求空间角的常用方法
求空间角的两种途径
探索探索与与研研究究求空间角主要包括求异面直线所成的角,求直线与平面所成的角,求二面角等.这类问题侧重于考查同学们的逻辑推理、空间想象以及计算能力.求空间角问题的命题形式较多,其解法也各不相同.本文主要谈一谈求空间角的两种途径:利用向量法和平移法.一、构造向量向量法是根据已知条件建立空间直角坐标系,通过向量运算解题的方法.该方法的适用范围很广,一般只要能建立空间直角坐标系,就能用向量法求解.在建立空间坐标系后,需分别求得各个点的坐标,灵活运用空间向量的夹角公式、数量积公式等进行求解.运用此方法,能够大大降低解题的难度,简化解题的过程.例1.如图1所示,在四棱锥P -ABCD 中,PA =PB =AD =CD =12BC =2,AD ∥BC ,AD ⊥CD ,E 是PA 的中点,平面PAB ⊥平面ABCD ,求直线CE 与平面PBC所成角的正弦值.图1解:如图1,以点A 为坐标原点、AB 所在的直线为x 轴、AC 所在的直线为y 轴、过点A 并且垂直于平面ABCD的直线为z 轴,建立空间直角坐标系,可得B (22,0,0),C (0,22,0),P (2,0,2),E(0),则 CB =(22,-22,0),CP =(2,-22,2), CE=(,-22),设平面PBC 的法向量为n=(x,y,z ),由于ìíîn ⋅CB =0,n ⋅ CP =0,所以ìíîïï22x -22y =0,2x -22y +2z =0,令x =1,则平面PBC 的一个法向量为n=(1,1,1),所以cos<n, CE>=n ⋅CE ||n|| CE =所以直线CE 与平面PBC 通过建立合适的空间直角坐标系,能够将空间角问题转化为直线CE 的方向向量与平面PBC 的法向量的夹角问题,根据向量的数量积公式求得直线CE 与平面PBC 所成角的正弦值,即可解题.二、利用平移法运用平移法求空间角,需先选取合适的线段或直线进行平移,使其与某个平面、某条直线相交,从而得到空间角的平面角;然后根据平面角构造出三角形、平行四边形等,利用三角形、平行四边形的性质,正余弦定理、勾股定理求得平面角的大小,即可求得空间角的大小.例2.如图2所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,求异面直线OE 和FD 1所成角的余弦值.解:取D 1C 1的中点M ,连接MO ,FO .因为点O 是底面ABCD 的中心,所以O 为BD 的中点,从而可知FO 为△DAB 的中位线.所以FO ∥AB ∥D 1M ,且FO =D 1M =12AB ,则四边形D 1FOM 为平行四边形,所以MO 平行且等于D 1F ,故∠MOE (或其补角)即为异面直线D 1F 和OE 所成的角.在△MOE 中,OM =D 1F =22+1=5,ME =2,OE =EC 2+OC 2=3,由余弦定理可得cos∠MOE =OM 2+OE 2-ME 22⋅OM ⋅OE=5+3-22×5×3要求异面直线OE 和FD 1所成角的余弦值,就需根据异面直线所成角的定义以及平行四边形的性质,将D 1F 平移到MO ,找到异面直线OE 和FD 1所成角的平面角∠MOE,再在△MOE 中,根据余弦定理和勾股定理求解.上述两种方法都是求解空间角问题常用的方法.虽然运用向量法解题的运算量较大,但思路简单;虽然运用平移法解题的过程较为复杂,但比较容易想到.(作者单位:江苏省盐城市射阳县高级中学)图251Copyright ©博看网. All Rights Reserved.。
2023年高考数学----空间角问题规律方法与典型例题讲解
2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。
空间角的计算课件
H A E1B 1 7
E1
B1
.G
A
B
1 5
可得直线AH与BE1所成角的余弦值
1 7
1
2
3
5
例1:在正方体ABCD-A1B1C1D1中,
1
4
D1F1= D1C 1,
角的余弦值。
1
B1E1= 4
A1B1,求直线DF1与BE1所成
D1 F1
A1
H
C1
E1 B1
D
A
C
B
例1:在正方体ABCD-A1B1C1D1中,
综合法:作——证——求。
G
解析:延长AH,BE1 交于点G, 所以∠AGGH= 1 7
在三角形HE1G中,由余弦定理得
A1
H
E1
B1
GE12 GH 2 HE12
cos =
2GE1 • GH
17 17 4 15
2 17 17 17
1
点, 且D1E1= 4 D1C1求直线E1F与平面D1AC所成角的正弦值.
D1(0,0,4)
(0,4,4) C1
E1
(4,2,4) B1 (4,4,4)
(4,0,4)
A1
(0,4,0)
C
D
(4,0,0)
A
B
F
(4,4,0)
解:以
{DA,DC,DD}
正交基底,建立如图所示的
1 为
空间直角坐标系D-xyz,则各点的坐标为
D1 A 2, CE 1 (t 2)2 t 2 4t 5
D1 A • CE=1
D1 A • CE
1
所以cos60 =
空间角的求法
(3)法一:设 EF 中点为 G,以 O 为坐标原点,OA、OG、 AD 方向分别为 x 轴、y 轴、z 轴方向建立空间直角坐标系(如图), 设 AD=t(t>0),则点 D 的坐标为(1,0,t).
在 Rt△AFH 中 ,∵AH=12,AF=1,∴FH= 23. ∴点 F 的坐标为12, 23,0, 点 E 的坐标为-12, 23,0,∴ DF =-12, 23,-t.
.解:(1)证明:连接 BD 交 AC 于点 O,则 OB∶OD=AB∶ DC=1∶2,即 OD=2OB. 又 PE=2EB, ∴OODB=BPEE, 连接 OE,则 OE∥PD.又 OE⊂平面 EAC, PD⊄平面 EAC, ∴PD∥平面 EAC.
(2)设 CD 的中点为 F,连接 AF,则 AB=CF,∴四边形 ABCF 是 正方形, 如图,分别以 AF,AB,AP 所在直线为 x 轴、y 轴、z 轴建立空间 直角坐标系,则点 A(0,0,0),B(0,1,0),C(1,1,0),P(0,0,1), 设点 E(x,y,z),则 PE =(x,y,z-1), EB=(-x,1-y,-z).
DE =-32, 23,-t.
设平面 DEF 的法向量为 n1=(x,y,z),
则 n1·DF =0,n1·DE =0.
即-12x+ 23y-tz=0, -32x+ 23y-tz=0.
令 z= 3,
解得 x=0,y=2t,
∴n1=(0,2t, 3)
取平面 BEF 的一个法向量为 n2=(0,0,1),依题意 n1 与 n2
设
n=(x1,y1,z1)是平面
A1CD
的法向量,则 n·CA1
=0.
即x21x+1+y12=z1=0,0. 可取 n=(1,-1,-1).
