2019届高三数学二模试题
部分区(五区联考)2019届高三二模数学(文)试题及答案
天津市部分区2019年高三质量调查试卷(二)数学(文)试题参考答案与评分标准一、选择题:(本大题共8个小题,每小题5分,共40分)二、填空题:(本大题共6个小题,每小题5分,共30分)9.5 10.e −1 11.1612.(x +1)2+(y +1)2=2 13.92 14.(0,1)三、解答题:(本大题共6个小题,共80分)15.解:(Ⅰ)∵(3a +b )cos C +c cos B =0,由sin sin sin a b c A B C== ……1分 ∴(3sin A +sin B )cos C +sin C cos B =0, ………………………………2分 ∴3sin A cos C +sin (B +C )=0, ……………………………………………4分 在∆ABC 中,由于sin (B +C )=sin A ≠0, ……………………………………5分 ∴cos C =13−. ………………………………………………....…………6分 (Ⅱ)∵c =√6,由(Ⅰ)及由余弦定理,得6=a 2+b 2−2ab cos C ,……7分即6=a 2+b 2−2ab ×(13−), ∴a 2+b 2+23ab =6,∴(a +b )2−43ab =6.(※) ……………………9分由(Ⅰ)知sin C =√1−cos 2C =3. ……………………10分由题意,得S ∆ABC =12ab sin C =4,∴ab =94. ………………………12分 结合(※)式,得a +b =3. ……………………………………………13分16.解:(Ⅰ)因为表中所有应聘人数为5334671000+=,………………………1分被录用的人数为264169433+=. …………………………………2分 所以,从表中所有应聘人员中随机选择1人,此人被录用的概率约为P =4331000. …………………………………………4分 (Ⅱ)记应聘D 学科的男性为123,,A A A ,应聘D 学科的女性为123,,B B B ,从应聘D 学科的6人中随机选择2人,共有15种结果:12{,},A A 13{,},A A 11{,},A B1213{,},{,}A B A B ,23{,},A A 212223{,},{,},{,}A B A B A B ,3132{,},{,},A B A B33{,}A B ,121323{,},{,},{,}.B B B B B B ……………………………………8分事件M “抽取的2人性别不同”情况有9种:11{,},A B 1213{,},{,}A B A B ,212223{,},{,},{,}A B A B A B ,3132{,},{,},A B A B33{,}.A B …………………………………………10分 易得,其概率为93=155…………………………………………12分 所以事件M 发生的概率为35 ……………………………13分17.解:(Ⅰ)如图所示,四边形BCDE是等腰梯形,所以DE∥BC.所以∠ADE就是异面直线AD与BC所成的角,……2分在∆ADE中,AD=AE.又O为DE的中点,所以AO⊥DE.在∆ADO中,AD=√5,AO=2,所以异面直线AD与BC所成角的正弦值为5.……5分(Ⅱ)由(Ⅰ)知,AO⊥DE. ………………………………………6分因为平面ADE⊥平面BCED,平面ADE∩平面BCED=DE,且AO⊂平面A1DE,所以AO⊥平面BCED,…………………………………………………… 7分所以CO⊥AO.……………………………………………………………8分在∆OBC中,BC=4,易得OB=OC=2√2,所以CO⊥BO,又因为AO∩BO=O,所以CO⊥平面AOB. ……………………………9分又CO⊂平面AOC,所以平面AOB⊥平面AOC.……………………………………………10分(Ⅲ)由(Ⅱ)知CO⊥平面AOB,所以直线AC与平面AOB所成角就是∠CAO. ……………………………11分在Rt∆AOC中,OC=2√2,AO=2,所以tan∠CAO=OCOA=√2,所以直线AC与平面AOB所成角的正切值为√2.………………………13分18.解:(Ⅰ)设等比数列{a n}的公比为q,………………………………………1分由{a 4−2a 3=9,a 2=3 得{a 2(q 2−2q )=9,a 2=3………………………………2分 解得3q =或1q =-. …………… …………………………………………3分因为数列{a n }为正项数列,所以q =3, …………………………………5分所以,首项a 1=2a q=1, 故其通项公式为a n =3n−1. ………………………………………………6分(Ⅱ)由(Ⅰ)得b n =(2n −1)∙log 3a 2n+2=(2n −1)(2n +1), ………8分 所以11111()(21)(21)22121bn n n n n ==−−+−+…………………………10分 所以12111111111(1)23352121n n T b b b n n =+++=−+−++−−+L L 11=242n −+ 所以T n <12. …………………………………………………………………13分 19.解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得2c a =且22211a b+= ,又因为a 2=b 2+c 2, ……………………………3分 解得a 2=4,b 2=2.所以,椭圆C 的方程为22142x y += . …………………………………………5分 (Ⅱ)易知,“椭圆C 上存在点P ,使得∠APB =90°”等价于“存在不是椭圆左、右顶点的点P ,使得PA ⃗⃗⃗⃗⃗⃗ ∙PB ⃗⃗⃗⃗⃗⃗ =0成立”. …………………………………6分依题意,点A (−2,0),设B (t,0),P (m,n ),则有m 2+2n 2=4,① ……7分且PA⃗⃗⃗⃗⃗⃗ =(−2−m,−n ),PB ⃗⃗⃗⃗⃗⃗ =(t −m,−n ), 所以(−2−m,−n )∙(t −m,−n )=0,即(−2−m )(t −m )+n 2=0. ② …………………………………………9分由①得, n 2=242m −代入②,得 (−2−m )(t −m )+242m −=0,③ …………………………………………10分 因为−2<m <2,所以③化为m −t +22m −=0, 即m =2t −2. ………………………………………………………………12分所以−2<2t −2<2,解得0<t <2.故所求点B 的横坐标的取值范围是(0,2). ………………………………14分20.解:(Ⅰ)由a =0,得f (x )=(x −3)e x ,所以f′(x )=(x −2)e x , ………………………………2分由f ′(x )<0得x <2, 由f ′(x )>0得x >2,所以,函数()f x 的单调增区间是()2+∞,;单调减区间是()2−∞,.………4分 (Ⅱ)f (x )=(x −3)[e x +a (x −3)],易得函数f (x )有一个零点x =3. ……………………………………………5分令g (x )=e x +a (x −3).1)若a =0,则g (x )=e x >0,g (x )无零点,所以函数f(x)只有一个零点;………………………………………6分2)若a≠0,则g′(x)=e x+a,①当a>0时,有g′(x)>0,所以函数g(x)在(−∞,+∞)上单调递增,而g(1a−)=e−1a−1−3a<0, g(3)=e3>0,此时函数g(x)在1(3)a−,内有一个零点,所以f(x)有两个零点. ……………………………………………………7分②当a<0时,由g′(x)=e x+a=0,得x=ln(−a),所以函数g(x)在区间(−∞,ln(−a))单调递减,在区间(ln(−a),+∞)单调递增,所以函数g(x)min=g(ln(−a))=a[ln(−a)−4]. …………………………8分(ⅰ)当ln(−a)−4<0,即−e4<a<0时,g(x)min=g(ln(−a))=a[ln(−a)−4]>0,此时函数g(x)在其定义域内无零点,所以函数f(x)只有一个零点.(ⅱ)当ln(−a)−4=0,即a=−e4<0,此时函数g(x)有一个零点为4,所以函数f(x)有两个零点.(ⅲ)当ln(−a)−4>0,即a<−e4时,g(x)min<0,此时函数g(x)有两个零点,因为(3)0g≠,所以这两个零点均不为3.所以函数()f x有三个零点. ………………………………………………12分综上述,当a=0或−e4<a<0时,函数f(x)只有一个零点;当a>0或a=−e4时,函数f(x)有两个零点;当a<−e4时,函数f(x)有三个零点. ………………………14分。
