6-5 复合函数的偏导数.ppt

合集下载

经济学专业数学复合函数和隐函数的偏导数配套课件

经济学专业数学复合函数和隐函数的偏导数配套课件


两边对 x 求导

的某邻域内
Fy 0
Fx dy dx Fy
2017年4月14日星期五
18
y 例 5 设方程 ln x y arctan 确定 y 是 x dy x 的函数,求 . dx
2 2

1 2y 1 1 yx Fy 2 2 2 2 x y 1 ( y )2 x x y 2 x 所以,
1 2x 1 y x y Fx 2 ( 2 ) 2 2 2 x y 1 ( y )2 x x y2 x
y 令 F ( x, y ) ln x y arctan ,则 x
2 2
Fx dy x y x y . dx Fy yx x y
19
2017年4月14日星期五
定理4
② ③ 则方程
若函数
F ( x, y, z ) 满足:
的某邻域内具有连续偏导数 ,
① 在点
F ( x0 , y0 , z0 ) 0 Fz ( x0 , y0 , z0 ) 0
在点 某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 并有连续偏导数
全微分的形式不变性
设函数
则复合函数 的全微分为 都可微,
可见无论 u , v 是自变量还是中间变量,
其全微分表达
形式都一样,
2017年4月14日星期五
这性质叫做全微分形式不变性.
12
利用全微分的形式不变性,可以比较容易地得到全 微分的四则运算公式:
u vdu u d(u v) du dv, d(uv) udv vdu, d v2 v u vdu udv udv vdu , d (v 0). 2 v v

《偏导数的概念》课件

《偏导数的概念》课件

偏导数的几何意义
偏导数在几何上表示函数曲面在某一 点处的切线斜率。
对于二元函数z=f(x,y),其在点(x0,y0) 处的偏导数即为该点处曲面切线的斜 率。
偏导数的计算方法
通过求导法则进行计算:链式法则、乘积法则、商的法则、复合函数求导 法则等。
对于多元函数的偏导数,需要分别对各个自变量求导,然后根据具体问题 选择合适的方向进行计算。
商的乘积。
乘积法则
对于两个函数的乘积,其偏导数为各 自函数的偏导数的乘积加上各自函数 对另一变量的导数的乘积。
反函数法则
对于反函数的偏导数,等于原函数在 该点的导数的倒数。
03
CATALOGUE
偏导数在几何中的应用
曲线的切线
总结词
偏导数可以用来求曲线的切线。
详细描述
在几何学中,曲线的切线是曲线在某一点的邻近线段的行为。通过偏导数,我 们可以找到曲线在某一点的切线斜率,从而确定切线的方向和位置。
描述热量在物体中的传递和扩散过程。
电场与磁场
总结词
偏导数在电场和磁场的研究中也有着重要的应用,它可 以帮助我们理解和描述电场和磁场的变化规律。
详细描述
电场和磁场是物理学中两个重要的物理量,它们描述了 电荷和电流产生的场。在研究电场和磁场时,我们常常 需要用到偏导数来描述它们的变化规律。通过偏导数, 我们可以计算出电场和磁场在不同位置的值,从而更好 地理解和描述电场和磁场的变化规律。
THANKS
感谢观看
边际分析
边际分析
偏导数提供了对经济变量边际变化的度量,即当其他条件保持不变时,某一变量变化一 个单位所引起的另一变量的变化量。
边际成本和边际收益
在决策分析中,偏导数用于计算边际成本和边际收益,帮助企业了解产品定价、产量决 策的合理性。

6-4复合函数的求导法则

6-4复合函数的求导法则
第四节 复合函数的求导法则
------链式法则 链式法则
一、多元复合函数求导的链式法则
情形一:中间变量为一元函数 情形一 中间变量为一元函数
定理 定理 如果函数 u = φ (t ) 及 v = ψ (t ) 都在点t 可 导,函数 z = f (u, v ) 在对应点(u, v ) 具有连续偏 导数, 导数,则复合函数 z = f [φ (t ),ψ (t )]在对应点t 可 且其导数可用下列公式计算: 导,且其导数可用下列公式计算:
dz z du z dv . = + dt u dt v dt
证 设 t 获得增量 t,
则 u = φ ( t + t ) φ ( t ), v = ψ ( t + t ) ψ ( t );
由于函数 z = f ( u , v ) 在点 ( u , v ) 有连续偏导数
z z z = u + v + ε 1 u + ε 2 v , u v
w = 1. y
区 别 类 似
z f u f = + , x u x x
z f u f = + . y u y y
z = f ( u, x , y )
z = f [φ ( x , y ), x , y ] 中

u x
y
y
x
z = f (u, x, y ) = ue xy , u = x 2 y
定理的结论可推广到中间变量多于两个的情况. 定理的结论可推广到中间变量多于两个的情况 如
z
dz z du z dv z dw = + + dt u dt v dt w dt
dz 称为全导数 全导数. 以上公式中的导数 称为全导数. dt