空间角的求法
学立体几何是中学数学的主要内容之一,而空间角的求解则是立体几何中对空间思维和运算能力要求较高的内容,也是每年高考的必考内容.立体几何中的空间角主要包括异面直线所成的角、直线与平面所成的角、二面角三大类.本文就这三类空间角的具体求法进行简单分析,供同学们复习时参考.一、异面直线所成的角的求法1.平移法例1如图1所示,ABC—A1B1C1是直三棱柱,∠BCA=π2,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是(A)30"10(B)12(C)30"15(D)15"10解析:构建平行线将异面直线所成的角转化成平面角.∵D1,F1分别是A1B1和A1C1的中点,∴D1F1∥B1C1,D1F1=12B1C1.取BC的中点M,连接BD1,MF1.∵D1F1平行且等于12B1C1,BM平行且等于12B1C1,∴BM平行且等于D1F1,∴BMF1D1是平行四边形,MF1∥BD1.连接MA,显然∠MF1A是异面直线BD1和AF1所成的角.设BC=CA=CC1=1,则AM2=1+14=54,MF12=BD12=1+2%2&’2=32,AF12=1+14=54,∴cos∠MF1A=江山中学王陆军空间角的法求图1A1F1C1D1B1BAMC54+32-542×32!×54!=30!10.∴答案选A.2.补形法例2同例1.解析:如图2所示,将三棱柱ABC—A1B1C1补成四棱柱ABEC—A1B1E1C1.取B1E1的中点M,连接BM,D1M,D1B,显然MB∥AF1,∴∠MBD1是异面直线BD1和AF1所成的角.解△MBD1即可解决本题.3.向量法例3同例1.解析:同例1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,如图3所示.则点A(1,0,0),B(0,1,0),D112,12,%&1,F112,0,%&1,∴BD1=12,-12,%&1,AF1=-12,0,%&1,∴cos〈BD1,AF1〉=-14+0+15!2×6!2=30!10.4.三垂线定理法例4正三棱锥V—ABC中,D,E,F分别是VC,VA,AC的中点,P为VB上的一点,如图4所示,则直线DE与PF所成角的大小是(A)π6(B)π3(C)π2(D)π解析:当用平移法和补形法求解异面直线所成的角有困难时,可以考虑用三垂线定理法.如果一条异面直线在另一条异面直线所在平面的射影与该异面直线垂直,则问题就可迎刃而解.对于正三棱锥V—ABC,显然PF在底面的射影总在BF上,由于BF⊥AC,因此PF⊥AC.又∵DE∥AC,∴PF⊥DE.故答案选C.图2图4A1EMAF1D1E1BB1ACC1EBFDVPC学图3AF1C1B1D1A1CzxyB!’&#&"&&&!&#*()"二、直线与平面所成的角的求法1.定义法例5在正三棱柱ABC—A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AC1所成的角为α,则α等于(A)π3(B)π4(C)arcsin10!4(D)arcsin6!4解析:如图5所示,分别取AC,A1C1的中点N,M,连接MN,BN.在MN上取一点E,使NE=1.∵ABC—A1B1C1为正三棱柱,∴BN⊥平面AC1.连接AE,ED.∵ED∥BN,∴ED⊥平面AC1,∴EA为AD在平面AC1上的射影,∴∠DAE为DA与平面AC1所成的角,即为α.在Rt△ADE中,sinα=6!4,∴α=arcsin6!4,∴答案选D.2.特殊公式法例6正三棱锥P—ABC的棱长都相等,M是AB中点,如图6所示.则PA与CM所成的角是(A)arccos3!6(B)arccos3!4(C)arccos3!3(D)30°解析:设正三棱锥的棱长为a,过点A作AD∥CM,∴PA与CM所成的角即为PA与AD所成的角∠DAP,且有∠DAM=90°.再取BC中点E,连接AE,PE.显然∠PAE是AP与底面ABC所成的角.在△PAE中,cos∠PAE=AP2+AE2-PE22AP·AE=3!3,∠DAE=∠DAC+∠CAE=30°+30°=60°.由cos∠DAP=cos∠PAE·cos∠DAE,得cos∠DAP=3!3×cos60°=3!3×12=3!6,故∠DAP=arccos3!6.答案选A.3.向量法例7如图7所示,在棱长为1的图5图6AMDC1A1B1BMACDPEBCNE&#""!!$!!!!&#$(’"学#%’正方体ABCD—A1B1C1D1中,P是侧棱上的一点,CP=m.(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为32!;(2)在线段A1C1上是否存在一定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并加以证明.解析:(1)以D为原点,建立如图8所示的空间直角坐标系,连接D1P,D1A,AP,AC,DB.则点A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1).∴BD=(-1,-1,0),BB1=(0,0,1),AP=(-1,1,m),AC=(-1,1,0).又∵AC·BD=0,AC·BB1=0,∴AC为平面BDD1B1的一个法向量.再设AP与平面BDD1B1所成的角为θ,则sinθ=cosπ2-"θ由题意得22!·2+m2!=tanθ1+(tanθ)2!=32!1+(32!)2!,解得m=13.∴当m=13时,直线AP与平面BDD1B1所成的角的正切值为32!.(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,则Q(x,1-x,1),D1Q=(x,1-x,0).依题意,若对任意的m要使D1Q在平面APD1上的射影垂直于AP,则由三垂线定理可知其等价于D1Q⊥AP,∴AP·D1Q=0,∴-x+(1-x)=0,∴x=12,即存在定点Q,且当其为A1C1的中点时,满足题设要求.三、二面角的求法1.定义法例8如图9所示,正三棱柱ABC—A1B1C1的底面边长为3,侧棱AA1=33!2,D是CB延长线上的一点,且BD=BC,求二面角B1-AD-BA1BCPAC1D1B1DyA1BCDAC1D1B1学图7z图8!!"#$!#!$!"!!!"#%!#!$!"!$,*ZP的大小.解析:在棱AD上任取一点E,使得DE=1.作EF⊥AD,EH⊥AD,分别交DB1,DB于点F,H,则∠FEH为二面角B1-AD-B的平面角,连接FH.由题设条件可知∠ADB=30°,∠DAC=90°,∴EH=3#3.∵DB1=AB1=AB2+BB12#=37#2,AD=33#,∴EF=DE·tan∠ADB1=23#3,DH=EH2+ED2#=23#3,DF=DE2+EF2#=21#3,cos∠BDB1=BDB1D=27#7.∴HF=DH2+DF2-2DH·DF·cos∠BDB1#=1,cos∠HEF=EF2+EH2-HF22EF·EH=12.故二面角B1-AD-B的大小为60°.2.三垂线法例9三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,如图10所示.(1)求证AB⊥BC;(2)如果AB=BC=23#,求侧面PBC与侧面PAC所成二面角的大小.解析:(1)取AC的中点D,连接PD,BD.∵PA=PC,∴PD⊥AC.又已知平面PAC⊥平面ABC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,故可得AC为△ABC外接圆的直径,∴AB⊥BC.(2)∵AB=BC=23#,D为AC中点,∴BD⊥AC.又∵平面PAC⊥平面ABC,∴BD⊥平面PAC,D为垂足.作BE⊥PC于E,连接DE.∵DE为BE在平面PAC内的射影,∴DE⊥PC,∴∠BED为所求二面角的平面角.在Rt△ABC中,AB=BC=23#,∴BD=6#.在Rt△PDC中,PC=3,DC=6#,PD=3#,∴DE=PD·DCPC=3#×6#3=2#.∴在Rt△BDE9A1BCFAC1B1HEPABCDE学图10图)!"&($!("&"%#D)!&("#中,tan∠BED=6"2"=3",∴∠BED=60°,即侧面PBC与侧面PAC所成的二面角为60°.3.垂面法在已知的二面角α-l-β中,作棱l的垂面γ,设γ∩α=OA,γ∩β=OB,则∠AOB为二面角α-l-β的平面角.例10如图11所示,已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF.(1)证明:MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求二面角E-AB-D的平面角的正弦值.解析:(1)∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD,∴AB⊥平面PAD,故可得AB⊥AE.∵AM∥CD∥EF,且AM=EF,AM⊥AE,∴四边形AEFM为矩形,∴AM⊥MF.又∵AE⊥EF,AE⊥PD,∴AE⊥平面PEF.而AE∥MF,∴MF⊥平面PEF,∴MF⊥PC,∴MF是AB与PC的公垂线.(2)由(1)可知平面PAD垂直于二面角E-AB-D的棱AB,且平面ME∩平面PAD=AE,平面AC∩平面PAD=AD,则∠EAD为二面角E-AB-D的平面角.设AB=a,则AP=3a.由Rt△AED∽Rt△PAD,可得∠EAD=∠APD.∴sin∠EAD=sin∠APD=ADPD=aa2+(3a)2"=10"10.4.公式法例11如图12所示,在正方体AC1中,E是BC中点,求二面角D1-B1E-C1的大小.解析:D1在平面B1ECC1的射影为C1,则△D1B1E在平面B1BCC1上的射影为△B1EC1.若设正方体棱长为2,则可得B1E=5",D1B1=22",D1E=3,S△BCE=2,S△DBE=3,∴cosθ=S△BCES△DBE=图12学BC11PEDAFM-’图))%"$(./-’$’)-)(()$)"图13C1CBFB1AA1D1EDyxz"23,∴θ=arccos23.5.向量法例12如图13所示,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E,F分别是线段AB,BC上的点,且EB=FB=1.求二面角C-DE-C1的正切值.解析:以A为原点,AB,AD和AA1分别为x轴,y轴和z轴的正方向建立空间直角坐标系,则有点D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).于是可得DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2).若设向量n=(x,y,z)与平面C1DE垂直,则可得:n⊥n⊥$%3x-3y=0x+3y+2z=$0%x=y=-12z.∴n=-z2,-z2,&’z=z2(-1,-1,2),其中z>0.若取n0=(-1,-1,2),则n0是与平面C1DE垂直的向量.∵向量AA1与平面CDE垂直,∴n0与AA1所成的角θ就是二面角C-DE-C1.∵cosθ=n0·|n|·||=-1×0-1×0+2×21+1+4(×0+0+4(=6(3,∴tanθ=2(2,∴二面角C-DE-C1的正切值为2(2.DEEC1AA1AA1!!!"#"!$$!%!&%学’()"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!"放下松一散步一位胖太太在街上散步,有个陌生的小男孩紧紧地跟着她。
