温度测量显示电路设计
pt100温度测量与控制电路设计实例
C1
C2
1
2 R1 fc
1.592
(F)
(4)低通滤波器参数的确定
U1、R1、R2、R3、C1、C2等组成有源低通滤波器, 它们用于滤除工频信号的干扰,同时必须满足ADC 采样定理(即乃奎斯特采样定理)。由于称重信号 为直流信号,AD7798的采样率可设置为33.3Hz,考 虑到滤波效果,取低通滤波器的截止频率均为 fc=10Hz。令C1=C2,则有
C1
C2
1
2 R1 fc
1.592
(F)
取标称值C1=C2=2μF。
为了减少外界温度测温结果的影响,各电阻 (如R1、R2、R3、R4、R5、R6)的温度系数 必须很小。工程应用中,一般采用温度系数 为5ppm的塑封电阻,同时应选用温度系数小 的运算放大器。
(3)ADC与CPU电路
Au
1
2
R1 R2
R6 R4
由PT100的T-RT的关系(即温度与电阻的 关系)可知,当温度变化0.1℃时,RT的变化 值ΔRT约为0.04Ω,电桥测温电路输出电压变 化值ΔV0.1为
V1
(
RT RT RS1 (RT RT )
RS3 RS 2RS
3
)
VCC
注意事项
ADC的注意事项 MCU的注意事项
(4)测温电路的非线性校正
非线性校正的原因 非线性校正的原理
(4)测温电路的非线性校正
分段线性插值校正原理
步骤: 1)获取样本(T1, U1); (T2, U2);…; (Ti, Ui); 2) 利用分段线性插值公式,获得电压输出为 ux时,Pt100测的温度。
《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告
《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告1.实验功能要求了解铂热电阻的特性与应用;熟悉铂热电阻测温电路;利用P100铂电阻测量温度源的温度;记录温度与测量电路电压输出数据2.实验所用传感器原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
3.实验电路PT100铂电阻测温电路经验P100电压采集放大电路:前半部分是4.096V恒压源电路,然后是一个桥式电压采样电路,后面是一个电压放大电路。
一、4.096V恒压源电路因Vref=2.5V,故有4.096=(1+R1/R2)*2.5,得出R1/R2=1.6384,可以通过调节滑动变阻器实现。
二、桥式电压采样电路这是一个桥式电压采样电路,其原理是将V2作为参考电压,通过V1的变化去得到一个相对的电压数值,这样就能得到PT100的电阻数值,从而得到当前温度数值。
其中相对数值是通过R7去调节,可以是任意,其R7的主要作用还是在校准温度使用。
根据项目需要,现在使用的R7的阻值是138.5002Ω,也就是PT100在100摄氏度是的温度数值。
三、电压放大电路分析电路:1根据"虚断"原则,流过R3和R8电流相等(V1-Vx)/R3=Vx/R82根据“虚断"原则,流过R6和R1电流相等(V2-Vout)/(R6+R1)=(V2-Vy)/R6 3根据"“虚短"原则,Vy=Vx4根据这3个公式得出:11V1-10V2=Vout理想要的数值是10倍的放大倍数,但是现在在输出端多了减了V1,根据模拟的数值可知,V1的取值范围是0.215-0.36835241646对应温度范围是44.032- 75.43。
温度检测报警电路设计
随着现代信息技术的飞速发展和传统工业的逐步改造,温度自动检测和显示功能在很多领域得到广泛应用。
人们在温度检测的准确度、便捷性和快速等方面有着越来越高的要求。
而传统的温度传感器已经不能满足人们的需求,其渐渐被新型的温度传感器所代替。
本文设计了一个温度检测报警器电路。
采用单片机AT89C51和温度传感器DS18B20组成温度自动测控系统,可根据实际需要任意设定温度值,并进行报警和处理,通过LM016L显示温度。
本文是从测温电路、主控电路、报警电路以及驱动电路等几个方面来设计的。
该器件可直接向单片机传输数字信号,便于单片机处理及控制。
另外,还能直接采用测温器件测量温度,从而简化数据传输与处理过程。
此设计的优点主要体现在可操作性强,结构简单,拥有很大的扩展空间等。