复合函数与隐函数的偏导数-PPT

复合函数与隐函数的偏导数-PPT

z x
0,
Fy
Fz
z y
0.
因为 Fz 连续,且Fz ( x0 , y0 , z0 ) 0,所以存在
点( x0 , y0 ,
于就是得
z0 ) 得一个邻域,在这个邻域内 z Fx , z Fy .
Fz
0,
x Fz y Fz
隐函数的求导公式
z Fx , x Fz

已知 x2 a2
y2 b2
(2) F (0,0) 0; (3) Fy (0,0) 1 0, 隐函数存在定理1 所以方程在点 (0, 0) 附近确定一个有连续导数、 当x 0时y 0得隐函数 y f ( x),且
dy dx
Fx Fy
y x
e e
x y
.
隐函数的求导公式
例 已知ln x2 y2 arctan y ,求 dy . x dx
z f [ ( x, y), ( x, y),( x, y)]在对应点( x, y)
u
v
w
得两个偏导数存在, 且可用下列公式计算:
z x
z u
u x
z v
v x
z w
w x
ux
z y
z u u y
z v
v y
z w
w y
zv wy
多元复合函数的求导法则
例 设z
u2
1 v2
w2
,u
x2
y2,v
x2
x
x
z y z x x y
隐函数的求导公式
设方程 xy yz zx 1 确定了隐函数
z
y
z
z
z(
x,
y),
试求
2z x 2

复合函数求偏导

复合函数求偏导

w w du w v w t x u dx v x t x
2x w y w yz w, u v t
w y

w v

v y

w t

t y

x
w v

xz
w. t
w w t xy w. z t z t
3.设函数w=f(u,v)有连续偏导数,而 u (x), v (x)
可导,则复合函数
z f [(x), (x)]
只是自变量x的函数, 求z对x的导数 dz .
dx
可得
dz z du z dv.
(5)
dx u dx v dx
在这里,函数z是通过二元函数z=f(u,v)而成为x的
x
x
例1
设 z eu sinv,u xy,v x y, 求 z , z . x y
解法1 得
z z u z v x u x v x
eu sin v y eu cos v 1
exy[ y sin(x y) cos(x y)],
x y
自变量x到达z的路径有二条,第一路径上只有一
个函数,即z是x的函数.第二路径上有两个函数z和v.自 变量y到达z的路径只有一条,于是 z , z 的偏导数
x y 公式应是:
z f f v,
x x v x z f v .
(6)
y v y
一元复合函数.因此,z对x的导数 dz 又称为z对x的全 dx
导数.对公式(5)应注意,由于z,u,v这三个函数都是x
的一元函数,故对x的导数应写成 dz , du , dv ,而不能

复合函数的偏导数

复合函数的偏导数

由于函数z f (u, v)在点(u, v)有连续偏导数
z

z u
u

z v
v

1u

2v,
当u 0,v 0时, 1 0, 2 0
z tz u源自u tz v

v t

1
u t


2
v t
当t 0时, u 0,v 0
证: 把 u (x2 y2 )看作是由函数
u (z)及 z x2 y2
复合而成,分别对 x 与 y求导得
u (z) 2x, u (z) 2y,
x
y
从而 x u y u 2xy(z) 2xy(z) 0.
y x
例8 设z f (u, x, y), 其中 f 具有对各变量的连续的 二阶偏导数,且 u xey , 求 2 z . yx
ux
zv
z z u z v z w y u y v y w y
wy
特殊地 z f (u, x, y) 其中 u ( x, y)
即 z f [( x, y), x, y], 令 v x, w y,
v 1, w 0,
x
x
其中 fij表示 f 先对第i个变量求导,再对第j个求二阶偏导.
三、小结
1、链式法则 (特别要注意课中所讲的特殊情况)
2、全微分形式不变性 (理解其实质)
思考题
设z f (u,v, x),而u ( x) ,v ( x),
则 dz f du f dv f , dx u dx v dx x
中的 y 看作不变而对x 的偏导数 变而对x 的偏导数