2019年高三二模数学(理科)(含答案)
2019年高三二模数学(理科)一、选择题(本大题共12小题,共60分)1.计算=()A. B. i C. D. 12.已知集合A={x∈N|x≤6},B={x∈R|x2-4x>0},则A∩B=()A. 5,B.C. D. 或3.已知{a n}为等差数列,且a7-2a4=-1,a3=0,则公差d=()A. B. C. D. 24.如图所示,半径为1的圆O是正方形MNPQ的内切圆.将一颗豆子随机地扔到正方形MNPQ内,用A表示事件“豆子落在扇形OEF(阴影部分)内”,则P(A)=()A. B. C. D.5.已知a,b>0且a≠1,b≠1,若log a b>1,则()A. B. C.D.6.执行如图所示的程序框图,则输出的k=()A. 7B. 8C. 9D. 107.已知函数f(x)=,则y=f(x)的图象大致为()A. B.C. D.8.为了得到函数的图象,可以将函数y=cos2x的图象()A. 向左平移个单位B. 向右平移个单位C. 向右平移个单位D. 向左平移个单位9.已知变量x,y满足约束条件若目标函数的最小值为2,则的最小值为A. B. C. D.10.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC=3,则该三棱锥外接球的表面积为()A. B. C. D.11.在的展开式中的x3的系数为()A. 210B.C.D. 28012.函数f(x)=的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A. B. C. 或 D. 或二、填空题(本大题共4小题,共20分)13.点P从(-1,0)出发,沿单位圆顺时针方向运动弧长到达Q点,则Q点坐标为______.14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线与直线x+4y=0垂直,则实数a= ______ .15.已知数列{a n}中,a1=3,a2=7.当n∈N*时,a n+2是乘积a n•a n+1的个位数,则a2019=______.16.已知F是双曲线的右焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为______.三、解答题(本大题共6小题,共72.0分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.18、某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.(1)求图中的值;(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).(参考公式:,其中n=a+b+c+d)19、在平行四边形中,,.将沿折起,使得平面平面,如图.(1)求证:;(2)若为中点,求直线与平面所成角的正弦值.20、在平面直角坐标系xOy中,已知椭圆的焦距为2,离心率为,椭圆的右顶点为A.求该椭圆的方程;过点作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.21、已知函数f(x)=4x2+-a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.22、已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】解:=.故选:B.直接利用复数代数形式的乘除运算化简,再由虚数单位i的运算性质求值.本题考查复数代数形式的乘除运算,考查计算能力,是基础题.2.【答案】B【解析】【分析】本题考查了集合的化简与运算问题,以及一元二次不等式的解法,是基础题目.化简集合A、B,再根据交集的定义求出A∩B.【解答】解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2-4x>0}={x∈R|x<0或x>4},∴A∩B={5,6}.故选B.3.【答案】B【解析】【分析】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求解即可.【解答】解:设等差数列{a n}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,即,解得d=-, 故选B . 4.【答案】C【解析】解:由图可知:正方形的边长为2, S 阴==,S 正=2×2=4,则P (A )===,故选:C .由扇形的面积得:S 阴==,由几何概型中的面积型得:则P (A )===,得解.本题考查了扇形的面积及几何概型中的面积型,属简单题. 5.【答案】D【解析】解:若a >1,则由log a b >1得log a b >log a a ,即b >a >1,此时b-a >0,b >1,即(b-1)(b-a )>0,若0<a <1,则由log a b >1得log a b >log a a ,即b <a <1,此时b-a <0,b <1,即(b-1)(b-a )>0, 综上(b-1)(b-a )>0, 故选:D .根据对数的运算性质,结合a >1或0<a <1进行判断即可.本题主要考查不等式的应用,根据对数函数的性质,利用分类讨论的数学思想是解决本题的关键.比较基础. 6.【答案】C【解析】解:∵=-,∴s=++…+=1…+-=1-,由S≥得1-≥得≤,即k+1≥10,则k≥9,故选:C.由程序框图结合数列的裂项法进行求解即可.本题主要考查程序框图的应用,根据数列求和以及裂项法是解决本题的关键.7.【答案】A【解析】解:令g(x)=x-lnx-1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选:A.利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.8.【答案】B【解析】解:由题意y=cos2x=sin(2x+),函数y=sin(2x+)的图象经过向右平移,得到函数y=sin[2(x-)+]=sin (2x-)的图象,故选:B.先根据诱导公式进行化简y=cos2x为正弦函数的类型,再由左加右减上加下减的原则可确定平移的方案.本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减,注意x的系数的应用,以及诱导公式的应用.9.【答案】A【解析】【分析】本题考查了简单线性规划问题和基本不等式的应用求最值,关键是求出a+b=2,对所求变形为基本不等式的形式求最小值.【解答】解:约束条件对应的区域如图:目标函数z=ax+by(a>0,b>0)经过点C(1,1)时取最小值为2,所以a+b=2,则+=(+)(a+b)=(4+)≥2+=2+;当且仅当a=b,并且a+b=2时等号成立;故选A.10.【答案】C【解析】解:将该三棱锥补成正方体,如图所示;根据题意,2R=,解得R=;∴该三棱锥外接球的表面积为=4πR2=4π•=27π.S球故选:C.把该三棱锥补成正方体,则正方体的对角线是外接球的直径,求出半径,计算它的表面积.本题考查了几何体的外接球表面积的应用问题,是基础题.11.【答案】C【解析】【分析】本题主要考查二项式定理的应用,二项展开式的通项公式,体现了分类讨论与转化的数学思想,属于基础题.由于的表示7个因式(1-x2+)的乘积,分类讨论求得展开式中的x3的系数.【解答】解:由于的表示7个因式(1-x2+)的乘积,在这7个因式中,有2个取-x2,有一个取,其余的因式都取1,即可得到含x3的项;或者在这7个因式中,有3个取-x2,有3个取,剩余的一个因式取1,即可得到含x3的项;故含x3的项为××2×-××23=210-1120=-910.