特性高频段应 有较大的斜率。高频段特性是由小时间常数的环节决定 的,由于其转折频率远离ωc,所以对的系统动态响应影 响不大。但从系统的抗干扰能力来看,则需引起重视。
1. 幅频特性L(ω)大于或等于0dB。 2. φ(ω)大于或等于零。 3. 最大的超前相角φ 发生的转折频率1/αT与1/T m m 的几何中点ωm处。
超前网络相角计算式是
( ) arctgaT arctgT
将上式求导并令其为零,得a的计算公式
1 sin m 1 sin m
1
一、常用的几种校正方法:
1. 从校正装置在系统中的连接方式来看,可分为:
R(s)


Gc ( s )
G( s )
C ( s)
R( s)


G1 ( s)


H ( s)
G2 (s)
Gc ( s )
C (s)
H (s)
串联校正
Gc ( s)
R( s)
反馈校正
N ( s)


G1 ( s)


G2 ( s)
3
无源校正装置: 自身无放大能力,通常由RC网络组成,在信 号传递中,会产生幅值衰减,且输入阻抗低,输出 阻抗高,常需要引入附加的放大器,补偿幅值衰 减和进行阻抗匹配。 无源串联校正装置通常被安置在前向通道中能 量较低的部位上。 有源校正装置: 常由运算放大器和RC网络共同组成,该装置 自身具有能量放大与补偿能力,且易于进行阻抗 匹配,所以使用范围与无源校正装置相比要广泛 得多。

第四-2章 稳定状态模型

第四-2章 稳定状态模型

第四-2章 稳定状态模型与微分方程建模§1 微分方程稳定性理论简介定义1 1)中的,即在F 中不含时间变量事实上,如果增补一个方程,一个非自治系统可以转化自治系统,就是说,如果定义是等价的。

为动力系统。

定义2 2)为坐标的空间n R ,特别,当2=n 时,称相空间为相平面。

空间n R中的点集 },,1,)2()(|),,{(1n i t x x x x i i n ==满足称为系统(2)的轨线,所有轨线在相空间中的分布图称为相图。

定义3 相空间中满足0)(0=x F 的点0x 称为系统(2)的奇点(或平衡点)。

3)当0=−bc ad 时,有一个连续的奇点的集合。

当0≠−bc ad 时,)0,0(是这个系统的唯一的奇点。

下面仅考虑孤立奇点。

为了知道何时有孤立奇点,给出下述定理:定理1 设)(x F 是实解析函数,且0x 系统(2)的奇点。

若)(x F 在点0x 处的Jacobian 矩阵是非奇异的,则0x 是该系统的孤立奇点。

-157-定义4 设0x 是(2)的奇点,称(i )0x 是稳定的,如果对于任意给定的0>ε,存在一个0>δ,使得如果,则ε<−|)(|0x t x 对所有的t 都成立。

(ii )0x 是渐近稳定的,如果它是稳定的,且。

这样,如果当系统的初始状态靠近于奇点,其轨线对所有的时间t 仍然接近它,于是说0x 是稳定的。

另一方面,如果当∞→t 时这些轨线趋于0x ,则0x 是渐近稳定的。

定义5 一个奇点不是稳定的,则称这个奇点是不稳定的。

对于常系数齐次线性系统(3)有下述定理。

定理2 设)(t x x =是系统(3)的通解。

则(i )如果系统(3)的系数矩阵A 的一切特征根的实部都是负的,则系统(3)的零解是渐近稳定的。

(ii )如果A 的特征根中至少有一个根的实部是正的,则系统(3)的零解是不稳定的。

(iii )如果A 的一切特征根的实部都不是正的,但有零实部,则系统(3)的零解可能是稳定的,也可能是不稳定的,但总不会是渐近稳定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1.5 -2 -2.5 0 500 1000 1500
2000
2500
3000