6-5多元复合函数求导法则和隐函数求导公式

6-5多元复合函数求导法则和隐函数求导公式

z z x z y
v x v y v

y x2 y2
1
x x2 y2
(1)
y x x2 y2 ,

z z
u v

2y x2 y2
2(u v) (u v)2 (u v)2
uv

.
u2 v2
例3 设 z u2v 3uv4 , u et ,v sin t, 求 dz .
情形(1) z f (u,v, w), u (x, y),v (x, y), w (x, y),

z
z u z v z w
ux
x u x v x w x z
v
z z u z v z w
wy
y u y v y w y
1. 一个方程的情形
定理6.5.2(隐函数存在定理) 设函数F(x , y) 在点(x0 , y0 ) 的某一 邻域内有连续的偏导数,且 F( x0 , y0 ) 0, Fy( x0 , y0 ) 0, 则方程
F(x , y) = 0 在点 (x0 , y0 )的某一邻域内总能唯一确定一个连续且 有连续导数的函数 y = f (x), 使得 y0 = f ( x0 ), 并且
u x

z v
v x

dx


z u
u y

z v
v y
dy

z
u

u dx x

u y
dy

z v

v x
dx

v y
dy

z du z dv. u v

04-2.多元复合函数的偏导数(二)PPT

04-2.多元复合函数的偏导数(二)PPT
et (cos t sin t ) cos t.
二、链式法则(一元套多元)
定 理 z f (u)在 点 u是 可 导 ,u ( x, y)在( x, y)
具 有 连 续 偏 导 数 , 则 复 合 函 数 z f (( x, y))
在点( x, y)可微,且有
x
z dz u x du x
z
u
y
z dz u y du y
其它情况 z f ( x,u),u ( x, y)则z f ( x,u ( x, y))
z f z u
x
x x u x
z
x
x既是自变量, 也是中间变量
z z u
y u y
u
f 不 能 写 成 z
y
x
x
例2
设u
22
ex y
2
z
,z
2
x
sin
y,求
上定理的结论可推广到中间变量多于两个的情况.
dz z du z dv z dw 如 dt u dt v dt w dt
u
z
v
t
w
以上公式中的导数 d z 称为全导数.
dt
例 1 设z uv sin t ,而u et ,v cos t , 求全导数dz . dt
解 dz z du z dv z dt u dt v dt t vet usin t cos t et cos t et sin t cos t
u
,
u
x y

u f u z 2 xe x2 y2z2
2 22
2zex y z •2x sin y
x x z x
u f u z 2 ye x2 y2z2

6-4复合函数求导法则

6-4复合函数求导法则

u x
y
y
x
例 1 设 z = e sin v ,而u = xy ,v = x + y ,
u
∂z ∂z 求 和 . ∂ x ∂y
例 2 设 z = uv + sin t ,而 u = e t ,v = cos t ,
dz 求全导数 . dt
z = (x 2 + ln y )cos( x +3y ), 求zx , zy . 例3
y 例4: z = f ( ),f可微, 证明 : xz x + yz y = 0 x
例5 z = f x , x 2 + y 2 , xy , 求 ∂z , ∂z . ∂x ∂y
(
)
dz 例6 z = f (xy, x + y ), y = ϕ (x ), 其中,f,ϕ 可微, 求 dx
2 2
设w = ln(r 2 + s 2 + t 4 ), 其中,r = g (s, t ), s = ϕ (t ), 例7 dw 求 . dt
u
x
z
v
y
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ , ∂x ∂u ∂x ∂v ∂x
∂z ∂z ∂u ∂z ∂v ⋅ = + ⋅ . ∂y ∂u ∂y ∂v ∂y
类似地再推广, 类似地再推广,设u = φ ( x , y ) 、v = ψ ( x , y ) 、
w = w( x , y ) 都在点( x , y ) 具有对 x 和 y 的偏导数,复合 的偏导数,
u v w
t
dz . 例1.设z=arcsin(u-v),u=e ,v=cos t, 求 设 dt . 法一:按链式法则 按链式法则: 法一 按链式法则