故选C.12.【答案】D【解析】【分析】作出函数的图象,根据图象的平移得出a的范围.本题考查了图象的平移和根据图象解决实际问题,是数型结合思想的应用,应熟练掌握.【解答】解:画出函数f(x)=的图象如图:与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则可使log2x图象左移大于1个单位即可,得出a>1;若使log2x图象右移,则由log2(1+a)=-2,解得a=-,∴a的范围为a>1或a≤-,故选:D.13.【答案】(-,)【解析】解:如图所示,点P沿单位圆顺时针方向运动弧长到达Q点,则∠xOQ=,∴Q点坐标为(cos,sin),即(-,).故答案为:.根据题意画出图形,结合图形求出点Q的坐标.本题考查了单位圆与三角函数的定义和应用问题,是基础题.14.【答案】1【解析】【分析】本题考查导数的几何意义,属于基础题.【解答】解:由f(x)=ax3+x+1,得f′(x)=3ax2+1,∴f′(1)=3a+1,即f(x)在x=1处的切线的斜率为3a+1,∵f(x)在x=1处的切线与直线x+4y=0垂直,∴3a+1=4,即a=1.故答案为1.15.【答案】1【解析】解:由题意得,数列{a n}中,a1=3,a2=7,当n≥2时,a n+1是积a n a n-1的个位数;则a3=1,依此类推,a4=7,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,数列{a n}是以周期T=6的周期数列,则a2019=a3+336×6=a3=1;故答案为:1.根据题意可得:由数列的递推公式可得a4=7,a5=7,a6=9,a7=3,a8=7,a9=1,a10=7,据此可得到数列的一个周期为6,进而可得a2019=a3+336×6=a3,即可得答案.本题考查数列的递推公式以及数列的周期,关键是分析数列{a n}的周期,属于基础题.16.【答案】5【解析】解:∵F是双曲线的右焦点,A(1,4),P是双曲线右支上的动点∴而|PA|+|PF|≥|AF|=5当且仅当A、P、F′三点共线时等号成立.故答案为:5.根据PA|+|PF|≥|AF|=5求得答案.本题考查了三点共线,距离公式,属于基础题17.【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知2cos C(a cos B+b cos A)=c,利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin[π-(A+B)]=sin C,∴2cos C sinC=sin C,∴cos C=,∵C为三角形ABC的内角,∴C=;(Ⅱ)由余弦定理得7=a2+b2-2ab•,∴(a+b)2-3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2-18=7,∴a+b=5或a+b=-5(舍去)∴△ABC的周长为5+.【解析】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变换,熟练掌握定理及公式是解本题的关键.(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出C的度数;(Ⅱ)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.18.【答案】解:(Ⅰ)由频率分布直方图各小长方形面积总和为1,可知(2a+0.020+0.030+0.040)×10=1,解得a=0.005;(Ⅱ)由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25,所以晋级成功的人数为100×0.25=25(人),填表如下:根据上表数据代入公式可得,所以有超过85%的把握认为“晋级成功”与性别有关;(Ⅲ)由频率分布直方图知晋级失败的频率为1-0.25=0.75,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以X可视为服从二项分布,即,,故,,,,,所以X的分布列为数学期望为,或().【解析】(Ⅰ)由频率和为1,列出方程求a的值;(Ⅱ)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(Ⅲ)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量X服从二项分布,计算对应的概率值,写出分布列,计算数学期望;本题考查了频率分布直方图与独立性检验和离散型随机变量的分布列、数学期望的应用问题,是中档题.19.【答案】(I)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD;(II)解:过点B在平面BCD内作BE⊥BD,如图,由(I)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD,以B为坐标原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,依题意得:B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),,则,设平面MBC的法向量,则,即,取z0=1,得平面MBC的一个法向量,设直线AD与平面MBC所成角为θ,则,即直线AD与平面MBC所成角的正弦值为.【解析】本题考查面面垂直的性质及线面垂直的判定与性质,同时考查利用空间向量求线面角.(I)利用面面垂直的性质得AB⊥平面BCD,从而AB⊥CD;(II)建立如图所示的空间直角坐标系,求出平面MBC的法向量,设直线AD与平面MBC所成角为θ,利用线面角的计算公式即可得出.20.【答案】解:(1)由题意可知:椭圆+=l(a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2-c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x-)-,则,整理得:(2k2+1)x2-(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)-2k-2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1-)-]x2+[k(x2-)-]x1=2kx1x2-(k+)(x1+x2)=-,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.【解析】本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题.(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2-c2=1,即可求得椭圆的方程;(2)则直线PQ的方程:y=k(x-)-,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.21.【答案】解:(1)函数f(x)=4x2+-a,则y=xf(x)=4x3+1-ax的导数为y′=12x2-a,由题意可得12-a=0,解得a=12,即有f(x)=4x2+-12,f′(x)=8x-,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,-7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x-1),即为y=7x-14;(2)由f(x)=4x2+-a,导数f′(x)=8x-,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3-a,由f(x)有两个零点,可得3-a=0,即a=3,零点分别为-1,.令t=g(x),即有f(t)=0,可得t=-1或,则f(x)=-1-b或f(x)=-b,由题意可得f(x)=-1-b或f(x)=-b都有3个实数解,则-1-b>0,且-b>0,即b<-1且b<,可得b<-1,即有a+b<2.则a+b的范围是(-∞,2).【解析】(1)求得函数y=xf(x)的导数,由极值的概念可得a=12,求出f(x)的导数,可得切线的斜率和切点,运用点斜式方程可得切线的方程;(2)求出f(x)的导数和单调区间,以及极值,由零点个数为2,可得a=3,作出y=f(x)的图象,令t=g(x),由题意可得t=-1或t=,即f(x)=-1-b或f(x)=-b都有3个实数解,由图象可得-1-b>0,且-b>0,即可得到所求a+b的范围.本题考查导数的运用:求切线方程和单调区间、极值,考查函数零点问题的解法,注意运用换元法和数形结合的思想方法,考查运算能力,属于中档题.22.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。