关键词:AT89C51;DS18B20;LM016L;报警电路With the rapid development of modern information technology and traditional industrial transformation,the system of temperature automatic measurement and display system is widely used in many fields.people have a rising demand in temperature measurement accuracy,convenient, and velocity.Traditional temperature sensors have been unable to meet the people's demands,and have gradually been replaced by new-type temperature sensors.This article designs a temperature detection circuit,using a micro-controller AT89C51 and temperature sensor DS18B20,which composes temperature automatic control system,and temperature values can be setted according to the actual need and be controlled in time,then display temperature through LM016L.This design analysis the function in several parts,like temperature measurement circuit,control circuits,alarm circuits,driver circuit and so on.The device can directly transfer digital signal to the single-chip and make it convenient to process and control.In addition,it can also directly measure temperature with temperature measurement device,then largely simplify data transmission and process.The advantage of this design are mainly reflected in the stronger maneuverability,simple structure and larger room for expansion.Keywords:AT89C51;DS18B20;LM016L;alarming circuit目录第一章绪论 (1)1.1 选题的背景 (1)1.2 选题的目的及意义 (1)1.3 论文结构 (2)第二章设计的整体方案 (3)2.1 设计的主要内容 (3)2.2 设计性能要求 (3)第三章模块设计和器件的选择 (4)3.1 单片机的选择 (4)3.2 温度采集模块设计 (8)3.3 温度显示模块设计 (15)3.4直流电机驱动模块 (19)第四章系统电路设计 (21)4.1 主电路程序 (21)4.2 晶振复位电路 (21)4.3 温度采集电路 (24)4.4 按键电路 (26)4.5驱动电路 (26)4.6 报警电路 (27)4.7 电源电路 (28)第五章软件仿真 (30)5.1 软件介绍 (30)5.2 仿真过程 (30)第六章体会与展望 (34)6.1 设计总结 (34)6.2 设计前景 (34)附录A 系统总图 (36)附录B 系统程序 (37)参考文献 (53)外文资料 (65)致谢 (73)第一章绪论1.1 选题的背景随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的。
常用温度传感器测量电路设计实验指导书解读
常用温度传感器测量电路设计实验指导书自动化工程学院常用温度传感器测量电路设计实验指导书一、实验目的:本实验要求设计并制作一个常用温度传感器测量电路,要求测量温度在常温~100℃之间,输出为电压信号。
该电路即可用于热电阻温度测量也可用于热电偶温度测量。
二、基本原理:温度测量过程原理:图1:温度测量过程原理温度测量过程原理如图1所示:信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。
信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。
输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出相关的物理量。
该部分可以是计算机或数码管或显示仪表等。
该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。
设计思路:温度检测电路总体设计思路:如图2所示,被测物体温度经过温度传感器元件以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字显示表头显示检测到的温度信号。
图2温度检测电路组成传感器部分:热电偶传感器:是将A和B二种不同金属材料的一端焊接而成如图3。