复合函数求偏导解读

复合函数求偏导解读

如果函数z不含v,只是u的函数,于是公式(5)变成
dz dz du. dx du dx 这正是一元复合函数的求导公式.
4.设函数z=f(x,v)有连续偏导数,v(x,y)有偏导数,
求复合函数 zf[x,(x,y)的]偏导数 z , z .
x y
自变量x到达z的路径有二条,第一路径上只有一
个函数,即z是x的函数.第二路径上有两个函数z和v.自 变量y到达z的路径只有一条,于是 z , z 的偏导数
免混淆,将公式(6)右端第一项写 f ,而不写为 z .
x
x
பைடு நூலகம்
例1

z e u sv i,u n x,v y x y ,求
z x
,
z y
.
解法1 得
zzuzv x ux vx
eusivn yeuco v1 s
ex[y ysix ny )( co x y s), (]
zzuzv y u y v y
(2) (3)
2.设函数w=f(u,v)有连续偏导数,而 u(x,y,z),
v(x,y,z)都有偏导数,求复合函数
w f[( x ,y ,z )( ,x ,y ,z )]
的偏导数 w,w,w . x y z
借助于结构图,可得
w w u w v, x u x v x
wwuw v,
(4)
y u y v y
x y 公式应是:
z f f v,
x x v x z f v.
(6)
y v y
注意: 这里的 z 与f 是代表不同的意义.其中 z
x x
x
是将函数 zf[x,(x,y)中]的y看作常量而对自变量x
求偏导数,而 f 是将函数f(x,v)中的v看常量而对第一 x

复合函数求偏导解读

复合函数求偏导解读

z f f v , x x v x (6) z f v . y v y
z z f 注意: 这里的 与 是代表不同的意义.其中 x x x 是将函数 z f [ x, ( x, y )] 中的y看作常量而对自变量x f 求偏导数,而 是将函数f(x,v)中的v看常量而对第一 x 个位置变量x求偏导数,所以两者的含意不同,为了避 f 免混淆,将公式(6)右端第一项写 ,而不写为z . x x
z 由结构图看出自变量x到达z的路径有三条,因此 x 由三项组成.而每条路径上都有一个函数和一个中间变
量,所以每项是函数对中间变量及中间变量对其相应
自变量的偏导数乘积,即
z z u z v z w . x u x v x w x
同理可得到,
(2)
公式(*)与结构图两者之间的对应关系是:偏导数
式(*)由两项组成.
(2)公式(*)每项偏导数乘积因子的个数,等于该条路 径中函数及中间变量的个数.如第一条路径 x u z, 有一个函数z和一个中间变量u,因此,第一项就是两 z u 个偏导数 与 的乘积. u x 复合函数结构虽然是多种多样,求复合函数的偏 导数公式也不完全相同,但借助函数的结构图,运用 上面的法则,可以直接写出给定的复合函数的偏导数 的公式.这一法则通常形象地称为链式法则.
如何求出函数z对自变量x,y的偏导数呢?
定理8.5 设函数 u ( x, y ), v ( x, y )在点(x,y)处有偏 导数,而函数z=f(u,v)在对应点(u,v)有连续偏导数,则 复合函数 z f [ ( x, y ), ( x, y )] 在点(x,y)处的偏导数 z z 存在,且有下面的链式法则: , x y z z u z v , x u x v x (1) z z u z v . y u y v y 复合函数的结构图是

多元复合函数求偏导数课件

多元复合函数求偏导数课件

(2)若曲面方程为(显函数形式)
z f (x, y)
则可写为隐函数形式 f (x, y) z 0
曲面上
M
点的法向量为
0
n fx, fy, 1
(六)方向导数与梯度
1. 方向导数的定义
f lim f (x x, y y) f (x, y)
l 0
2.计算公式:若 z f (x, y) 可微,则
2, 6
所求方程为 即
2
x
4 6
y
2 6
z
2 6
0
2x y z 2 6 0

u
x2 a2
y2 b2
z2 c2
在点
M ( x0 ,
y0 , z0 )
处沿点
的向径 r0 的方向导数,问 a,b,c 具有什么关系时
此方向导数等于梯度的模?

r0 x0 , y0 , z0 ,
r0
偏导数,则对于每一点(x, y),向量
gradf
f x
,
f y
称为z f (x, y)在点 (x, y)的梯度。
梯度与方向导数的关系:
梯度的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值。
(七)函数的极值﹑最大值和最小值
1.极值的必要条件:
若 z f (x, y) 在点 x0, y0 处有极值,则
设 是一个点集,如果对于每一点P
变量 z 按照一定的法则总有确定的值和它
对应,则称 z 是点 P 的函数,记为
z f (P)
• 当 P R 时, z f (P) f (x) 为一元函数;
• 当 P R2 时,
z f (P) f (x, y) 为二元函数;