部分区(五区联考)2019届高三二模数学(理)试题及答案
天津市部分区2019年高三质量调查试卷(二)数学(理)试题参考答案与评分标准一、选择题:(本大题共8个小题,每小题5分,共40分)二、填空题:(本大题共6个小题,每小题5分,共30分)9.1255i - 10.30 11.83 12.相交 13. 14.84 三、解答题:(本大题共6个小题,共80分)15.解:(Ⅰ)由题意,得2()cos sin f x x x x =− ………………………………1分1sin 2cos2)22x x =−+…………………………………3分 1sin 2222x x =−−sin(2)32x π=−−.…………5分 所以()f x 的最小正周期22T p ==p ,其最大值为12−. …6分 (Ⅱ)令2,3z x π=−则有函数2sin y z =的单调递增区间是2,2,22k k k ππ⎡⎤−+π+π∈⎢⎥⎣⎦Z . ………7分由222232k x k πππ−+π≤−≤+π,得5,.1212k x k k ππ−+π≤≤+π∈Z ………9分 设5,,,331212A B x k x k k π2π⎧ππ⎫⎡⎤==−+π≤≤+π∈⎨⎬⎢⎥⎣⎦⎩⎭Z , 易知,312A B π5π⎡⎤=⎢⎥⎣⎦I . ………………………………………………………12分 所以,当,33x π2π⎡⎤∈⎢⎥⎣⎦时,()f x 在区间,312π5π⎡⎤⎢⎥⎣⎦上单调递增; 在区间1235π2π⎡⎤⎢⎥⎣⎦,上单调递减. ………………13分 16.解: (Ⅰ)设事件A 为“甲恰好闯关3次才闯关成功的概率”,则有2121125()1(1)23322318P A ⎛⎫=⨯−⨯+−⨯⨯= ⎪⎝⎭, ……………………………4分 (Ⅱ)由已知得:随机变量ξ的所有可能取值为2,3,4, ……………………………5分所以,()211232721221P ξ==⨯+⨯=, ………………………………………6分 12112111(3)1(1)233223223313P ξ⎛⎫==⨯−⨯+−⨯⨯+⨯⨯= ⎪⎝⎭, ……………………8分 ()111411223212P ξ⎛⎫⎛⎫==−⨯⨯−= ⎪ ⎪⎝⎭⎝⎭. ……………………………………10分从而…………………………………………………12分 所以,7115()234123122E x =???. …………………………………13分17.解:(Ⅰ)证明:因为,Q P 分别是,AE AB 的中点, 所以,1//,2PQ BE PQ BE =,……2分 又1C//,2D BE DC BE =, 所以,//PQ DC ,PQ ⊄平面ACD ,DC ⊂平面ACD ,…………3分所以,//PQ 平面ACD . ……4分(Ⅱ)因为DC ⊥平面ABC ,90.ACB ∠=︒以点C 为坐标原点,分别以,,CD CA CB u u u r u u u r u u u r 的方向为,,z x y 轴的正方向建立空间直角坐标系. ……………………………………………………………………………5分 则得(0,0,0),(0,4,0),(0,0,4),(2,0,0),(4,0,4)C A B D E , ………………………6分所以(0,4,4),(2,0,4)AB DE =−=u u u r u u u r ,……………………………………………7分所以cos ,5AB DE AB DE AB DE⋅==u u u r u u u r u u u r u u u r u u u r u u u r , ………………………………………8分 所以异面直线AB 与DE所成角的余弦值5. …………………………………9分(Ⅲ)由(Ⅱ)可知(0,4,4)AB =−u u u r ,(4,4,4)AE =−u u u r ,设平面ABE 的法向量为(),,,n x y z r =00n AB n AE ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 则, ⎩⎨⎧=+−=+−0444044z y x z y (0,1,1)n r 所以=. ………………………10分 由已知可得平面ACD 的法向量为以(0,0,4)CB u u u r =,所以cos ,2n BC n BC n BC⋅==r u u u r r u u u r r u u u r . ………………………………………….……12分 故所求平面ACD 与平面ABE 所成锐二面角的大小为45︒.......……….………13分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,.……………………………………………1分由432293a a a −=⎧⎨=⎩得222(2)93a q q a ⎧−=⎨=⎩,.......…………………………………………2分 解得3q =或1q =-.......………………………………………………………………3分 因为数列{}n a 为正项数列,所以3q =,...………………………....………………4分 所以,首项211a a q==,..........………………………………………………………5分 故其通项公式为13n n a -=..........………………………………………………………6分(Ⅱ)由(Ⅰ)得()32221log (21)(21)n n b n a n n +=−⋅=−+,.......…………………8分 所以11111()(2n 1)(21)22121n b n n n ==−−+−+,.......………………………10分所以12111111111(1)23352121n n T b b b n n =+++=−+−++−−+L L 1112422n =−<+.......……………………………………………………13分 19.解:(Ⅰ)由椭圆的一个焦点为()11,0F −知:1c =,即221a b −=.①....………2分又因为直线11B F 的方程为0bx y b −+=2=,所以b =.……4分 由①解得24a =.故所求椭圆C 的标准方程为22143x y +=....…………………………………………5分 (Ⅱ)假设存在过点A 的直线l 适合题意,则结合图形易判断知直线l 的斜率必存在,于是可设直线l 的方程为()2y k x =−,...............…………………………………6分 由()221432x y y k x +==−⎧⎪⎨⎪⎩,得()2222341616120k x k x k ++−=−.(*).......………8分 因为点A 是直线l 与椭圆C 的一个交点,且2A x = 所以22161234A B k x x k −⋅=+,所以228634B x k k −+=, 即点2228612,3434k k B k k ⎛⎫−− ⎪++⎝⎭....……………………………………………………10分 所以2221612,3434k k OA OB kk ⎛⎫+=− ⎪++⎝⎭u u u r u u u r,即2221612,73434k k OT k k ⎫=−⎪++⎝⎭u u u r .因为点T 在圆222x y +=上,所以2222221612273434k k k k ⎡⎤⎛⎫⎛⎫⎢⎥+−= ⎪ ⎪++⎝⎭⎢⎥⎝⎭⎣⎦,……11分 化简得42488210k k −−=,解得234k =,所以k =. ………………12分 经检验知,此时(*)对应的判别式0∆>,满足题意. ………………………13分 故存在满足条件的直线l,其方程为()22y x =±−. ……………….