求空间角的方法-高考数学一题多解
求空间角的方法-高考数学一题多解一、攻关方略空间角的探究是立体几何的一类重要题型.空间的角包括异面直线所成的角、直线与平面所成的角、二面角,求空间角首先要把它转化为平面角(即降维策略的应用),然后用代数的方法、三角的方法求解,或者直接用向量的方法求解,异面直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦,二面角的范围是[]0,π.1.异面直线所成角的求解(1)平移法.在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线;也可在两条异面直线外空间选择“特殊点”,分别作两条两异面直线的平行线(单移或双移).(2)补形法.把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,从而发现两条异面直线间的关系.(3)向量法.建立适当的空间直角坐标系,求出两异面直线所在向量的坐标,代入向量夹角公式即可求出.求异面直线AB 与CD 的夹角θ,cos AB CD AB CDθ⋅= .2.直线与平面所成角的求解(1)直接法.通过斜线上某个特殊点作出平面的重线段,连接垂足和斜足,找出线面角(斜线段和斜线段在平面上的射影所成的角),在直角三角形中求解.(2)向量法.建立适当的空间直角坐标系,求出平面的法向量的坐标和斜线段所在直线的向量坐标,代入向量夹角公式,求出法向量与斜线段所在直线的夹角θ,则直线与平面所成角为2πθ⎛⎫- ⎪⎝⎭,求直线l 与平面α所成角θ,sin PM n PM nθ⋅=⋅ (其中n 为平面α的法向量,M 为l 与α的交点,P 为l 上不同于M 的任一点).3.二面角的求解(通常通过平面角求解)(1)定义法.直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,在相应的平面图形中计算.(2)三垂线法.已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角,在直角三角形中计算.(3)垂面法.已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线,所成的角即为平面角,二面角的平面角所在的平面与棱垂直.(4)射影法.利用面积射影公式:cos S S θ=射影截面,其中θ为平面角的大小.(5)向量法.建立适当的空间直角坐标系,求出两个平面的法向量,然后代入向量夹角公式,求出两法向量的夹角θ,则两个平面的二面角的平面角为()πθ-或θ.求二面角θ,有1212cos n n n n θ⋅= (1n ,2n 分别为两个平面的法向量)对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法.真可谓:三维化二维紧扣定义,转化与归纳配合运用,求空间角妙据迭出,施向量法更添风采.【典例】如图30-5所示,四棱锥P ABCD -中,PA ⊥底面ABCD .AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解题策略本题主要考查空间直线和平面平行关系的证明以及求直线与平面所成角的正弦值.第(1)问,可以利用线面平行的判定定理证明,也可以用纯向量法或向量坐标法证明;第(2)问,可以通过作出相应射影角求解,若结合等体积法求点A 到平面PMN 的距离也会对解题带来方便,建立空间直角坐标系,利用空间向量求解直线与平面所成角的正弦值也是好方法.应指出的是:直线l 与平面α所成角θ与直线的方向向量d 和平面的法向量n 的夹角,d n 不是一回事,两者之间关系为sin cos ,d n θ= .第(1)问策略一立体几何方法:由线线平行⇒线面平行策略二纯向量法,即证明MN 向量与平面PAB 内两个不共线向量满足共面向量定理策略三向量坐标法,即证明MN 向量与平面PAB 的法向量垂直第(2)问策略一转化为求斜线AN 与其与平面PMN 内射影所成角策略二运用等体积法求点A 到平面PMN 的距离,再求线面角策略三运用向量坐标法求向量AN 与平面PMN 的法向量所成角的余弦值,即为AN 与平面PMN 所成角的正弦值(1)证法一(立体几何常规证法:先证线线平行,再推得线面平行)由已知得223AM AD ==,取BP 的中点T ,连接AT 、TN ,如图30-6所示.由N 为PC 的中点知TN BC ∥,122TN BC ==.又AD BC ∥,故TN AM ∥,四边形AMNT 为平行四边形,于是MN AT ∥.∵AT ⊂平面PAB ,MN ⊄平面PAB ,∴MN ∥平面PAB .证法二(纯向量法)如图30-6所示,由已知得223AM AD ==,N 为PC 的中点,以向量AB 、AD 、AP 为基底,有()12MN AN AM AP AC AM =-=+- ()12AP AB BC AM =++- ()1112222AP AB AM AM AP AB =++-=+ .∴MN 、AP 、AB 共面,又MN ⊄平面PAB ,∴MN ∥平面PAB .证法三(向量坐标法)取BC 中点E ,连接AE ,易证AE BC ⊥,即AE AD ⊥,AE A 为原点建立空间直角坐标系,如图30-7所示.则()0,0,0A ,()0,0,4P,)2,0B -,()0,2,0M,,1,22N ⎫⎪⎪⎝⎭,1,22MN ⎫=-⎪⎪⎝⎭ ,()0,0,4AP =,)2,0AB =- .可取平面PAB的法向量()n = ,则0MN n ⋅= ,MN n ⊥ .∴MN ∥平面PAB .(2)解法一(立体几何方法一:转化为求射影角)如图30-8所示,取BC 中点E ,连接AE 、CM ,易证AE BC ⊥,MC AE ∥,CM BC ⊥,CM ⊥平面PAD .作AG PM ⊥,垂足为点G ,易证AG ⊥平面PMC .连接NG ,则∠ANG 为AN 与平面PMN (即平面PMC )所成的角.易求得52AN =,AG =,sin 25AG ANG AN ∠==.解法二(立体几何方法二:等积法求距离再求线面角)由已知图30-5,平面PMN 即平面PMC ,由P ANC A PMC V V --=易求得点A 到平面PMN 的距离h =设AN 与平面PMN (即平面PMC )所成的角为θ,则sin h AN θ=.正方向,建立如图30-7所示的空间直角坐标系A xyz -,由题意知()0,0,4P ,()0,2,0M,)2,0C,,1,22N ⎫⎪⎪⎝⎭.()0,2,4PM =-,2PN ⎫=-⎪⎪⎝⎭,2AN ⎫=⎪⎪⎝⎭.设(),,n x y z = 为平面PMN 的法向量,则00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩,即240,20.y z x y z -=⎧+-=可取()0,2,1n = .于是cos 25n AN n AN n AN⋅⋅== .则直线AN 与平面PMN所成角的正弦值为25.【点评】第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁.【针对训练】1.在三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为______.2.如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD.(1)证明:PA BD ⊥;(2)若PD AD =,求二面角A PB C --的余弦值.3.如图所示,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE EC ⊥,2AB BE EC ===,G ,F 分别是线段BE ,DC 的中点.(1)求证://GF 平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.4.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,且2PA AB ==,3AD =,E 是棱BC 上的动点,F 是线段PE 的中点.(1)求证:PB ⊥平面ADF ;(2)若直线DE 与平面ADF 所成的角为30°,求EC 的长.(2020·北京卷)5.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1//BC 平面1AD E ;(2)求直线1AA 与平面1AD E 所成角的正弦值.(2022·浙江)6.如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:EF DB ⊥;(2)求DF 与面DBC 所成角的正弦值.7.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.8.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.9.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.10.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案:1.6【分析】解法一:先证明四边形11BB C C 为矩形,再由中位线定理得到异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,由此利用余弦定理即可求得所求余弦值;解法二与解法三:利用补形法得到异面直线1AB 与1BC 所成角,再分别求得所需要的边,结合余弦定理即可求得所求余弦值;解法四:建立空间直角坐标系,求出各点坐标,从而利用向量夹角的坐标表示求得所求;解法五:由向量线性运算的几何意义得到1111BC BA AA AC =++ ,1111AB AAA B =+ ,从而利用数量积运算求得1BC ,1AB = ,111BC AB ⋅= ,由此可求得所求.【详解】解法一:(直接平移法)如图所示,作1A O ⊥底面ABC ,由1160BAA CAA ∠=∠=︒可知,AO 为∠BAC 的角平分线,且AO BC ⊥,BC ⊥面1AA O ,1BC AA ⊥,于是1BC BB ⊥,四边形11BB C C 为矩形,取AC 的中点E ,连接1B C 交1BC 于点F ,则F 为1B C 的中点,1111,22EF AB EF AB =//,所以异面直线1AB 与1BC 所成角等于EF 与BF 所成的角,即∠BFE 或其补角,设三棱柱的棱长为2,由题意即可得BE =112EF AB ==112BF BC ==于是222cos26BF EF BE BFE BF EF +-∠==⋅,故异面直线1AB 与1BC 解法二:(补形法一)在三棱柱111ABC A B C -的上底面补一个大小相同的三棱柱111222A B C A B C -,如图所示,连接12B C 、2AC 且2AC 交11A C 于D ,则12AB C ∠或其补角为异面直线1AB 与1BC 所成角,设1AB =,易得1AB ==121B C BC ==,22AC AD ===所以在12AB C △中,有22212cosAB C +-∠==.