A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊称为自由端或参考端,也称冷端(接引线用来连接测量仪表接的一端处在温度T的两根导线C是同样的材料,可以与A和B不同种材料)。
T与T的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。
国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。
实验中用分度号为K的热电偶。
表1:K热电偶温度与输出电压的关系0000式中:E(t, t0)---热电偶测量端温度为t,参考端温度为t=0℃时的热电势值;E(t, t0')---热电偶测量温度t,参考端温度为t'不等于0℃时的热电势值;E(t0', t)---热电偶测量端温度为t',参考端温度为t=0℃时的热电势值。
温度测量显示电路设计.doc
目录一摘要......................................................1 二设计目的与意义.............................................1三方案论证与确定.............................................23.1系统方案的确定..................................................23.2传感器方案的确定................................................33.3测量显示方案的确定..............................................3 四系统工作原理分析...........................................4 五电路制作与调试..........................................10六附录...................................................16七参考文献...............................................27一.摘要在现今科技高速发展的时代,各行各业对控制和测量的要求越来越高,其中,温度测量和控制在很多行业中都有比较重要的应用,尤其在工业上,如炼钢时对温度高低的控制。
要控制好温度,测量是前提,测量的精度影响着后续工序的进行,因此温度测量的方法和选取就显得相当重要了。
针对各种温度测量方案的讨论分析后,我们组决定以AT89S52为核心,采用DS18B20温度传感器进行温度信号的检测,并通过LCD液晶显示测量所得温度,外加红外遥控调节设置温度测量的上下限数值(默认温度上下限为10℃~24℃),在所测温度到达所设上下限数值时,蜂鸣器启动报警提示。
电子技术课程设计报告 简易数字温度计的设计
河南机电高等专科学校电子技术课程设计报告设计课题:简易数字温度计的设计题目:简易数字温度计的设计一、设计任务与要求设计任务:设计出一个简易的数字温度计,用来测量0-100度之间的温度,使其度数显示在数字显示器上。
设计要求:1、制作出一个数字温度计。
2、画出整体电路图,写出课程设计报告。
3、同组同学的的设计不能雷同。
4、电路图中的图形必须本人亲自绘制。
5、每个同学必须有实物,并基本能工作。
二、方案设计与论证(1)方案一:本方案采用AD590单片集成两段式敢问电流源温度传感器对温度进行采集,采集的电压经过放大电路将信号放大,然后经过3.5位A/D转换器转换成数字信号,在进行模拟/数字信号转换的同时, 还可直接驱动LED显示器,将温度显示出来。
系统方框图如下:系统方案框图(2)方案二:使用数字传感器采集温度信号,然后将被测温度变化的电压或电流采集过来放大适当的倍数,进行A/D转换后,将转换后的数字进行编码,然后再经过译码器通过七段数字显示器将被测温度显示出来。
系统方案框图(3)方案三:使用温度频率转变电路,根据温度与频率的线性关系先将温度转变为频率,将转换的频率输入频率计中,频率计电路中通过放大整形电路、主门电路、计数器、锁存器、七段译码输出,在七段显示器中将频率显示出来,显示的频率即为对应的温度值。
方案的分析和比较方案一中的模数转换器ICL7107集A/D 转换和译码器于一体,可以直接驱动数码管,不仅省去了译码器的接线,使电路精简了不少,而且成本也不是很高。
ICL7107只需要很少的外部元件就可以精确测量0到200mv 电压,AD590可以将温度线性转换成电压输出。
而方案二经过A/D 转换后,需要先经过编码器再经过译码器才能将数字显示出来。
方案三只经过温度频率转换就可把温度用相应的频率显示出来,成本较低,可操作性较强。