……14分 20.解:(Ⅰ)当2a =时,()ln 2f x x x =−,所以1()2f x x'=− ...............………………1分 ()1121f '=−=−, ..........………………………………………….....……...……2分 则切线方程为()21y x +=−−,即10x y ++=. ………………....……………3分 (Ⅱ)①当0a =时,()ln f x x =有唯一零点1x =;…………………............………4分②当0a <时,则()0f x '>,()f x 是区间()0,+∞上的增函数, 因为()10f a =−>,()()10a a a f e a ae a e =-=-<,所以()()10a f f e ⋅<,即函数()f x 在区间()0,+∞有唯一零点; ………6分 ③当0a >时,令()0f x '=得1x a=, 所以,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 在区间10,a ⎛⎫ ⎪⎝⎭上是增函数; 且−∞→→)(,0x f x ;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 是在1+a ⎛⎫∞ ⎪⎝⎭,上是减函数, 且−∞→+∞→)(,x f x ;所以在区间()0,+∞上,函数()f x 的极大值为11ln 1ln 1f a a a⎛⎫=−=−− ⎪⎝⎭, …8分 由10f a ⎛⎫< ⎪⎝⎭,即ln 10a --<,解得1a e >, 故所求实数a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭. …………………………………………9分(Ⅲ)设120x x >>,由()10f x =,()20f x =,可得11ln 0x ax -=,22ln 0x ax -=,所以()1212ln ln x x a x x -=-. 所以1212ln ln x x a x x −=−…........................…10分 要证122x x a+>,只需证12()2a x x +>, 即证121212ln ln ()2x x x x x x −⨯+>−,即()1212122ln x x x x x x ->+. …………………11分 令121x t x =>,于是()()121212221ln ln 1x x t x t x x x t −−>⇔>++, …………………12分 设函数()()()21ln 11t h t t t t -=->+,求导得()()()()222114011t h t t t t t −'=−=>++, 所以函数()h t 是()1,+∞上的增函数, 所以()()10h t h >=,即不等式()21ln 1t t t ->+成立,故所证不等式122x x a +>成立. …………………………………………………14分。
2019届高三数学二模考试试题理(含解析)
2019届高三数学二模考试试题理(含解析)一、选择题1.已知是虚数单位,复数的共轭复数是()A. B. C. 1 D. -1【答案】B【解析】【分析】先把复数化简,然后可求它的共轭复数.【详解】因为,所以共轭复数就是.故选:B.【点睛】本题主要考查复数的运算及共轭复数的求解,把复数化到最简形式是求解的关键,侧重考查数学运算的核心素养. 2.已知集合,则满足的集合的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先求解集合,然后根据可求集合的个数.【详解】因为,,所以集合可能是.故选:A.【点睛】本题主要考查集合的运算,化简求解集合是解决这类问题的关键,侧重考查数学运算的核心素养.3.设向量,满足,,则()A. -2B. 1C. -1D. 2【答案】C【解析】【分析】由平面向量模的运算可得:,①,②,则①②即可得解.【详解】因为向量,满足,,所以,①,②由①②得:,即,故选:.【点睛】本题主要考查了平面向量模和数量积的运算,意在考查学生对这些知识的理解掌握水平,属基础题.4.定义运算,则函数的大致图象是()A. B.C. D.【答案】A【解析】【分析】图象题应用排除法比较简单,先根据函数为奇函数排除、;再根据函数的单调性排除选项,即可得到答案.【详解】根据题意得,且函数为奇函数,排除、;;当时,,令,令,函数在上是先递减再递增的,排除选项;故选:.【点睛】本题主要考查了函数的奇偶性与单调性的判断,考查根据解析式找图象,意在考查学生对这些知识的理解掌握水平,属于基础题.5.已知圆:,定点,直线:,则“点在圆外”是“直线与圆相交”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】通过圆心到直线的距离与圆的半径进行比较可得.【详解】若点在圆外,则,圆心到直线:的距离,此时直线与圆相交;若直线与圆相交,则,即,此时点在圆外.故选:C.【点睛】本题主要考查以直线和圆的位置关系为背景的条件的判定,明确直线和圆位置关系的代数表示是求解的关键,侧重考查逻辑推理的核心素养.6.某程序框图如图所示,若输入的,则输出的值是()A. B.C. D.【答案】D【解析】分析】按照程序框图的流程,写出前五次循环的结果,直到第六次不满足判断框中的条件,执行输出结果.【详解】经过第一次循环得到经过第二次循环得到经过第三次循环得到经过第四次循环得到经过第五次循环得到经过第六次循环得到此时,不满足判断框中的条件,执行输出故输出结果为故选:.【点睛】本题主要考查解决程序框图中的循环结构,常按照程序框图的流程,采用写出前几次循环的结果,找规律.7.在公差不等于零的等差数列中,,且,,成等比数列,则()A. 4B. 18C. 24D. 16【答案】D【解析】【分析】根据,,成等比数列可求公差,然后可得.【详解】设等差数列的公差为,因为,,成等比数列,所以,即有,解得,(舍),所以.故选:D.【点睛】本题主要考查等差数列的通项公式,根据已知条件构建等量关系是求解的关键,侧重考查数学运算的核心素养. 8.已知,为椭圆的左右焦点,点在上(不与顶点重合),为等腰直角三角形,则的离心率为()A. B. C. D.【答案】B【解析】【分析】先根据为等腰直角三角形可得,结合椭圆的定义可求离心率.【详解】由题意等腰直角三角形,不妨设,则,由椭圆的定义可得,解得.故选:B.【点睛】本题主要考查椭圆离心率的求解,离心率问题的求解关键是构建间的关系式,侧重考查数学运算的核心素养.9.若三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.C. D.【答案】D【解析】【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【详解】根据三视图可知几何体是一个三棱锥,由俯视图和侧视图知,底面是一个直角三角形,两条直角边分别是、4,由正视图知,三棱锥的高是4,该几何体的体积,故选:.【点睛】本题主要考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.10.若的展开式中的各项系数的和为1,则该展开式中的常数项为()A. 672B. -672C. 5376D. -5376【答案】A【解析】【分析】先根据的展开式中的各项系数的和为1,求解,然后利用通项公式可得常数项.【详解】因为的展开式中的各项系数的和为1,所以,即;的通项公式为,令得,所以展开式中的常数项为.【点睛】本题主要考查二项式定理展开式的常数项,利用通项公式是求解特定项的关键,侧重考查数学运算的核心素养.11.已知函数,则的最大值为()A. 1B.C.D. 2【答案】B【解析】【分析】先化简函数,然后利用解析式的特点求解最大值.【详解】,因为,所以.故选:B.【点睛】本题主要考查三角函数的最值问题,三角函数的最值问题主要是先化简为最简形式,结合解析式的特点进行求解.12.