故异面直线1AB 与1BC 解法三:(补形法二)将三棱柱补为平行六面体,再放同样的一个平行六面体,如图所示,1C BE ∠就是异面直线1AB 与1BC 所成的角,设棱长为1,在1A AB △中,易求得1AB =,即BE ,在11A C E △中,易求1C E =1BC AA ⊥,则1BC CC ⊥,从而在1BCC中,求得1BC =在1BC E △中,由余弦定理得1cos 6C BE ∠=.解法四:(向量坐标法)如图所示,以A 为原点,过1A 作1A M ⊥平面ABC 于M ,则M 必在x轴上,且1cos A AM ∠=1sin A AM ∠=设棱长为1,则1A ⎛,1,02B ⎫⎪⎪⎝⎭,1,02C ⎫-⎪⎪⎝⎭,所以1112AB AA AB =+=,1112AC AA AC =+=- ,故11BC AC AB =-=-⎝ ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅== .解法五:(纯向量法)不妨设AB 长为1,因为1111BC BA AA AC =++ ,1111AB AA A B =+ ,所以()2211112BC BA AA AC =++= ,()2211113AB AA A B =+= ,则1BC =1AB = ,又因为()()111111111BC AB BA AA A C AA A B ⋅=++⋅+= ,设异面直线1AB 与1BC 所成角为θ,则1111cos 6BC AB BC AB θ⋅=故答案为:6.2.(1)证明见解析(2)7-【分析】(1)利用题设条件可证BD AD ⊥、BD PD ⊥,从而可得BD ⊥平面PAD ,故可证PA BD ⊥,我们也可以利用利用空间向量及其坐标运算来证明PA BD ⊥.(2)利用向量或建立空间直角坐标系可求二面角的余弦值,也可以利用定义构建二面角的平面角来求其余弦值,也可以利用补体将二面角转化为二面角Q PB A --的大小来进行计算.【详解】(1)证法一:∵60DAB ∠=︒,2AB AD =,由余弦定理得22222cos 603BD AD AB AD AB AD =+-⨯︒=,故BD =,从而222BD AD AB +=,故BD AD ⊥.又PD ⊥底面ABCD ,而BD ⊂底面ABCD ,可得BD PD ⊥,而,,AD PD D AD PD =⊂ 平面PAD ,∴BD ⊥平面PAD ,而PA ⊂平面PAD ,故PA BD ⊥.证法二:∵PD ⊥平面ABCD ,BD ⊂底面ABCD ,∴PD BD ⊥,0PD BD ⋅= .∴()()PA BD PD DA BD DA BD DA BA AD ⋅=+⋅=⋅=⋅+ 2222cos 0DA BA AD AD AB DAB AD AD AD =⋅-=⋅∠-=-= ,∴PA BD ⊥ ,即PA BD ⊥.证法三:作DE AB ⊥,垂足为E ,分别以DE 、DC 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.令AD a =,则1,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,3,,022B a ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C a .设()0,0,P z,由于1,,22PA a a z ⎛⎫=-- ⎪ ⎪⎝⎭,3,,02DB a ⎫=⎪⎪⎝⎭ ,则221333,,,,002244PA DB a z a a a ⎫⎫⋅=--⋅=-=⎪⎪⎪⎪⎝⎭⎝⎭,于是PA DB ⊥ ,即PA BD ⊥.(2)解法一:因为PD ⊥底面ABCD ,而BC ⊂底面ABCD ,故PD BC ⊥,由(1)中证明可得BD AD ⊥,而//BC AD ,故//BD BC ,因为,,BD PD D BD PD ⋂=⊂平面PDB ,故BC ⊥平面PDB ,而PB ⊂平面PDB ,故BC PB ⊥,而AM PB ⊥,平面APB ⋂平面PBC PB =,故二面角A PB C --的大小等于MA 与BC 所成角的大小,设为θ.设1PD AD ==,则2AB =,BD =∴2PB =,PA =.在PAB中,cos 4APB ∠==,而APB ∠为三角形内角,故sin 4APB ∠=,故42AM ==,142PM ==,故32BM =,在ADC △中,2222cos120527AC AD DC AD DC =+-⨯︒=+=,故AC =又()22AC AM MB BC =++ 222222AM MB BC AM MB AM BC MB BC=+++⋅+⋅+⋅2222cos AM MB BC AM BC θ=++- .∴797144θ=++,解得cos θ=∴二面角A PB C --的余弦值为解法二:以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P.()AB =-,()1PB =- ,()1,0,0BC =- .设平面PAB 的一个法向量为(),,n x y z = ,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.x z ⎧-+=⎪⎨-=⎪⎩,取1y =,则x z =,故n = .设平面PBC 的一个法向量为m,同理可求(0,1,m =-.cos ,m n == ,而二面角A PB C --的平面角为钝角,故二面角A PB C --的余弦值为7-.解法三:由解法一的计算可得BC ⊥平面PDB ,而BC ⊂平面PBC ,故平面PBC ⊥平面PDB ,即二面角D PB C --的大小为90︒.过A 作AM PB ⊥,垂足为M ,连接DM ,如图所示.由(1)中证明可得AD BD ⊥,而PD ⊥平面ABCD ,AD ⊂平面ABCD ,故PD AD ⊥,PD BD D ⋂=,,PD BD ⊂平面PBD ,故AD ⊥平面PBD ,PB ⊂平面PBD ,故AD PB ⊥,而,,,AM PB AD AM A AD AM ^=Ì平面ADM ,故PB ⊥平面ADM ,但DM ⊂平面ADM ,故DM PB ^.∴AMD ∠是二面角A PB D --的平面角.设1PD AD ==,则2AB =,BD =2PB =.在Rt PBD △中,2PD DB DM PB ⨯==,在Rt ADM △中,2AM =.∴sin 7AD AMD AM ∠==,∴二面角A PB C --的余弦值为cos(90)sin AMD AMD ︒+∠=-∠=-.解法四:由解法一的计算可得BC ⊥平面PBD ,而PB ⊂平面PBD ,故BC PB ⊥.如图所示,过点B 在平面PAB 内作直线BE PB ⊥,交PA 的延长线于点E ,则∠EBC 是二面角A PB C --的平面角.设1PD =,由解法一的计算可得:1AD BC ==,2AB =,BD =AC =PA =,2PB AB ==,且cos 4APB ∠=,sin 4APB ∠=故tan BE BPAPB∠=,∴BE =PE =在Rt PDC 中,由勾股定理求得PC =,在PAC △中,因为222AC PA PC =+,故PA PC ⊥.故在Rt PEC 中,有EC ==在BEC 中,由余弦定理得cos7CBE ∠==-.∴二面角A PB C --的余弦值为7-.解法五:将四棱锥补成直四棱柱,如图所示,则二面角A PB C --的大小与二面角Q PB A --的大小互补.由解法一可得BC PB ⊥,而//PQ BC ,∴PQ PB ⊥.设点Q 到平面PAB 的距离为h ,则由Q PAB B AQP V V --=得1133PAB PQA hS BD S =⋅△△.设1PD =,则PA =,BD =2PB AB ==,12APB S =△211=22PQA S AD =△,∴h =于是二面角Q PB A --的正弦值为h PQ =.∴二面角A PB C --的余弦值为7-.3.(1)证明见解析;(2)23.【分析】(1)利用线面平行的判定定理即得;(2)利用射影法,结合条件求出AEF △及BEC 的面积进而即得;利用坐标法,求出平面BEC 和平面AEF 的法向量,由向量夹角的余弦值即得;利用直接法,延长BC 、AF 交于点Q ,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,可得∠ARB 是二面角A EQ B --的平面角,结合条件即得.【详解】(1)将五面体ABCDE 置于正方体AMDN BECP -之中,如图所示,显然题设的条件全部满足,取AE 的中点H ,连接HG ,FG ,∵////HG AB CD ,即//HG DF ,又1HG DF ==,∴四边形HGFD 是平行四边形,∴//GF DH ,又∵DH ⊂平面ADE ,GF ⊄平面ADE ,∴//GF 平面ADE ;(2)解法一(射影法):设平面AEF 与平面BEC 所成锐二面角的大小为θ,∵AB ⊥平面BCE ,FC ⊥平面BCE ,∴AEF △在平面BCE 上的射影为BEC ,易得AE =EF =3AF =,∴cos AEF ∠==sin AEF ∠=∴132AEF S =⨯=△,又∵12222BEC S =⨯⨯=△,∴2cos 3BEC AEF S S θ==△△.解法二(向量法):如图,分别以射线BE 、BP 、BA 为x 、y 、z轴建立空间直角坐标系,∵正方体棱长为2,则()0,0,2A ,()2,0,0E ,()2,2,1F ,显然()0,0,2BA = 是平面BECP 的法向量,设平面AEF 的法向量为()2,,n x y = ,则n AE ⊥ ,即()()2,,2,0,20n AE x y ⋅=⋅-= ,解得2y =,则n AF ⊥ ,即()()2,,2,2,10n AF x y ⋅=⋅-= ,解得=1x -,∴()2,1,2n =- ,设所求锐二面角的大小为θ,则()()2,1,20,0,22cos 323n BA n BAθ-⋅⋅===⨯ .解法三(直接法):如图,延长BC 、AF 交于点Q ,因为2BE=,BC CQ ==45EBQ ∠=︒,由余弦定理可得(222222cos 2224202EQ BE BQ BE BQ EBQ =+-⋅∠=+-⨯⨯=,即EQ =在BEQ 中,由正弦定理,得sin sin 45BQ EQ BEQ =∠︒,∴sin BEQ ∠=,显然90BEQ ∠>︒,作BR QE ⊥,交QE 的延长线于点R ,连接AR ,∴AB ⊥平面BCE ,QE ⊂平面BCE ,∴AB ⊥QE ,又BR QE ⊥,,AB BR B AB =⊂ 平面ABR ,BR ⊂平面ABR ,∴QE ⊥平面ABR ,AR ⊂平面ABR ,∴QE ⊥AR ,∴∠ARB 是二面角A EQ B --的平面角,设其大小为θ,在BER △中,2BR ==在Rt ABR 中,由勾股定理,得AR =∴2cos 3BR AR θ==.4.(1)证明见解析;(2)2.【分析】(1)方法一,取棱PB ,PC 的中点分别为M ,N ,利用线面垂直的判断定理可得AD ⊥平面PAB ,进而可得PB ⊥平面ADF ;方法二,利用坐标法,求出AD ,AF 向量和向量BP 的坐标表示,证明垂直即得;(2)方法一,作EH 垂直MN 于点H ,则30EDH ∠=︒,结合条件即得;方法二,利用坐标法,根据线面角的向量求法可得求出E 点坐标,即得.