比较上述三个方案,方案三明显优越于前两个方案,它用热敏电阻采集温度信号,用NE555将温度转化为频率输入频率计中,用CD40110驱动数码管直接实现数字信号的显示,实现数字温度计的设计;省去了另加编码器和译码器的设计,所以线路更简单、直观; 即采用方案三.三、单元电路设计与参数计算通过热敏电阻对温度进行采集,通过温度与频率近乎线性关系,以此来确定输出频率与其对应的温度,不同的温度对应不同的频率值,故我们可以通过频率值的改变来判断温度值,再由数码管表示出来。
基于AD590的温度测量电路设计
课程设计报告论文题目:温度测量电路设计学院(系):班级:学生姓名:学号指导教师:时间:基于AD590的温度测量电路设计摘要:给出了一种数字式温度测量电路的设计方案,该设计是基于温度传感器AD590、集成放大芯片LM324、12位4路A/D 转换芯片ADS7841、以及单片机STC89C51来实现的。
文章详细介绍了该系统的总体设计方案以及模拟电路部分的硬件设计及调试方法。
关键词:温度测量系统;传感器;放大电路正文:1.原理与总体方案电路中,用AD590获取温度信号。
根据AD590的数据手册可以知道,在正常工作的情况下,AD590的电流变化1μA ,相当于环境温度变化1摄氏度,当环境温度为0摄氏度的时候,AD590产生273μA 的电流。
AD590经过10K 的电阻串联后,在电阻的两端产生(2.73+T )V 的电压,该电压经过由LM324构成的差分放大电路后,调整为0~5V 的电压,然后由ADS7841转换成数字信号,送给单片机STC89C51,进行数码显示。
设计的具体方案流程图如图 1.1.0所示:2.硬件设计:具体的电路图如图1.1.1所示,AD590工作在5V 的电源下,产生273~373μA (0~100摄氏度)的电流,经过R1的分压过后,转换为2.73~3.73V 的电压,经过一个由LM324构成的跟随器后,送至三运放放大电路的一端(设这个电压为U0)。
稳压管1N4728可以将5V 的电源稳压成为3.3V ,再经1K 的滑动变阻器R7分压后,产生2.73V 的电压(U1),送至三运放放大电路的另一输入端。
由三运放的放大关系可知:Uout=U0-U1=)1i 0i )(8321(U U R R R -++,其差模增益送ADS7841图1.1.0Kd 为:83211i 0i 10d R R R U U U U K ++=--=,因此,可以通过调节5K 的滑动变阻器R8的阻值,来调节放大倍数。
热电阻测温仪检测电路课程设计
热电阻测温仪检测电路课程设计热电阻测温仪是一种常见的温度测量设备,利用热电阻的电阻与温度之间的关系来实现温度的测量。
它具有简单、精度高、响应快等优点,广泛应用于工业、科研、医疗等领域。
本课程设计旨在设计一个基于热电阻测温仪的温度检测电路,并结合相关理论知识进行实验验证。
一、设计目标和原理设计目标:设计一个精度高、稳定可靠的温度检测电路,能够测量介于-50~150°C范围内的温度,并能够实时显示温度数值。
原理介绍:热电阻测温仪原理是基于热电阻元件的电阻与温度之间的关系。
常见的热电阻元件有铂电阻(PT100、PT1000)、镍电阻(Ni100、Ni1000)等,根据不同材料的特性,构造相应的测温电路。
二、硬件设计1.选择热电阻元件:根据设计要求选择合适的热电阻元件,如PT100。
2.连接方式:将热电阻元件与电路板连接,通常使用3线或4线制连接。
其中3线制只需两根导线来接电阻元件,电阻线与导线线头焊接;4线制需要四根导线,两根用来接电阻元件,另外两根用来进行电流的测量。
3.扩散电阻:由于热电阻元件尺寸较小,为增加灵敏度,并消除受周围温度影响,可以使用金属盖片等进行扩散,使得热电阻元件能够更好地感应温度。
4.制作电路板:根据电路设计,制作相应的电路板。
三、电路设计1. PT100测温电路设计:选用PT100作为测温元件。
将PT100连接至电路板上,通过电流源(如电阻)提供恒定的电流,测量电阻两端电压,进而计算出温度数值。
2.信号放大电路设计:由于PT100的电阻变化很小,为了提高检测精度,需要设计相应的信号放大电路对电压进行放大。
3.温度传感器接口设计:为了方便与其他设备的连接,设计一个温度传感器接口,以便输出温度信号。
四、软件编程1.采集和处理温度数据:利用单片机或其他开发板,编写相应的程序对温度信号进行采集和处理,包括滤波、线性化、单位换算等操作。
2.数字显示:将处理后的温度数值通过数字显示模块进行实时显示。
常用温度传感器测量电路设计实验指导书
110 4.508 4.549 4.590 4.632 4.673 4.714 4.755 4.796 4.837 4.878
120 4.919 4.960 5.001 5.042 5.083 5.124 5.164 5.205 5.246 5.287
130 5.327 5.368 5.409 5.450 5.490 5.531 5.571 5.612 5.652 5.693
设计思路:
温度检测电路总体设计思路:如图 2 所示,被测物体温度经过温度传感器元件
.
.
以及相关转换电路转化为电压信号,经后续放大电路放大调节后输出,再用数字 显示表头显示检测到的温度信号。
图 2 温度检测电路组成