将边长为2的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为()A. B. C. D.【答案】C【解析】【分析】由弧长公式可得,,由异面直线所成角的作法可得为异面直线与所成角,再求解即可.【详解】由弧长公式可知,,在底面圆周上去点且,则面,连接,,,则即为异面直线与所成角,又,,所以,故选:.【点睛】本题主要考查了弧长公式及异面直线所成角的作法,考查了空间位置关系的证明,意在考查学生对这些知识的理解掌握水平.二、填空题13.向平面区域内随机投入一点,则该点落在曲线下方概率为______.【答案】【解析】【分析】由题意画出图形,分别求出正方形及阴影部分的面积,再由几何概型概率面积比得答案.【详解】作出平面区域,及曲线如图,,.向平面区域,内随机投入一点,则该点落在曲线下方的概率为.故答案为:.【点睛】本题主要考查几何概型概率的求法,考查数形结合的解题思想方法,意在考查学生对这些知识的理解掌握水平.14.设,满足约束条件,则的取值范围是______.【答案】【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的取值范围.【详解】作出,满足约束条件,则对应的平面区域(阴影部分),由,得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.此时的最大值为,由图象可知当直线经过点时,直线的截距最小,此时最小.此时的最小值为,故答案为:,.【点睛】本题主要考查线性规划的应用,意在考查学生对这些知识的理解掌握水平,利用数形结合是解决线性规划题目的常用方法.15.设等差数列的前项和为,若,,,则______.【答案】8【解析】【分析】根据等差数列的通项公式及求和公式可得.【详解】因为,所以,因为,所以,设等差数列的公差为,则,解得,由得,解得.故答案为:8.【点睛】本题主要考查等差数列的基本量的运算,熟记相关的求解公式是求解的关键,侧重考查数学运算的核心素养.16.若直线既是曲线的切线,又是曲线的切线,则______.【答案】1【解析】【分析】分别设出两个切点,根据导数的几何意义可求.详解】设直线与曲线相切于点,直线与曲线相切于点,则且,解得;同理可得且,解得;故答案为:1.【点睛】本题主要考查导数的几何意义,设出切点建立等量关系式是求解的关键,侧重考查数学运算的核心素养.三、解答题17.在中,内角,,的对边分别为,,,已知.(1)若,求和;(2)求的最小值.【答案】(1),(2)【解析】【分析】(1)利用已知条件求出的余弦函数值,然后求解的值,然后求解三角形的面积;(2)通过余弦定理结合三角形的面积转化求解即可.【详解】(1)因为,代入,得,所以,,由正弦定理得,所以,.(2)把余弦定理代入,得,解得.再由余弦定理得.当且仅当,即时,取最小值.【点睛】本题主要考查三角形的解法、正余弦定理的应用、三角形的面积以及基本不等式的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,是中档题.18.一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:温度21产卵数/7个为了预报一只红玲虫在时的产卵数,根据表中的数据建立了与的两个回归模型.模型①:先建立与的指数回归方程,然后通过对数变换,把指数关系变为与的线性回归方程:;模型②:先建立与的二次回归方程,然后通过变换,把二次关系变为与的线性回归方程:.(1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数;,,;,,,,,,)【答案】(1),(2)模型①得到的预测值更可靠,理由见解析【解析】【分析】(1)把分别代入两个模型求解即可;(2)通过残差及相关指数的大小进行判定比较.【详解】(1)当时,根据模型①,得,,根据模型②,得.(2)模型①得到的预测值更可靠.理由1:因为模型①的残差平方和小于模型②的残差平方和,所以模型①得到的预测值比模型②得到的预测值更可靠;理由2:模型①的相关指数大于模型②的相关指数,所以模型①得到的预测值比模型②得到的预测值更可靠;理由3:因为由模型①,根据变换后的线性回归方程计算得到的样本点分布在一条直线的附近;而由模型②,根据变换后的线性回归方程得到的样本点不分布在一条直线的周围,因此模型②不适宜用来拟合与的关系;所以模型①得到的预测值比模型②得到的预测值更可靠.(注:以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得)【点睛】本题主要考查回归分析,模型拟合程度可以通过两个指标来判别,一是残差,残差平方和越小,拟合程度越高;二是相关指数,相关指数越接近1,则拟合程度越高.19.如图,在四棱锥中,已知底面,,,,,是上一点.(1)求证:平面平面;(2)若是的中点,且二面角的余弦值是,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)先证明平面,然后可得平面平面;(2)建立坐标系,根据二面角的余弦值是可得的长度,然后可求直线与平面所成角的正弦值.【详解】(1)平面,平面,得.又,在中,得,设中点为,连接,则四边形为边长为1的正方形,所以,且,因为,所以,又因为,所以平面,又平面,所以平面平面.(2)以为坐标原点,分别以射线、射线为轴和轴的正方向,建立如图空间直角坐标系,则,,.又设,则,,,,.由且知,为平面的一个法向量.设为平面的一个法向量,则,即,取,,则,有,得,从而,.设直线与平面所成的角为,则.即直线与平面所成角的正弦值为.【点睛】本题主要考查空间平面与平面垂直及线面角的求解,平面与平面垂直一般转化为线面垂直来处理,空间中的角的问题一般是利用空间向量来求解.20.设为抛物线:的焦点,是上一点,的延长线交轴于点,为的中点,且.(1)求抛物线的方程;(2)过作两条互相垂直的直线,,直线与交于,两点,直线与交于,两点,求四边形面积的最小值.【答案】(1)(2)32【解析】【分析】(1)由题意画出图形,结合已知条件列式求得,则抛物线的方程可求;(2)由已知直线的斜率存在且不为0,设其方程为,与抛物线方程联立,求出,,可得四边形的面积,利用基本不等式求最值.【详解】(1)如图,为的中点,到轴的距离为,,解得.抛物线的方程为;(2)由已知直线的斜率存在且不为0,设其方程为.由,得.△,设,、,,则;同理设,、,,,则.四边形的面积.当且仅当时,四边形的面积取得最小值32.线相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.21.是自然对数的底数,已知函数,.(1)求函数的最小值;(2)函数在上能否恰有两个零点?证明你结论.【答案】(1)(2)能够恰有两个零点,证明见解析【解析】【分析】(1)先求导数,再求极值。
2019届高三二模考试数学(理)试题含解析(20190903211428)
,
A. C. 【答案】 D
,
,则实数
的大小关系是( )
B. D.
【解析】
【分析】
先解出 , 的值,然后再利用指数函数、幂函数的单调性判断大小关系
.
【详解】解:因为
,
所以
,
同理可得:
,
因为函数
为单调增函数,且
,
故
,即
,
因为函数
为单调增函数,且
,
所以
,即
,
所以
,故选 D.
【点睛】本题考查了利用函数单调性比较两数大小的问题,解决问题的关键是要能从两数的关系中寻找出相应
【解析】
【分析】
为假命题,即不存在
,使
,根据这个条件得出实数
【详解】解:因为 为假命题,
所以 为真命题,即不存在
,使
,
故
,且
的取值范围 .
解得:
或
,
故选 C.
【点睛】本题考查了命题的否定,解题的关键是要将假命题转化为真命题,从而来解决问题
.
4. 已知抛物线
的焦点为 ,点 在该抛物线上,且 在 轴上的投影为点 ,则
“将军饮马”的最短总路程为
,
故选 A.
【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实
际问题转化为数学问题,建立出数学模型,从而解决问题
.
9. 已知
中,
,
,
A. 1
B. 2
【答案】 B
【解析】 【分析】
利用正弦定理求出 的值,用基底
,点 是边 的中点,则 C. 3
B.
C.