6-5 复合函数的偏导数

6-5  复合函数的偏导数

y 1 − = cos ucos v ( ydx + xdy ) − sin usin v (− 2 dx + dy ) x x = ( y cos u cos v + y sin u sin v ) dx 2 x
1 + ( x cos u cos v − sin u sin v ) dy x y ∂z = y cos u cos v + 2 sin u sin v x ∂x 1 ∂z = x cos u cos v − sin u sin v x ∂y
∂z ∆z ∂f ∂u ∂f ∂v 因此 = lim = ⋅ + ⋅ ∆x → 0 ∆ x ∂x ∂u ∂x ∂v ∂x
ο (ρ )
同理可证: 同理可证:
∂z ∂z ∂u ∂z ∂v ⋅ = + ⋅ . ∂y ∂u ∂y ∂v ∂y
III: 再推广,设 u = φ ( x , y ) 、 = ψ ( x , y )、 = w( x , y ) 再推广, v w 的偏导数, 都在点 ( x , y ) 具有对 x 和 y 的偏导数,复合函数
2
∂f 2′ ∂f 2′ ∂u ∂f 2′ ∂v ′′ ′′ = f 21 + xyf 22 ; = ⋅ + ⋅ ∂u ∂z ∂v ∂z ∂z ∂ 2w ′′ ′′ ′′ ′′ = f11 + xyf12 + yf 2′+ yz( f 21 + xyf 22 ) 于是 ∂x∂z
′′ ′′ ′′ = f11 + y( x + z ) f12 + xy 2 zf 22 + yf 2′.
u v w
x
y
IV:特殊地 特殊地

高等数学-电子课件04第九章 第4节多元复合函数求导法则

高等数学-电子课件04第九章 第4节多元复合函数求导法则

u y v y
z (udxudy) z ( vdx v dy)
u x y
v x y
z du z dv
u
v
这说明,无论 u , v 是自变量还是中间变量, 其全微分表
达式一样, 这性质叫做全微分形式不变性 .
15
例 6. zeusiv,n ux,v yxy,求 z, z.
解: dzd(eu sinv )
第四节 多元复合函数的求导法则
一元复合函数 yf(u),u(x)
求导法则 d y d y du
dx du dx
微分法则 d y f(u )d u f(u )(x )dx
推广 (1)多元复合函数求导的链式法则 (2)多元复合函数的全微分
2
一. 复合函数求导的链式法则
定理 如果函数 u(t),v(t)都在点 t可导,函数
x2z2 y2z2 (x2y2)(fuufvv)
14
二. 复合函数的全微分
设函数 z f( u ,v ) ,u ( x ,y ) ,v ( x ,y ) 都可微,
则复合函数 zf((x,y),(x,y))的全微分为
dzzdxzdy x y
(zuzv)dx (zuzv)dy
u x v x
f
uv
x yxy
z x
2xf x2 [uf uxfvxv]
2x f x2f1(xy2)x2f2y
12
x
2x f yf1x2yf2
f1( f2)
uy
vx
2z xy
y
2x y(f) y(yf1)x2 y(yf2 )
2x[f uf v] u y v y
f1y[ fu1 u yfv1 yv]

多元复合函数的偏导数

多元复合函数的偏导数

z x v u v 1 u x ( u v ln u ) v x 因此 2 x ( x y ) ( x 2 y 2 ) x y 1 ( x 2 y 2 ) x y ln( x 2 y 2 ) 类似可得 z y .
z z dz du dv u v ( v u v 1 ) du ( u v ln u) dv (v uv 1 ) ( ux dx u y dy ) (uv ln u) (v x dx v y dy ) [v uv 1ux (uv ln u) v x ]dx [v uv 1u y (uv ln u)v y ]dy
三. 复合3 型
定理 3. 设 z f (u, v ) 在点(u,v) 处可微, u ( x , y ) , v ( x, y ) 在点(x,y) 处可微, 则复合函数 z f [ ( x , y ), ( x , y )] 在 点 (x,y) 处可微, 且
z z u z v ; x u x v x
z z u z v . y u y v y
注: 若只求偏导数, 则要求u, v 偏导数存在就可以了。 但必须要求外层函数 f 可微。
p f ( x 2 y 2 z , x y z ), f 具有二阶偏导数, 例 4. 设 求 p x , p xz , p yz .
当 z f (u, v ) 不是复合函数时也有 dz f1 ' du f 2 ' dv . 这称为一阶全微分不变性。 高阶全微分不具有不变性。
例 8. 设 z ( x 2 y 2 ) x y , 求 z x , z y . 记 解: u x 2 y 2 , v x y , 则 z u v ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档