【详解】(1)方法一:分别取线段PB 、PC 的中点M 、N ,易知点M 、N 、F 共线,∵PA AB =,∴PB AM ⊥,又∵PA ⊥平面ABCD ,AD ⊂平面ABCD ,∴PA ⊥AD ,又四边形ABCD 是矩形,AD AB ⊥,∵,PA AB A PA ⋂=⊂平面PAB ,AB ⊂平面PAB ,∴AD ⊥平面PAB ,PB ⊂平面PAB ,∴PB AD ⊥,又PB AM ⊥,,AD AM A AD =⊂ 平面ADF ,AM ⊂平面ADF ,因此PB ⊥平面ADF ;方法二,以A为原点建立空间直角坐标系,设()2,,0E t 、1,,12t F ⎛⎫ ⎪⎝⎭,则()0,3,0AD = ,1,,12t AF ⎛⎫= ⎪⎝⎭ ,()2,0,2BP =- ,∴0BP AD ⋅= ,0BP AF ⋅= ,∴BP AD ⊥,BP AF ⊥,,AD AF A AD =⊂ 平面ADF ,AF ⊂平面ADF ,因此PB ⊥平面ADF ;(2)方法一:由于平面ADF 即为平面AMND ,且PB ⊥平面ADF ,PB ⊂平面PBC ,∴平面PBC ⊥平面AMND ,又平面PBC ⋂平面AMND MN =,在平面PBC 内,作EH 垂直MN 于点H ,则EH ⊥平面AMND ,∴30EDH ∠=︒,∵EH BM ==∴ED =因此2CE =,即EC 的长为2;方法二:∵()2,3,0DE t =- ,平面ADF 的法向量为()2,0,2BP =- ,∴由12BP DE BP DE ⋅= ,解得1t =,∴2CE =,即EC 的长为2.5.(1)证明见解析;(2)23.【分析】(1)方法一,根据线面平行的判定定理即得;方法二,利用坐标法,可求出向量1BC 及平面1AD E 的法向量进而即得;(2)延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,作11C H DG ⊥,垂足为H ,利用线面垂直的判定定理可得1D G ⊥平面1C FH ,进而可得可知∠1C FH 为直线1AA 与平面1AD G 所成的角,结合条件即得;利用坐标法,根据线面角的向量求法即得;利用等体积法,求出点到平面的距离进而即得.【详解】(1)[方法一]:几何法如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//B C A D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;[方法二]:空间向量坐标法以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD = ,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z = ,由100n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =- .又∵向量()12,0,2BC = ,()12201220BC n ⋅=⨯+⨯+⨯-= ,又1BC ⊄ 平面1AD E ,1//BC ∴平面1AD E ;(2)[方法一]:几何法延长1CC 到F ,使得1C F BE =,连接EF ,交11B C 于G ,又∵1//C F BE ,∴四边形1BEFC 为平行四边形,∴1//BC EF ,又∵11//BC AD ,∴1//AD EF ,所以平面1AD E 即平面1AD FE ,连接1D G ,作11C H DG ⊥,垂足为H ,连接FH ,∵1FC ⊥平面1111D C B A ,1D G ⊂平面1111D C B A ,∴11FC D G ⊥,又∵111FC C H C ⋂=,1FC ⊂平面1C FH ,1C H ⊂平面1C FH ,∴直线1D G ⊥平面1C FH ,又∵直线1D G ⊂平面1D GF ,∴平面1DGF ⊥平面1C FH ,∴1C 在平面1D GF 中的射影在直线FH 上,∴直线FH 为直线1FC 在平面1D GF 中的射影,∠1C FH 为直线1FC 与平面1D GF 所成的角,根据直线1//FC 直线1AA ,可知∠1C FH 为直线1AA 与平面1AD G 所成的角,设正方体的棱长为2,则111C G C F ==,1D G =∴1C H ,∴FH =∴112sin 3C H C FH FH ∠==,即直线1AA 与平面1ADE 所成角的正弦值为23.[方法二]:向量法由上知平面平面1AD E 的法向量()2,1,2n =- ,又∵()10,0,2AA = ,∴11142cos ,323n AA n AA n AA ⋅==-=-⨯⋅ ,∴直线1AA 与平面1AD E 所成角的正弦值为23.[方法三]:几何法+体积法如图,设11B C 的中点为F ,延长111,,A B AE D F ,易证三线交于一点P,因为111,////BB AA EF AD ,所以直线1AA 与平面1AD E 所成的角,即直线1B E 与平面PEF 所成的角,设正方体的棱长为2,在PEF !中,易得PE PF EF =,可得32PEF S = ,设当1B 到平面PEF 的距离为1B H ,由11B PEF P B EF V V --=,得113111123232B H ⨯⋅=⨯⨯⨯⨯,整理得123B H =,所以1112sin 3B H B EH B E ∠==,所以直线1AA 与平面1AD E 所成角的正弦值为23.[方法四]:纯体积法设正方体的棱长为2,点1A 到平面1AED 的距离为h ,在1AED △中,113AE AD D E ===,2221111cos 25D E AE AD AED D E AE +-∠===⋅,所以1sin AED ∠=13AED S = ,由1111E AA D A AED V V --=,得111111133AD A AED S A B S h ⋅=⋅ ,解得43h =,设直线1AA 与平面1AED 所成的角为θ,所以12sin 3h AA θ==.6.(1)证明见解析;【分析】(1)方法一,使用几何方法证明,作DH AC ⊥交AC 于H ,利用面面垂直的性质可得DH ⊥平面ABC ,然后利用线面垂直的判定定理可得EF ⊥平面BHD ,即得;方法二,利用坐标法即得;方法三,使用了两垂直角的三余弦定理得到60BCD ∠=︒,进而证明;(2)方法一使用几何做法,作HG BD ⊥于G ,由题可得HCG ∠即为所求角,结合条件即得;方法二使用空间坐标系方法,即得;方法三使用空间向量法;方法四使用三余弦定理法即得;方法五采用等体积转化法可得H 到平面DBC 的距离,进而即得.【详解】(1)[方法一]:几何证法作DH AC ⊥交AC 于H ,连接BH ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥,∵45ACB ACD ∠=∠=︒,∴2CD BC CH =⇒=,在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H = ,BH ⊂平面BHD ,DH ⊂平面BHD ,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥;[方法二]:空间向量坐标系方法作DO AC ⊥交AC 于O ,∵平面ADFC ⊥平面ABC ,而平面ADFC 平面ABC AC =,DO ⊂平面ADFC ,∴DO ⊥平面ABC ,以O 为原点,建立空间直角坐标系如图所示,设OC =1,∵45ACB ACD ∠=∠=︒,2DC BC ==∴BC ()()110,0,1,0,1,0,,,022D C B ⎛⎫ ⎪⎝⎭,∴11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,所以11·044BD BC =-= ,∴BC ⊥BD ,又∵棱台中//BC EF ,∴EF ⊥BD ;[方法三]:三余弦定理法∵平面ACFD ⊥平面ABC ,∴1cos cos cos cos 45cos 452BCD ACB ACD ∠=∠∠=︒︒=,∴60BCD ∠=︒,又∵DC =2BC ,∴90CBD ∠=︒,即CD BD ⊥,又∵//EF BC ,∴EF DB ⊥;(2)[方法一]:几何法因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角,作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD,因为平面BCD ⊥平面BHD ,而平面BCD 平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD ,即CH 在平面DBC 内的射影为CG ,所以HCG ∠即为所求角,在Rt HGC 中,设BC a =,则CH =,BH DH HG BD ⋅==,∴sin 3HG HCG CH ∠==,故DF 与平面DBC[方法二]:空间向量坐标系法设平面BCD 的法向量为(),,n x y z =r ,由(1)得11,,122BD ⎛⎫=-- ⎪⎝⎭ ,11,,022BC ⎛⎫=- ⎪⎝⎭,∴1102211022n BD x y z n BC x y ⎧⋅=--+=⎪⎪⎨⎪⋅=-+=⎪⎩,令1x =,则()1,1,1n = ,又()0,1,0OC =,cos ,3n OC == 由于//DF OC ,∴直线DF 与平面DBC[方法三]:空间向量法以{,,}CH CB CD为基底,不妨设22DC BC ==,则45,45,60DB CH HCB HCD DCB ==∠=∠=︒∠=︒︒(由(1)的结论可得),设平面DBC 的法向量为n xCH yCB zCD =++ ,则由00n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩,得2400x y z x y z ++=⎧⎨++=⎩,取1z =,得32n CH CB CD =-++ ,设直线DF 与平面DBC 所成角为θ,则直线HC 与平面DBC 所成角也为θ,由公式得||sin ||||HC n HC n θ⋅=== [方法四]:三余弦定理法由45ACB ACD ∠=∠=︒,可知H 在平面DBC 的射影G 在DCB ∠的角平分线上,设直线DF 与平面DBC 所成角为θ,则HC 与平面DBC 所成角也为θ,由(1)的结论可得60BCD ∠=︒,由三余弦定理,得cos 45cos30cos θ=︒⋅︒,cos θ=,从而sin 3θ=.[方法五]:等体积法设H 到平面DBC 的距离为h ,设1DH =,则1,,22HC DC BC BD ====,设直线DF 与平面DBC 所成角为θ,由已知得HC 与平面DBC 所成角也为θ.由H DBC D HBC V V --=,1111601sin 451322322h ⨯︒⨯=⨯⨯⨯︒⨯,求得h所以3sin 1h HC θ===7.(1)证明见解析;.【分析】(1)方法一,利用勾股定理即及线面垂直的判定定理即得;方法二,利用坐标法即得;方法三,利用线面垂直,结合勾股定理可证出;方法四,利用空间基底法即得;(2)方法一,利用坐标法及面面角的向量求法即得;方法二,利用几何法,作出二面角,求解三角形进行求解二面角,即得;方法三,利用射影面积法求解二面角.