与圆 : 的离心率为( )
2019届高三数学下学期二模试卷
2019届高三数学下学期二模试卷温馨提示:本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
祝同学们考试顺利!第Ⅰ卷选择题(共40分)注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3、本卷共8小题,每小题5分,共40分。
参考公式:如果事件互斥,那么如果事件相互独立,那么、柱体的体积公式、锥体的体积公式、其中表示柱体的底面积,其中表示锥体的底面积, 表示柱体的高、表示锥体的高、一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的、 (1)设全集,集合,,则 (A)(B)()(D)(2)已知满足约束条件则的最小值为 (A)2(B)4()(D)(3)执行如图所示的程序框图,若输入的,则输出(A)(B)()(D)(4)下列结论错误的是 (A)命题:“若,则”的逆否命题是“若,则” (B)“”是“”的充分不必要条件 ()命题:“,”的否定是“,” (D)若“”为假命题,则均为假命题 (5)的图象向右平移个单位,所得到的图象关于轴对称,则的值为 (A)(B)()(D)(6)已知是定义在R上的偶函数,且在上是增函数,设则的大小关系是 (A)(B)()(D)(7)已知双曲线的右焦点为,直线与一条渐近线交于点,的面积为为原点),则抛物线的准线方程为 (A)(B)()(D)(8)在中,,,点是所在平面内的一点,则当取得最小值时,(A)(B)()(D)第Ⅱ卷非选择题(共110分)注意事项:1、用钢笔或圆珠笔直接答在答题卷上,答在本试卷上的无效。
2、本卷共12小题,共110分。
二、填空题:本大题共6小题,每小题5分,共30分、把答案填在答题卷上、 (9)如果(表示虚数单位),那么、 (10)若直线与曲线(为参数)交于两点,则、 (11)在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有种、(用数字作答)(12)一个四棱柱的各个顶点都在一个直径为2的球面上,如果该四棱柱的底面是对角线长为的正方形,侧棱与底面垂直,则该四棱柱的表面积为、 (13)若不等式对任意实数都成立,则实数的最大值为、 (14)已知函数且函数在内有且仅有两个不同的零点,则实数的取值范围是、三、解答题:本大题共6小题,共80分、解答应写出字说明,证明过程或演算步骤、 (15)(本小题满分13分)已知函数(Ⅰ)求在上的单调递增区间;(Ⅱ)在中,分别是角的对边,为锐角,若,且的面积为,求的最小值、 (16)(本小题满分13分)某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。
2019届高三数学二模试题(含解析)
2019高考数学二模试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁U B)= .2.若复数z的共轭复数满足,则复数z的虚部是.3.双曲线的准线方程是.4.某校共有学生1800人,现从中随机抽取一个50人的样本,以估计该校学生的身体状况,测得样本身高小于195cm的频率分布直方图如图,由此估计该校身高不小于175的人数是.5.命题“∀x>2,都有x2>2”的否定是.6.如图中流程图的运行结果是.7.口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,则取出的两个小球上所标数字之积为4的概率是.8.已知等差数列{a n}的前n项和为S n,a4=10,S4=28,数列的前n项和为T n,则T2017= .9.将函数y=sinxcosx的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,则实数m的最小值为.10.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则= .11.已知直线l1:x﹣2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x﹣2y+F=0交于A、C两点,其中A(﹣1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是.12.已知四面体ABCD的底面BCD是边长为2的等边三角形,AB=AC=3,则当棱AD长为时,四面体ABCD的体积最大.13.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x﹣1)+g(x﹣1)=2x,则函数f(x)= .14.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x﹣a)2+(y﹣b)2=x2+b2=a2+y2,则的最大值为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.已知△ABC的外接圆半径为1,角A,B,C的对应边分别为a,b,c,若sinB=acosC.,(1)求的值;(2)若M为边BC的中点,,求角B的大小.16.如图,在三棱柱ABC﹣A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1.17.已知椭圆C:的离心率为,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1(1)求椭圆C的方程;(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.18.数列{a n}满足,n=1,2,3,….(1)求a3,a4,并求数列{a n}的通项公式;(2)设b n=,记F(m,n)=,求证:m<n,F(m,n)<4对任意的;(3)设S k=a1+a3+a5+…+a2k﹣1,T k=a2+a4+a6+…+a2k,W k=,求使W k>1的所有k的值,并说明理由.19.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:)20.已知函数(e为自然对数的底数,m∈R).(1)求函数f(x)的单调区间和极值;(2)当时,求证:∀x>0,f(x)<x2lnx恒成立;(3)讨论关于x的方程|lnx|=f(x)的根的个数,并证明你的结论.2017年高考熟中模拟卷B.选修4-2:矩阵与变换21.已知矩阵M对应的变换将点(﹣5,﹣7)变换为(2,1),其逆矩阵M﹣1有特征值﹣1,对应的一个特征向量为,求矩阵M.C.选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,取相同的单位长度,建立极坐标系,已知曲线C1的参数方程为,(,α为参数),曲线C2的极坐标方程为,求曲线C1与曲线C2的交点的直角坐标.【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.23.在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯n关时,转n次,当次转得数字之和大于n2时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍.假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.(1)求某人参加一次游戏,恰好获得10欧元的概率;(2)某人参加一次游戏,获得奖金X欧元,求X的概率分布和数学期望.24.(1)证明:;(2)证明:;(3)证明:.2017年江苏省苏州市常熟中学高考数学二模试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.已知全集U=Z,集合A={x|0<x<5,x∈U},B={x|x≤1,X∈U},则A∩(∁U B)= {2,3,4} .【考点】1H:交、并、补集的混合运算.【分析】根据集合的基本运算进行求解即可.【解答】解:A={x|0<x<5,x∈U}={1,2,3,4},B={x|x≤1,X∈U},则∁U B={x|x>1,X∈U}={2,3,4,5,…},则A∩(∁U B)={2,3,4},故答案为:{2,3,4}2.若复数z的共轭复数满足,则复数z的虚部是 3 .【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数与虚部的定义即可得出.【解答】解:∵,∴﹣i••i=﹣i(3+4i),∴=4﹣3i.∴z=4+3i.∴复数z的虚部是3.故答案为:3.3.双曲线的准线方程是y=.【考点】KC:双曲线的简单性质.【分析】直接利用双曲线方程求解双曲线的准线方程即可.【解答】解:双曲线,可得a=1,b=,c=2,双曲线的准线方程为:y=±.故答案为:y=.4.某校共有学生1800人,现从中随机抽取一个50人的样本,以估计该校学生的身体状况,测得样本身高小于195cm的频率分布直方图如图,由此估计该校身高不小于175的人数是288 .