传感器部分:
热电偶传感器:是将 A 和 B 二种不同金属材料的一端焊接而成如图 3。A 和 B 称为热电极,焊接的一端是接触热场的 T 端称为工作端或测量端,也称热端;未 焊接的一端处在温度 T0 称为自由端或参考端,也称冷端(接引线用来连接测量仪 表的两根导线 C 是同样的材料,可以与 A 和 B 不同种材料)。 T 与 T0 的温差愈 大,热电偶的输出电动势愈大;温差为 0 时,热电偶的输出电动势为 0;因此, 可以用测热电动势大小衡量温度的大小。国际上,将热电偶的 A、B 热电极材料 不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜康铜)等等,并且有相应的分度表即参考端温度为 0℃时的测量端温度与热电动 势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的 温度值。实验中用分度号为 K 的热电偶。
图 1:温度测量过程原理 温度测量过程原理如图 1 所示: 信号采集:由热电偶或热电阻传感器负责将被测体的相关物理量转化为电信号。 信号处理部分:负责对信号进行放大,整形,降噪,标准化等处理。 输出显示部分:负责对处理后的各种信号进行可视化处理,便于人们直观的读出 相关的物理量。该部分可以是计算机 或数码管 或显示仪表等 。 该实验只涉及信号采集,信号处理部分的相关电路设计,安装,调试等内容。
温度测量显示电路设计
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载温度测量显示电路设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容目录第1章系统原理框图设计1.1 设计内容以设计为主完成一个温度范围为0-50 0C的温度测量显示电路的设计与制作。
1、主要设计内容:(1)系统原理框图设计与分析(包括传感器的选择与确定);(2)系统方案设计、比较及选定(给出两种以上的方案比较);(3)系统原理图设计(包含测量电路、放大电路、A/D转换及显示电路等);(4)确定原理图中元器件参数(给出测量电路、放大电路计算公式与数据);2、运用protel软件绘出系统原理电路图(鼓励能完成印刷电路板图的绘制)。
1.2 原理框图设计设计以测量显示部分电路为主,以单片机系统为核心,对单点的温度进行实时测量检测。
并采用温度传感器DS18B20、op07作为信号放大器、ADC0809作为A/D转换部件,对于温度信号的采集具有大范围、高精度的特点。
在功能、性能、可操作性等方面都有较大的提升,具有更高的性价比。
本系统由温度传感器DS18B20、AT89C52、LED数码管显示电路、软件构成。
DS18B20输出表示摄氏温度的数字量,然后用51单片机进行数据处理、译码、显示、报警等。
系统框图如图1.2.1所示:蜂鸣器报警温度传感器DS18B20AT89C5251单片机LED数码管编码数字量温度传感器DS18B20红外遥控调节设置温限如图1.2.1 系统框图第2章方案论证及确定2.1 系统方案的确定LCD液晶显示编码ICL7107 A/D转换&译码显示模块电压AD590温度传感器温度电压同向放大器方案1:采用单片机测量并控制温度。
此方案硬件电路简单,但是需设计复杂的软件电路。
单片机原理与应用实验报告——温度测量显示及设定
单片机原理与应用实验报告——温度测量显示及设定实验目的:掌握单片机温度测量的原理和方法,了解温度传感器的工作原理,学会通过单片机控制显示屏显示温度,并可以通过按键设定温度。
实验器材:1.单片机(如STC89C52)2.温度传感器(如DS18B20)3.电阻、电容等基本元件4.1602液晶显示屏5.按键开关6.杜邦线、面包板等实验原理:1.单片机温度测量原理:单片机温度测量原理主要是通过温度传感器将温度转化为电压信号,然后单片机通过模拟口接收信号并进行数字转换得到温度数值。
2.温度传感器工作原理:温度传感器内部有一个温度敏感元件,它能根据温度的变化产生相应的电压信号,然后通过数字转换将电压信号转化为数值。
3.单片机与1602显示屏的连接:将1602显示屏的数据线接到单片机的IO口,通过控制IO口输出不同的信号来控制1602的显示。
实验步骤:1.连接电路:将单片机、温度传感器、1602显示屏等元件连接在一起,确保电路正确连接。
2.编写程序:编写单片机程序,根据单片机型号和编程软件的不同,具体编写方式可能会有所不同,但主要目的是通过单片机读取温度传感器的值,并将其转化为温度,最后通过1602显示屏显示温度。
3.调试程序:4.实验数据:在实验过程中需要记录下实验数据,包括温度传感器的电压值、转化的温度值等。
5.结果分析:根据实验数据和实验结果进行分析,对实验结果进行分析和总结。
实验总结:通过本次实验,我掌握了单片机温度测量的原理和方法,了解了温度传感器的工作原理,并成功通过单片机控制1602显示屏显示温度。