【详解】(1)[方法一]:勾股运算法证明由题设,知DAE 为等边三角形,设1AE =,则DO =1122CO BO AE ===,所以64PO DO ==,4PC PB PA ====,又ABC 为等边三角形,则2sin 60BA OA = ,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法不妨设AB =4sin 60==︒=AB AE AD ,由圆锥性质知DO ⊥平面ABC ,所以===DO ==PO 因为O 是ABC 的外心,因此AE BC ⊥,在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点, OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP = ,(=- BP ,=- CP ,故0220⋅=-+= AP BP ,0220⋅=-+= AP CP ,所以AP BP ⊥,AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,故AP ⊥平面PBC ;[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥,因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥,又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =I ,又PO ⊂平面PAE ,AE ⊂平面PAE ,所以BC ⊥平面PAE ,又因为PA ⊂平面PAE ,所以PA BC ⊥,设AE BC F = ,则F 为BC 的中点,连结PF ,设DO a =,且PO ,则2AF a =,2PA =,12PF a =.因此222+=PA PF AF ,从而PA PF ⊥,又因为PF BC F = ,PF ⊂平面PBC ,BC ⊂平面PBC ,所以PA ⊥平面PBC ;[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO R ,以,,OA OB OD 为基底,OD ⊥平面ABC ,则=+=-+AP AO OP OA ,6=+=-+BP BO OP OB OD ,且212OA OB R ⋅=- ,0OA OD OB OD ⋅=⋅= ,所以66⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OB2106⋅--+=OA OB OA OB OD ,故0AP BP ⋅= ,所以AP BP ⊥,即AP BP ⊥,同理AP CP ⊥,又BP CP P = ,PC ⊂平面PBC ,PB ⊂平面PBC ,所以AP ⊥平面PBC ;(2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y轴建立如图所示的空间直角坐标系,则111(,0,0),(0,0,((,,0)244444E P B C ---,1(,444PC =--,1(,)444PB =--,1(,0,)24PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得11111100x x ⎧--=⎪⎨-+-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧--=⎪⎨--=⎪⎩,令21x =,得223z y ==,所以m = ,故cos,5||||n mm nn m⋅==⋅,设二面角B PC E--的大小为θ,由题可知二面角为锐二面角,所以cos5θ=;[方法二]:几何法设=BC AE F,易知F是BC的中点,过F作//FG AP交PE于G,取PC的中点H,连接GH,则∥HF PB,由PA⊥平面PBC,得FG⊥平面PBC,PC⊂平面PBC,∴FG⊥PC,由(1)可得,222BC PB PC=+,得PB PC⊥,所以FH PC⊥,又,FH GF F FH=⊂平面GHF,GF⊂平面GHF,∴PC⊥平面GHF,GHÌ平面GHF,∴GH PC⊥,所以GHF∠是二面角B PC E--的平面角,设圆O的半径为r,则3sin602︒==AF AB r,2AE r=,12=EF r,13EFAF=,所以14=FG PA,1122==FH PB PA,12=FGFH,在Rt GFH中,1tan2∠==FGGHFFH,cos5∠=GHF,所以二面角B PC E--的余弦值为5.[方法三]:射影面积法如图所示,在PE上取点H,使14HE PE=,设BC AE N=,连结NH,由(1)知14NE AE=,所以∥NH PA,故NH ⊥平面PBC ,所以,点H 在面PBC 上的射影为N,故由射影面积法可知二面角B PC E --的余弦值为cos PCNPCHS θS = ,在PCE中,令=PC PE 1CE =,易知= PCE S ,所以34PCH PCE S S == ,又1328PCN PBC S S == ,故38cos 5PCN PCHS θS == ,所以二面角B PC E --.8.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得BC ⊥平面1A AMN ,根据线面平行的性质定理可得11//B C EF ,然后根据面面垂直的判定定理即得;(2)利用几何法,作出线面角,结合条件即得;利用向量法,利用线面角的向量求法即得.【详解】(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB ,1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥,又 侧面11BB C C 为矩形,1BC BB ∴⊥,又1//MN BB ,∴MN BC ⊥,又MN AM M ⋂=,,MN AM ⊂平面1A AMN ,∴BC ⊥平面1A AMN ,又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =,11//B C EF ∴,//EF BC ∴,又BC ⊥ 平面1A AMN ,∴EF ⊥平面1A AMN ,又EF ⊂ 平面11EB C F ,∴平面11EB C F ⊥平面1A AMN ;(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B A C 于点11,E F ,连接11,,,AE AO AF NP ,由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11= AO E F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F ,又因平面11 AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11//EB AE ,因为111B C A N ⊥,11B C MN ⊥,1A N MN N = ,1A N ⊂平面1AA NM ,MN ⊂平面1AA NM ,所以11B C ⊥平面1AA NM ,又因1111∥E F B C ,所以11⊥E F 平面1AA NM ,所以1AE 与平面1AA NM 所成的角为1∠E AO ,令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB ,在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1=AE所以111sin 10∠==E O E AO AE ,由于11//EB AE ,直线1B E 与平面1A AMN[方法二]:几何法因为//AO 平面11EFC B ,平面11 EFC B 平面1=AMNA NP ,AO ⊂平面1AMNA ,所以//AO NP ,因为//ON AP ,所以四边形OAPN 为平行四边形,由(1)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线,所以1B E 在平面1AMNA 的射影为NP ,从而1B E 与NP 所成角的正弦值即为所求,在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG ,在直角三角形1B EG 中,1sin ∠B EG即直线1B E 与平面1A AMN [方法三]:向量法由(1)知,11B C ⊥平面1A AMN ,则11B C为平面1A AMN 的法向量,因为//AO 平面11EB C F ,AO ⊂平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =,所以//AO PN ,由(1)知11//,AA MN AA MN =,即四边形APNO 为平行四边形,则==AO NP AB ,因为O 为正111A B C △的中心,故13==AP ON AM ,由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++= PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C ,设直线1B E 与平面1A AMN 所成角为θ,AB a =,则211111113sin θ⋅== a EB B C EB B C 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AAO中,13AA =.以向量1,,AA AB AC为基底,从而1,2π= AA AB ,1,2π= AA AC ,,3π= AB AC ,1111123=++=+ EB EA AA A B AB AA ,BC AC AB =-,则1= EB ||2BC = ,所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=- AB AC AB ,由(1)知BC ⊥平面1A AMN ,所以向量BC为平面1A AMN 的法向量,设直线1B E 与平面1A AMN 所成角θ,则111sin cos ,10||θ⋅===EB BC EB BC EB BC ,故直线1B E 与平面1A AMN所成角的正弦值为sin 10θ=.9.(1)证明见解析;7.【分析】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出;方法四:利用三面角的余弦公式即可求出.【详解】(1)[方法一]:利用平面基本事实的推论。
空间几何中的角度与距离计算
空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。
通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。
本文将介绍空间几何中常用的角度计算方法和距离计算方法。
一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。
常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。