3.结果如图
To MATLAB(ff4)
数学建模实例
1.目标跟踪问题一:导弹追踪问题 2.目标跟踪问题二:慢跑者与狗 3.地中海鲨鱼问题
返 回
导弹追踪问题 设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰 发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度 v0(常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹 运行的曲线方程.乙舰行驶多远时,导弹将它击中? 解法一(解析法) 假设 t 时刻导弹的位置为 P(x(t), y(t)),乙舰位于 Q(1, v0 t ) .
故有公式:
yi 1 yi hf ( xi , yi ) i 0,1, 2, y0 y( x0 ) , n -1
此即欧拉法.
2.使用数值积分
对方程y’=f(x,y), 两边由xi到xi+1积分,并利用梯形公式,有:
y ( xi 1 ) y ( xi )

xi 1
注意:
1.在解含n个未知数的方程组时,x0和x均为n维向量, M文件中的待解方程组应以x的分量形式写出. 2.使用MATLAB软件求数值解时,高阶微分方程必须 等价地变换成一阶微分方程组.
例4
解: 令 y1=x,y2=y1’
d2 x 2 dx 2 1000(1 x ) x 0 dt dt x(0) 2; x '(0) 0
实际应用时,与欧拉公式结合使用:
0) y i( yi hf ( xi , y i ) 1 h ( k 1) (k ) y y [ f ( x , y ) f ( x , y i 1 i i i i 1 i 1 )] k 0,1,2, 2
k 1) (k ) (k 1) 对于已给的精确度 0,当满足 yi( y 时, 取 y y 1 i 1 i 1 i 1 ,
一、微分方程模型——数值解
二、微分方程稳定性模型——定性分析
返 回
动态 模型
• 描述对象特征随时间(空间)的演变过程
• 分析对象特征的变化规律
• 预报对象特征的未来性态
• 研究控制对象特征的手段
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
•龙格-库塔法有二阶公式和四阶公式.
•线性多步法有四阶亚当斯外插公式和内插公式. 返 回
(三)用MATLAB软件求常微分方程的数值解
[t,x]=solver(’f’,ts,x0,options)
自变 量值 函数 值
ode45 ode23 ode11 3ode1 5sode 23s
由待解 方程写 成的M 文件名
ts=[t0,t f],t0、 tf为自变
函数 的初 值
量的初值 和终值
ode23:组合的2/3阶龙格–库塔–费尔贝格算法 ode45:运用组合的4/5阶龙格–库塔–费尔贝格算法 用于设定误差限(缺省时设定相对误差10-3, 绝对误差10-6), 命令为:options=odeset(’reltol’,rt,’abstol’,at) rt,at:分别为设定的相对误差和绝对误差.
返 回
(二)建立数值解法的一些途径
1.用差商代替导数
设 xi 1 xi h, i 0,1, 2, 微分方程 y ' f ( x, y ) y ( x0 ) y0 , n 1, 则可用以下离散化方法求解
若步长h较小,则有
y ( x h) y ( x ) y ' ( x) h
微分方程的数值解
(一)常微分方程数值解的定义 在生产和科研中所处理的微分方程往往很复杂,且大 多得不出一般解.而实际中的对初值问题,一般是要求 得到解在若干个点上满足规定精确度的近似值,或者得 到一个满足精确度要求的便于计算的表达式. 因此,研究常微分方程的数值解法是十分必要的.
y' f ( x, y ) 对常微分方程 : ,其数值解是指由初始点x0 开始 y ( x0 ) y0 的若干离散的x处的值,即对x0 x1 x2 xn, 求出准确值y ( x1 ), y ( x2 ), , y ( xn ) 的相应近似值y1 , y2 , , yn .
由于导弹头始终对准乙舰,故此时直线 PQ 就是导弹的轨迹曲线弧 OP 在点 P 处的切线,
v0 t y y' 即有 1 x 即 v0t (1 x) y' y
则微分方程变为一阶微分方程组:
y1 ' y2 2 y ' 1000 ( 1 y 2 1 ) y2 y1 y (0) 2, y (0) 0 2 1
2 1.5 1 0.5 0 -0.5 -1
1.建立M文件vdp1000.m如下: function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=1000*(1-y(1)^2)*y(2)-y(1); 2.取t0=0,tf=3000,输入命令: [T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-')
xi
f (t , y (t ))dt
故有公式:
h y i 1 y i [ f ( xi , y i ) f ( xi 1 , y i 1 )] 2 y 0 y ( x0 )
xi 1 xi [ f ( xi , y ( xi )) f ( xi 1 , y ( xi 1 ))] 2
然后继续下一步 yi 2 的计算.
此即改进的欧拉法.
3.使用泰勒公式 以此方法为基础,有龙格-库塔法、线性多步法等方 法. 4.数值公式的精度 当一个数值公式的截断误差可表示为O(hk+1)(其 中k为正整数,h为步长)时,称它是一个k阶公式. k越大,则数值公式的精度越高. •欧拉法是一阶公式,改进的欧拉法是二阶公式.
相关文档
最新文档