通过实验,我体会到了实验设计和实验过程中的困难和挑战,但我也学到了很多知识和技能,提高了实验能力和动手能力。
在今后的学习和工作中,我会继续努力,不断学习和探索,提高自己的实验能力和创新能力。
数字温湿度计—测量电路设计
1绪论1.1 本课题国内外发展现状随着微型计算机和传感器技术的迅速发展,自动检测领域发生了巨大变化,仓库的温度和湿度自动监测控制方面的研究有了明显的进展。
美国、日本的仓库监测设施近20年来发展很快,他们结合本国条件做出了具有创新特色的成就,其中仓库环境调控技术均有较高水平,但其监控设备价格昂贵。
我国近年引进了多达16个国家和地区的仓库环境控制系统,对吸收国外先进经验、推动仓库温度湿度自动检测产生了积极的作用,但多因能耗过大,造价高,品种未能配套,未能达到很好的效果。
中国的仓库环境综合控制系统必须走适合中国国情的发展道路,在引进、消化、吸收国内外先进技术和科学管理的基础上,进行总结提高、集成创新、超前示范,既开发适宜我国经济发展水平,又能满足不同气候条件,接近或达到世界先进水平的智能化仓库监测系统。
在专用品种、综合配套技术、贮运营销上,应该研制具有中国知识产权的产品和技术。
随着现代科技的发展,电子计算机已用于控制仓库环境。
控制系统由中央控制装置、终端控制设备、传感器等组成。
先编制出仓库存放粮食最优环境条件的管理程序表,存储于电子计算机的记忆装置中,电子计算机根据程序表确认、修正各仓库的参数,并给终端控制系统指令。
终端控制设备向中央控制装置输送检测信息,根据中央控制装置的指令输出控制信号,使电器机械设备执行动作,实现粮食仓库的环境调节。
该种系统可以达到自动控制降温、除湿、通风。
根据需要,通过键盘将信息输入中央管理室,根据情况可随时调节仓库温度。
1.2 选题背景及意义温度和湿度的测量和控制是许多行业的重要工作目标之一,不论是粮食仓库、中药材仓库,还是图书保存,都需要有规定的温度和湿度,然而温度和湿度却是最不易保障的指标,针对这一情况,研制可靠且实用的温度和湿度检测与控制系统就显得非常重要。
]4[随着工业的发展,需要对温湿度控制的场合越来越多。
对粮仓而言,温湿度的高低对粮食的质量影响很大,温湿度过高会使粮食变质,湿度过大会使霉菌和害虫滋生。
pt100测温电路设计报告
传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件或装置,主要用于检测机电一体化系统自身与操作对象、作业环境状态,为有效控制机电一体化系统的运作提供必须的相关信息。
随着人类探知领域和空间的拓展,电子信息种类日益繁多,信息传递速度日益加快,信息处理能力日益增强,相应的信息采集——传感技术也将日益发展,传感器也将无所不在。
从20世纪80年代起,逐步在世界范围内掀起一股“传感器热”,各先进工业国都极为重视传感技术和传感器研究、开发和生产。
传感技术已成为重要的现代科技领域,传感器及其系统生产已成为重要的新兴行业。
温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。
由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温传感器就会相应产生随着现代电子技术的发展,对温度的测控技术提出了更高的要求。
PT100铂热电阻温度传感器具有精度高,稳定性好等优点,测温范围为-200~650℃,使用非常方便,广泛用于电力、石油、化工、建材等行业的过程监控系统中,而且被制成各种标准温度计。
前言 (3)第一章绪论 (5)1.1温度传感器发展 (5)1.2P T100的简介 (7)第二章设计内容 (9)2.1制作P CB原理图 (9)2.2制作镜像图 (9)2.3制作电路板 (11)第三章调试电路板 (12)3.1调试电路板 (12)3.2测量并记录结果 (12)第四章总结 (13)致谢 (14)参考文献 (15)第一章绪论1.1 温度传感器发展1传感器的概述科学技术离不开测量。
测量的目的就是要获得被测对象的有关物理或化学性质的信息,以便根据这些信息对被测对象进行评价或控制,完成这一功能的器件就我们称之为传感器。
传感器是信息技术的前沿尖端产品,被广泛用于工农业生产、科学研究和生等领域,尤其是温度传感器,使用范围广,数量多,居各种传感器之首。
温度测量与显示及报警电路的设计
_课程设计结题报告课程名称题目温度测量与显示及报警电路指导教师系别专业学生姓名班级/学号成绩________________________目录1一.温度测量与显示及报警电路的设计1.设计目的 (4)2.设计任务及要求 (4)3.设计内容 (5)3.1)稳压源电路的设计 (5)3.2)测量电路的设计 (6)3.3)放大电路的设计 (6)3.4)报警电路的设计 (7)3.5) 整体电路 (8)3.6)实际效果图 (8)4.元器件选择 (9)4.1)热敏电阻的选择 (9)4.2)放大器的选择 (10)4.3)比较器的选择 (10)5.电路的调试 (11)6.设计的体会及其改进建议 (13)温度测量与显示及报警电路的设计一.设计目的运用有关的课程的基础理论知识和技能解决实际问题的能力,提高本专业必要的基本技能、方法和创新能力。