在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。
余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。
2. 矢量法矢量法是一种基于向量运算的角度计算方法。
通过将空间中的两个向量进行运算,可以得到它们之间的夹角。
常见的向量法角度计算包括点乘法和叉乘法。
(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。
可以通过点乘法计算向量之间的夹角。
(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。
可以通过叉乘法计算向量之间的夹角。
3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。
通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。
三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。
二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。
常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。
对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。
欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。
空间角的几何求法
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
高中空间几何求各种角的公式
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
立体几何中空间角的求法
立体几何中空间角的求法立体几何是高中数学的核心内容之一,在高考中占有很大的比重。
考查的知识点、题型等相对稳定,但对学生的空间概念、逻辑思维能力、空间想象能力及运算能力要求较高,而且在2010年高考立体几何试题对转化与化归思想、数形结合思想、割补思想等数学思想的考查也体现的淋漓尽致,而高考对立体几何中空间角的考查一直是热点内容,更成为必考内容,空间角是立体几何中一个重要概念,它是空间图形的一个突出的量化指标,是空间图形位置关系的具体体现,故在历届高考试题中频繁出现,求解方法也多种多样,本文就是空间角常用的方法--传统法与空间向量法。
一、异面直线所成的角θ∈[ 0°,90°](1)传统方法:平移转化法或补形法,使之成为两相交直线所成的角,放入三角形中利用余弦定理计算,若求得的角为钝角,则这个角的补角才为所求。
(2)空间向量法:设异面直线ab与cd所成的角为θ,则cos θ = cos〈,〉参考例题:例1,如图在四棱锥o-abcd中,底面abcd是边长为1的菱形,∠abc= ,oa⊥面abcd,oa=2,m为oa的中点,则异面直线ab与md所成角的大小为()a. b. c. d. π解析:(法1)∵cd∥ab ∴∠mdc为异面直线ab与md所成的角(或其补角)在△abc中,ab=1,∠abc= ,bc=1 ,∴ac2=2-又oa⊥面abcd ∴rt△amc中,am2=1,∴mc2=3-又cd=1 md=∴在△mdc中,cos∠mdc= = ∴∠mdc=(法2)作ap⊥cd于p,分别以ab、ap、ao所在直线为x、y、z 轴建立空间直角坐标系。
则a(0,0,0), b(1,0,0), d(- ,,0),o(0,0,2), m(0,0,1)设ab与md所成的角为θ,又 =(1,0,0) =( - ,,-1)∴cosθ= = ∴θ=二、直线与平面所成的角θ∈[ 0°,90°](1)传统方法:先找到(或作出)过斜线上一点垂直于平面的直线,斜足与垂足的连线就是斜线在平面内的射影,该斜线与射影的夹角就是所求的角,然后放入直角三角形中求解。
空间角的求法
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
空间角的求法
空间角的求法一、异面直线所成的角:1、定义:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b '',,a b ''所成的角的大小与点O 的选择无关,把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角).为了简便,点O 通常取在异面直线的一条上2、异面直线所成的角的范围:2,0(π3、求异面直线所成的角的方法:(1)直接平移法:在一条直线上找一点,过该点做另一直线的平行线;例1、如图PA ⊥矩形ABCD ,已知PA=AB=8,BC=10,求AD 与PC 所成的角正切值。
(2)中位线平移法:构造中位线,利用中位线性质,将异面直线所成角转化为平面角,解三角形求之例2、设S 是正三角形ABC 所在平面外一点,SA=SB=SC ,且∠ASB=∠BSC=∠CSA=2π,M 、N 分别是AB 和SC 的中点,求异面直线SM 与BN 所成角的余弦值.(3)补形平移法:在已知图形外补作一个相 同的几何体,以利于找出平行线。
例3、已知正三棱柱ABC-A 1B 1C 1的底面边长8,侧棱长为6,D 为AC 的中点。
求异面直线AB 1与BC 1所成角的余弦值.(4).向量法: CDAB CD AB →→=.cos θ二、直线和平面所成的角1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角2、范围:[0,2π]。
当直线垂直平面时,所成的角θ=2π,当直线平行平面或在平面内,所成角为θ=0。
3、求直线与平面所成的角的方法:(1).直接法:斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
①经过斜线上一点作面的垂线;②找出斜线在平面内的射影,从而找出线面角;③解直角三角形。
例4、在四面体ABCS 中,SA ,SB ,SC 两两垂直,∠SBA=45°,∠SBC=60°,M 为AB 的中点,求:(1)BC 与平面SAB 所成的角;(60°) (2)SC 与平面ABC 所成的角。
空间的角求法
空间角求法湖南祁东育贤中学 周友良 421600衡阳县一中 刘亚明空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想.●锦囊妙计空间角的计算步骤:一作、二证、三算1.异面直线所成的角 范围:0°<θ≤90° 方法:①平移法;②补形法.2.直线与平面所成的角 范围:0°≤θ≤90° 方法:关键是作垂线,找射影.3.二面角方法:①定义法;②三垂线定理及其逆定理;③垂面法. 注:二面角的计算也可利用射影面积公式S ′=S cos θ来计算[例1]在棱长为a 的正方体ABCD —A ′B ′C ′D ′中,E 、F 分别是BC 、A ′D ′的中点.(1)求证:四边形B ′EDF 是菱形;(2)求直线A ′C 与DE 所成的角;(3)求直线AD 与平面B ′EDF 所成的角; (4)求面B ′EDF 与面ABCD 所成的角. 命题意图:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强,属★★★★★级题目.知识依托:平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角.错解分析:对于第(1)问,若仅由B ′E =ED =DF =FB ′就断定B ′EDF 是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B ′、E 、D 、F 四点共面.技巧与方法:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法.求二面角的大小也可应用面积射影法.(1)证明:如上图所示,由勾股定理,得B ′E =ED =DF =FB ′=25a ,下证B ′、E 、D 、F 四点共面,取AD 中点G ,连结A ′G 、EG ,由EG ABA ′B ′知,B ′EGA ′是平行四边形.∴B ′E ∥A ′G ,又A ′FD G ,∴A ′GDF 为平行四边形.∴A ′G ∥FD ,∴B ′、E 、D 、F 四点共面 故四边形B ′EDF 是菱形.(2)解:如图所示,在平面ABCD 内,过C 作CP ∥DE ,交直线AD 于P ,则∠A ′CP (或补角)为异面直线A ′C 与DE 所成的角. 在△A ′CP 中,易得A ′C =3a ,CP =DE =25a ,A ′P =213a 由余弦定理得cos A ′CP =1515故A ′C 与DE 所成角为arccos1515. (3)解:∵∠ADE =∠ADF ,∴AD 在平面B ′EDF 内的射影在∠EDF 的平分线上.如下图所示.又∵B ′EDF 为菱形,∴DB ′为∠EDF 的平分线, 故直线AD 与平面B ′EDF 所成的角为∠ADB ′ 在Rt △B ′AD 中,AD =2a ,AB ′=2a ,B ′D =2a 则cos ADB ′=33 故AD 与平面B ′EDF 所成的角是arccos33. (4)解:如图,连结EF 、B ′D ,交于O 点,显然O 为B ′D 的中点,从而O 为正方形ABCD —A ′B ′C ′D 的中心.作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心,再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE , 故∠OMH 为二面角B ′—DE ′—A 的平面角.在Rt △DOE 中,OE =22a ,OD =23a ,斜边DE =25a , 则由面积关系得OM =1030=⋅DE OE OD a 在Rt △OHM 中,sin OMH =630=OM OH 故面B ′EDF 与面ABCD 所成的角为arcsin 630.。
求空间角的常用方法
a2
3 2
a
7a 2
EF
FD2 ED2
a 2
2
3 2
a
2
a
PE 2 EF 2 PF 2
cos PEF 2PF·EF
7 2
2
a
a2
a 2
2
2 7 aa
=
7 4
+1-
1 4
=
5
7
2
7
14
∴二面角P-AB-F的平面角的余弦值为 5 7 14
点评 这里由已知条件很容易找到二面角的棱AB的垂面,故运用垂面法可顺利找 出二面角的平面角.
即 tan θ1 tan θ2 1
1 tan θ1·tan θ2
x x
亦即
2 1
12
x·x
1
2 12
整理得x2 10x 24 0 解得x1 4,x2 6
故异面直线AC与BD之间的距离是4cm或6cm. 点评 本题是将两条异面直线的距离转化为异面直线所在的两个平行平面的距离来 解决的.
3.体积法
2.转化法
常用的方法有将线面距离转化为点面距离,将线线距离转化为线面距离或面面
距离.还有,甲点到平面 的距离可以转化为与其相关的乙点到平面 的图1-13,正方体ABCD- A1B1C1D1 的棱长为1,O是底面
A1B1C1D1 的中心,则O到平面 ABC1D1 的距离为( ).