完成测控系统任务分析、电路总体设计、单元电路设计以及电路调试等各个环节、掌握有关传感器接口电路、信号处理电路、放大电路、滤波电路、运算电路、显示电路以及执行部件驱动电路等内容在测控系统中的使用方法。
了解有关电子器件和集成电路的工作原理。
二.设计任务及要求设计内容:室内环境参数测量及安防报警电路设计1)温度、湿度、照度测量与显示、报警电路设计;2)破门入室、破窗入室、室内防盗、火灾,燃气泄露等报警电路设计。
基本要求:1)用电路实现,不用软件;2)用数字表头实现测量值的显示;3)能够设置环境参数测量值报警上下限,并实现声、光报警。
主要性能指标:本次设计的题目为温度报警器的设计,运用温度传感器的温度特性从而达到在一定温度时的报警作用。
其主要功能和指标如下:1.利用温度传感器(热敏电阻)测量某环境的温度2.报警器的报警温度可调,范围为(0—50℃)3.采用蜂鸣器报警,声音大小由环境温度与报警温度的差值决定三.设计内容3.1稳压电源电路的设计要使电路能够稳定的工作首先就要提供一个稳定的电源,如图1就是我设计的稳压源电路图,电路中的LM358P为电压跟随器,用来形成稳定的电压源供测量电路使用。
ntc温度采集电路设计
n t c温度采集电路设计一、概述本文介绍了一种基于N TC热敏电阻的温度采集电路设计方案。
该方案通过使用热敏电阻测量环境温度,并将温度信号转换为电压信号,实现温度的准确采集和传输。
二、方案设计2.1电路框图首先,我们先来看一下整体电路的框图如下:电源模块(V cc)->(热敏电阻)->(运算放大器)->(A/D转换器)->(微处理器)2.2热敏电阻的选择在温度采集电路中,选择合适的热敏电阻非常重要。
我们需要根据具体的应用场景选择合适的电阻参数,包括电阻值和温度系数。
首先,要选择适合的电阻值范围,使其在待测温度范围内能够得到较大的电阻变化。
一般来说,常用的热敏电阻参数有1KΩ、10KΩ等,可以根据实际情况进行选择。
其次,要根据具体的应用需求选择合适的温度系数,常见的有B值参数。
B值是一种表示电阻随温度变化率的参数,可以根据待测温度范围和精度要求进行选择。
2.3运算放大器的设计为了将热敏电阻的电阻变化转换为电压信号,我们需要使用运算放大器。
在选择运算放大器时,要考虑其输入阻抗、增益和功耗等参数。
常见的运算放大器有LM358、AD623等,可以根据实际情况进行选择。
在设计运算放大器电路时,要合理选择反馈电阻,以实现所需的放大倍数。
2.4A/D转换器的选择经过运算放大器的放大后,我们得到了一个模拟电压信号。
为了将该信号转换为数字信号,我们需要使用A/D转换器。
在选择A/D转换器时,要考虑其分辨率、采样率和精度等参数。
常见的A/D转换器有MC P3208、A DS1115等,可以根据实际应用需求进行选择。
2.5微处理器的应用最后,我们将数字信号传输到微处理器中进行处理和存储。
微处理器可以根据需要添加其他功能模块,如通信模块、显示模块等。
三、电路实现根据上述方案设计,可以按照如下步骤进行电路实现:1.按照电路框图连接好电源模块、热敏电阻、运算放大器、A/D转换器和微处理器。
2.针对具体的热敏电阻和运算放大器,合理选择电阻值和反馈电阻。
基于stm32单片机和k型热电偶的工作温度检测仪电路设计
基于stm32单片机和k型热电偶的工作温度检测仪电路设计随着现代工业生产的不断发展,各类工艺过程中的温度控制越来越关键。
因此,设计一款基于STM32单片机和K型热电偶的工作温度检测仪变得越来越重要。
本文将从几个方面介绍该电路的设计流程。
1. STM32单片机的选型和初始化首先需要选取适合本项目的单片机。
鉴于STM32拥有成熟且丰富的资料和开发支持,因此我们选择了STM32F103C8T6。
接着进行初始化工作,包括时钟、IO口等配置工作。
2. K型热电偶的使用K型热电偶具有较高的灵敏度和精度,特别适用于温度测量。
我们需要将其连接到STM32单片机上,实时读取温度值。
为避免外部因素干扰,可以使用缓冲电路、滤波电路等方式进行优化。
3. LCD模块的接入和显示为方便使用者,需要将检测到的温度值显示到LCD模块上。
可以选择带有驱动芯片的LCD模块,进行SPI通信和显示控制。
在具体操作时,需要了解LCD模块的引脚定义、信号极性等参数,并选择合适的显示字库和刷新频率。
4. 电源电路的设计电源电路是任何电子设备的基础。
在本项目中,我们需要为STM32单片机、K型热电偶和LCD模块提供3.3V或5V电源。
可以使用AC/DC变换器、稳压器等电路来实现。
5. 温度采样和控制算法除了硬件部分的设计外,还需要编写控制算法。
通过采样K型热电偶的电压值,并进行放大、滤波等操作,可以得到相应的温度值。
根据实际需求,可以根据温度值控制风扇、加热器等外设,以实现温度控制的自动化。
本文简要介绍了基于STM32单片机和K型热电偶的工作温度检测仪的电路设计流程。