3
(D) 6 3
解 设O到平面ABC的距离为h. ∵AB,AC,CB的球面距离均为 2
∴∠AOB=∠AOC=∠COB= 2
∵球半径为l, ∴AO=BO=CO=1,AB=AC=BC= 2
· ∴
VO ABC
空间角的概念与计算
空间角的概念与计算在几何学中,角是一个基本的概念,用于描述物体之间的相对方向。
而空间角则是在三维空间中描述物体之间方向关系的重要指标。
本文将介绍空间角的概念及其计算方法。
一、空间角的概念空间角是用来描述三维空间中两个矢量之间的夹角关系。
在二维空间中,我们可以通过一条射线和一条直线之间的夹角来描述角度,而在三维空间中,空间角则需要考虑更多的因素。
具体而言,对于任意两个非零矢量a和b,它们之间的空间角被定义为它们的夹角θ,满足0 ≤ θ ≤ π。
其中,θ=0时表示a和b共线,θ=π/2时表示a和b正交,θ=π时表示a和b反向。
二、空间角的计算1. 余弦定理计算空间角余弦定理是空间角计算中常用的方法之一。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:cosθ = (a·b) / (|a|·|b|)其中,·表示矢量的点积,|a|和|b|分别表示矢量a和b的模长。
通过求解上式,我们可以得到空间角θ的值。
2. 向量叉积计算空间角另一种常用的空间角计算方法是利用向量的叉积。
对于两个非零矢量a和b,它们之间的空间角θ满足以下关系:sinθ = |a×b| / (|a|·|b|)其中,×表示矢量的叉积。
通过求解上式,我们可以得到空间角θ的正弦值,进而计算出空间角的值。
三、实例演示下面通过一个实例来演示如何计算空间角。
假设有两个矢量a = (1, 2, 3)和b = (4, 5, 6)。
我们希望计算出它们之间的空间角θ。
首先,我们可以通过求解余弦定理来计算空间角的余弦值:cosθ = (1×4 + 2×5 + 3×6) / √(1² + 2² + 3²) × √(4² + 5² + 6²)= (4 + 10 + 18) / √14 × √77= 32 / √1078 ≈ 0.979然后,通过反余弦函数可以求得空间角的弧度值:θ = arccos(0.979) ≈ 0.199 rad最后,将弧度值转换为度数,即可得到空间角的度数表示:θ ≈ 0.199 × (180/π) ≈ 11.4°因此,矢量a和b之间的空间角约为11.4°。
空间角的求法
空间角的求法一、异面直线所成角的求法平移法常见三种平移方法:直接平移;中位线平移(尤其是图中出现了中点);补形平移法。
“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
(1)直接平移法4J2例1如图,PA_矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的正切值。
()5(2 )中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA = SB= SC,且.ASB = . BSC = . CSA =—,2M、N分别是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
()5(3 )补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABC^ A1B1C1D1中,E是CC1的中点,求直线AC与ED i所成角的余弦值。
、线面角的三种求法1. 直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。
例1四面体 ABCS 中,SA ,SB ,SC 两两垂直,/ SBA=45,/ SBC=60 , M 为AB 的中点,求:质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的 垂线。
)h U2. 利用公式si =:其中。
是斜线与平面所成的角, h 是垂线段的长,I 是斜线段的长,其中求l 出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂 线段的长。
例2长方体ABCD-A i B i C i D i 中AB=3 , BC=2 ,A I A= 4,求AB 与面AB i C i D 所成的角的正弦值。
空间角的求法方法归纳
空间角的求法方法归纳
空间角的求法方法归纳
在数学和物理学中,空间角是一种非常重要的概念。
物体在空间中的角度关系经常被用到各种计算和分析中。
因此,求解空间角的方法也变得尤为重要。
本文将按类划分,总结空间角的求法方法。
立体角的求法
立体角是三维空间中用来描述四面体的角度大小的量,并且与其各个顶点相对应。
求解四面体的立体角可以通过以下公式进行计算:
V5 = 1/3(arccos(A1) + arccos(A2) + arccos(A3) - π )
其中V5指四面体的立体角,A1、A2、A3为三个向量的夹角余弦,pi 为圆周率。
平面角的求法
平面角是在二维平面中两个射线之间的角度大小,于是端点重合,两条射线叫做角的顶点,并记为O。
平面角的计算公式如下:
cosθ = a·b / |a||b|
其中,a和b分别表示两个向量,|a|和|b|表示向量的模,lala和lblb都为0,则cosθ没有定义。
球面角的求法
球面角是指在球面上相互靠近的两条弧(或线)之间的角度大小。
求解球面角需要先计算其对应的球面扇形的面积,然后进行换算即可,具体公式如下:
S = R²θ
其中R表示球体半径,θ表示对应的球面角。
总结
空间角的求法方法主要包括立体角、平面角和球面角三种。
其中立体角的求解需要根据四面体的三个向量夹角余弦值计算,平面角的计算需要先计算两个向量的点积并除以其模,而球面角的求解则需要先计算出对应的球面扇形面积。
这些空间角的求法方法可以帮助我们更准确地分析并解决各类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅲ)求二面角A-DF-B的大小.
(Ⅰ)证明 如图1-6,设AC,BD交于点O,连EO,矩形AFEC的边长AF=1,AC=2. ∵O,M分别为AC与EF的中点,
ME 2
在△MOE中, OM D1 F 2 2 1 5
OE EC 2 OC 2 1 ( 2 ) 2 3
OM 2+OE 2-ME 2 5 3 2 15 由余弦定理得 cosMOE = = 2OM · OE 5 2·5·3
故选B.
点评 求异面直线所成的角,一般都是通 过“选点平移”将异面直线所成的角转化为
共面相交的两直线的夹角来完成,但要特
别注意两条异面直线所成的角的范围是
0, 此题选点还可选取D1 C 的中点或 2
选取BC的中点P,然后再作相应的辅助线。
3.垂线法
当已知条件中出现二面角中一个半平面内一点到另一个半平面的垂线时(或虽未
给出这样的垂线,但由已知条件能够作出这样的垂线),可依据三垂线定理或其
∥ OA 1 ∴ EM=
∴四边形AOEM是平行四边形. ∴AM∥OE.
又OE
AM 平面BDE, ∴AM∥平面BDE. 平面BDE,
(Ⅱ)证明 如图1-7,∵BD⊥AC,BD⊥AF,AC∩AF=A, ∴BD⊥平面ACEF,DF在平面ACEF上的射影为OF. ∵AO=AF=1,AOMF是正方形,OF⊥AM, ∴由三垂线定理得DF⊥AM. 同理FB⊥AM,DF∩FB=F, ∴AM⊥平面BDF.
3 a 2
3 7 PE PD2 DE 2 a 2 a a 2 2
2 3 a 2 2 EF FD ED a a 2 2 2
4.垂面法
在求解二面角的问题中,若能找到或者作出棱的垂面,则垂面与两个半平面的交 线所成的角即为二面角的平面角. 【例4】 (2004年辽宁省高考题)如图1-9,已知四棱锥P-ABCD,底面ABCD是菱形, ∠DAB=60º ,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点.
(Ⅰ)证明:平面PED⊥平面PAB;
(Ⅱ)求二面角P-AB-F的平面角的余弦值. (Ⅰ)证明 ∵底面ABCD为菱形, ∴AB=AD,∠DAB=60º . ∴△DAB为正三角形. 又E为AB中点, ∴AB⊥DE. 又PD⊥平面ABCD,PE在平面ABCD上的射影为DE, ∴AB⊥PE(三垂线定理).∵PE∩DE=E, ∴平面PAB⊥平面PED.
一点作平面的垂线时,需要确定垂足的位置,然后再将这个
角放在三角形中利用三角形的边角关系求解.
2 .选点平移法
所谓“选点平移法”就是选择适当的点,通过作平行线,构造出所要求的空间角. 至于点的选取何处适当,通常是视具体情况具体分析. 【例2】 (2004年天津市高考题)如图1-3,在棱长为2的正方体ABCD- A1 B1C1 D1 中, O是底面ABCD的中心,E,F分别是CC1 ,AD的中点,那么异面直线OE和FD1间角的大小,一般是根据相关角(如异面直线所成的角、直线和平面所成的
角、二面角的平面角)的定义,把空间角转化为平面角来求解。
【例1】 (2004年天津市高考题)如图1-1,在四棱锥P-ABCD中,底面ABCD是正方 形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (Ⅰ)证明:PA∥平面EBD;
4 5
10 5
(B)
15 5
(D)
2 3
解
如图1-4,取 D1C1 的中点M,连结MO,FO.
∵O为底面中心, ∴O为BD中点,从而FO为△DAB的中位线. ∴FO ∴MO
1 AB 2
D1 M
∴四边形 D1 FOM 为平行四边形.
D1 F
故∠MOE(或其补角)即为异面直线 D1 F 和OE所成的角.
5 a 2 2 2 a ∵在Rt△BCF中,BF BC CF a 2 2 1 a ∵ EF PD 2 2
2
a EF 5 ∴在Rt△EFB中, tanEBF 2 BF 5 5 a 2
5 ∴EB与底面ABCD所成角的正切值为 5
点评 求直线与平面所成的角的关键是抓射影,而由斜线上
(Ⅲ)解 设AM∩OF=H,由(Ⅱ)知AH⊥平面BDF.
如图1-8,作AG⊥DF交DF于G,连结GH,由三垂线定理知GH⊥DF,
∴∠AGH是二面角A-DF-B的平面角.
又∵ AH
2 6 ,AG 2 3
∴ sin AGH
3 2
即 AGH 60
o
o
∴二面角A-DF-B的大小为60
点评 利用三垂线定理或其逆定理作二面角的平面角关键是找垂线,对有棱二 面角通常应注意选取合适的点构造二面角的平面角.
(Ⅱ)解 ∵AB⊥平面PED,PE 面PED, ∴AB⊥PE. 如图1-10,连结EF. ∵EF 面PED, ∴AB⊥EF. ∴∠PEF为二面角P-AB-F的平面角.
a 2 又∵△DAB为正三角形,E为AB中点,
设PD=AD=a,则PF=FD=
a ∴AB=AD=a, AE 2
DE
(Ⅱ)求EB与底面ABCD所成的角的正切值.
(Ⅰ)证明 如图1-2,连结AC,AC交BD于O,连结EO. ∵底面ABCD为正方形,∴点O为AC中点. ∵在△PAC中,EO是中位线,∴PA∥EO. 又EO 平面EDB,且 PA 平面EDB,∴PA∥平面EDB
(Ⅱ)解 作EF⊥DC交DC于F,连结BF.设正方形ABCD的边长为a. ∵PD⊥底面ABCD,∴PD⊥DC. ∴EF∥PD,F为DC中点. ∴EF⊥底面ABCD,BF为BE在底面ABCD内的射影, 故∠EBF为直线EB与底面ABCD所成的角.