在实际操作中,还要依据具体需求进行电路的优化和改进。
温度控制是工业生产中的重要环节,而基于单片机的检测仪具有较高的灵活性和通用性,对于相关行业的发展具有积极的推动作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 系统方案的设计
2.2.1 方案一
该方案利用AVR单片机对输入信号进行模数转换输出数字信号控制数码管显示温度值。并且可以通过编写程序对输入信号进行分段线性化处理,使得测量精度大大提高,而且该电路无须外接译码器,结构简单。
工作框图如图2.2.1图所示:
(4)确定原理图中元器件参数(给出测量电路、放大电路计算公式与数据)。
2、运用protel软件绘出系统原理电路图(鼓励能完成印刷电路板图的绘制)。
1.2设计要求
1)确定并分析系统设计要求;
2)进行系统的方案设计;
3)要绘制原理框图,绘制原理电路
4)要有必要的计算及元件选择说明
5)如果采用单片机,必需绘制软件流程图
6)写说明书
7)答辩
所设计的方案能满足题目要求并实现相应的功能,所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出。
第2章 硬件电路设计
2.1 传感器的选择与确定
2.1.1 方案一:热敏电阻
该方案采用热敏电阻,热敏电阻价格比较便宜、灵敏度比较好,在实际应用的时候线性度较差,另外调试比较困难。不适合使用。故不使用热敏电阻。
测温范围-55℃~+125℃,固有测温分辨率0.5℃。
支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。
工作电源: 3~5V/DC
在使用中不需要任何外围元件
测量结果以9~12位数字量方式串行传送
不锈钢保护管直径Φ6
2.好的线性关系,灵敏度较高、使用简单方便。但是这种传感器的价格比其他的两种都贵很多。故不选用。
2.2.3方案三:DS18B20数字温度传感器
DS18B20是美国DALLAS半导体公司智能温度传感器,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面拥有很大优势,给用户带来了更方便的使用和更令人满意的效果。
适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温
标准安装螺纹M10X1, M12X1.5, G1/2”任选
PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。
温度传感器可编程的分辨率为9~12位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统
第一章 概 述
1.1 设计内容
以设计为主完成一个温度范围为0 - 50℃的温度测量显示电路的设计与制作。
1、主要设计内容:
(1)系统原理框图设计与分析(包括传感器的选择与确定)。
(2)系统方案设计、比较及选定(给出两种以上的方案比较)。
(3)系统原理图设计(包含测量电路、放大电路、A/D转换及显示电路等)。
第3章 软件设计
本系统由温度传感器DS18B20、AT89c52、LCD液晶显示电路、软件构成。DS18B20输出表示摄氏温度的数字量,然后用52单片机进行数据处理、译码、显示、报警等.
系统框图如下图3.0所示:
图3.0系统框图
3.1 微控制器原理
AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。其主要特性是与MCS-51 兼容、4K字节可编程、FLASH存储器寿命1000、写/擦循环·数据保留时间:10年、全静态工作:0Hz-24MH、三级程序存储器锁定、128×8位内部RAM、32可编程I/O线、两个16位定时器/计数器、5个中断源、可编程串行通道、低功耗的闲置和掉电模式、片内振荡器和时钟电路
单片机引脚图如下图3.1所示:
图3.1 AT89C52引脚图
3.2 DS18B20传感器原理
DS18B20是数字温度传感器,该产品采用美国DALLAS公司生产的DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
图2.2.1 AVR单片机系统框图
2.2.2 方案二
该方案以AT89S52为控制器,采用DS18B20温度传感器检测温度信号,利用红外遥控设置温度测量的上下限数值,并通过LCD液晶显示。
工作框图如图2.2.2所示:
图2.2.2 AT89C52单片机系统框图
经过综合考虑,方案二成本比方案一低且测量温度方便简单,故此次数字温度计课程设计选取方案二。
3.3 测温原理
DS18B20低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。此外,用斜率累加器补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值。