【考点】B8:频率分布直方图.【分析】由频率分布直方图得样本身高不小于175cm的频率,由此能估计该校身高不小于175cm 的人数.【解答】解:由频率分布直方图得样本身高不小于175cm的频率为:(0.012+0.004)×10=0.16,∴估计该校身高不小于175cm的人数是:1800×0.16=288.故答案为:288.5.命题“∀x>2,都有x2>2”的否定是∃x0>2,x02≤2 .【考点】2J:命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:命题“∀x>2,x2>2”是全称命题,其否定是:∃x0>2,x02≤2.故答案为:∃x0>2,x02≤2.6.如图中流程图的运行结果是 6 .【考点】EF:程序框图.【分析】根据程序框图进行模拟计算即可.【解答】解:第一次,S=1,i=2,S>10不成立,第二次,S=1+2=3,i=3,S>10不成立,第三次,S=3+3=6,i=4,S>10不成立第四次,S=6+4=10,i=5,S>10不成立第五次,S=10+5=15,i=6,S>10成立,输出i=6,故答案为:67.口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,则取出的两个小球上所标数字之积为4的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,再由列举法求出取出的两个小球上所标数字之积包含的基本事件个数,由此能求出取出的两个小球上所标数字之积为4的概率.【解答】解:∵口袋中有大小相同的5个小球,小球上分别标有数字1,1,2,2,4,一次从中取出两个小球,基本事件总数n=,取出的两个小球上所标数字之积包含的基本事件有:(1,4),(1,4),(2,2),共3个,∴取出的两个小球上所标数字之积为4的概率p=.故答案为:.8.已知等差数列{a n}的前n项和为S n,a4=10,S4=28,数列的前n项和为T n,则T2017= .【考点】8E:数列的求和.【分析】利用已知条件求出等差数列的前n项和,化简所求的通项公式,然后求和即可.【解答】解:等差数列{a n}的前n项和为S n,a4=10,S4=28,可得a1+a4=14,解得a1=4,10=4+3d,解得d=2,S n=4n+=n2+3n,==,T n=+…+=,则T2017==.故答案为:.9.将函数y=sinxcosx的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,则实数m的最小值为.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】首先化简被平移函数的解析式,得到对称轴的表达式以及函数的图象的对称轴,利用对称轴重合得到m的值.【解答】解:将函数y=sinxcosx=sin2x的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数的图象的对称轴重合,即2(x﹣m)=k,得到x=,k∈Z;,得到x=,k1∈Z;由题意x==,k,k1∈Z所以实数m的最小值为;故答案为:.10.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则= ﹣18 .【考点】9V:向量在几何中的应用.【分析】建立坐标系,设∠ADC=α,求出各点坐标,代入向量的数量积运算公式计算即可.【解答】解:以BC为x轴,以BC的中垂线为y轴建立平面直角坐标系,设∠ADC=α,则A(6cosα,6sinα),E(3cosα,3sinα),C(3,0),B(﹣3,0),设F(a,b),则,解得a=4cosα+1,b=4sinα,∴=(﹣3﹣6cosα,﹣6sinα),=(4cosα﹣2,4sinα),∴=(﹣3﹣6cosα)(4cosα﹣2)﹣24sin2α=﹣24cos2α+6﹣24sin2α=6﹣24=﹣18.故答案为:﹣18.11.已知直线l1:x﹣2y=0的倾斜角为α,倾斜角为2α的直线l2与圆M:x2+y2+2x﹣2y+F=0交于A、C两点,其中A(﹣1,0)、B、D在圆M上,且位于直线l2的两侧,则四边形ABCD的面积的最大值是.【考点】J9:直线与圆的位置关系.【分析】由已知求出tanα,得到直线l2的斜率,进一步求得方程,由A在圆上求得F,得到圆的方程,求出圆心坐标和半径,利用垂径定理求得|AC|的长度,然后结合圆与直线的位置关系图象,将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC 的垂直平分线时,四边形ABCD的面积最大.【解答】解:直线l1:x﹣2y=0的倾斜角为α,则tanα=,∴直线l2的斜率k=tan2α=.则直线l2的方程为y﹣0=(x+1),即4x﹣3y+4=0.又A(﹣1,0)在圆上,∴(﹣1)2﹣2+F=0,得F=1,∴圆的方程为x2+y2+2x﹣2y+1=0,化为标准方程:(x+1)2+(y﹣1)2=1,圆心(﹣1,1),半径r=1.直线l2与圆M相交于A,C两点,由点到直线的距离公式得弦心距d=,由勾股定理得半弦长=,弦长|AC|=2×=.又B,D两点在圆上,并且位于直线l2的两侧,四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,如图所示,当BD为弦AC的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD的面积最大,最大面积为:S=|AC|×|BE|+|AC|×|DE|=|AC|×|BD|=××2=,故答案为:.12.已知四面体ABCD的底面BCD是边长为2的等边三角形,AB=AC=3,则当棱AD长为时,四面体ABCD的体积最大.【考点】LF:棱柱、棱锥、棱台的体积.【分析】当体积最大时,平面ABC与底面BCD垂足,利用勾股定理计算AD.【解答】解:取BC的中点E,连结AE,DE,∵AB=AC,BD=CD,∴BC⊥AE,BC⊥DE,∴∠AED为二面角A﹣BC﹣D的平面角,∴A到平面BCD的距离d=AE•sin∠AED,显然当∠AED=90°时,四面体体积最大.此时,AE==2,DE==,∴AD==.故答案为:.13.已知函数f(x),g(x)是定义在R上的一个奇函数和偶函数,且f(x﹣1)+g(x﹣1)=2x,则函数f(x)= 2x﹣2﹣x.【考点】3L:函数奇偶性的性质.【分析】根据题意,由于f(x﹣1)+g(x﹣1)=2x,则f(x)+g(x)=2x+1,同理可得f(﹣x)+g(﹣x)=2﹣x+1,利用函数的奇偶性可得﹣f(x)+g(x)=2﹣x+1,②,联立①②可得f(x)=(2x+1﹣2﹣x+1),对其变形可得答案.【解答】解:根据题意,f(x﹣1)+g(x﹣1)=2x,则f(x)+g(x)=2x+1,①,进而有f(﹣x)+g(﹣x)=2﹣x+1,又由函数f(x),g(x)是定义在R上的一个奇函数和偶函数,则有f(﹣x)+g(﹣x)=﹣f(x)+g(x),即有﹣f(x)+g(x)=2﹣x+1,②,联立①②可得:f(x)=(2x+1﹣2﹣x+1)=2x﹣2﹣x,即f(x)=2x﹣2﹣x,故答案为:2x﹣2﹣x14.已知b≥a>0,若存在实数x,y满足0≤x≤a,0≤y≤b,(x﹣a)2+(y﹣b)2=x2+b2=a2+y2,则的最大值为.【考点】R3:不等式的基本性质.【分析】设A(0,b),B(x,0),C(a,b﹣y),由x﹣a)2+(y﹣b)2=x2+b2=a2+y2得△ABC为等边△,设△ABC边长为m,∠OAB=θ,(0)过C作CH⊥x轴与H,则∠ACH=θ﹣,a=mcos(),b=mcosθ即可求解.【解答】解:如图设A(0,b),B(x,0),C(a,b﹣y)∵(x﹣a)2+(y﹣b)2=x2+b2=a2+y2∴△ABC为等边△,设△ABC边长为m,∠OAB=θ,(0)过C作CH⊥x轴与H,则∠ACH=θ﹣,∴b=mcosθ∴∴当θ=0时,故答案为:二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 15.已知△ABC的外接圆半径为1,角A,B,C的对应边分别为a,b,c,若sinB=acosC.,(1)求的值;(2)若M为边BC的中点,,求角B的大小.【考点】HT:三角形中的几何计算.【分析】(1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,⇒sinAcosC﹣cosAsinCsin(A﹣C)=0,即可得a=c,即可.(2)由得⇔⇒⇒b=,即可得cosB=.【解答】解:(1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,∴sinB=acosC变形为:sin(A+C)=2sinAcosC⇒sinAcosC﹣cosAsinC=0sin(A﹣C)=0,∵A﹣C∈(﹣π,π),∴A﹣C=0,∴a=c,∴的值为1(2)∵M为边BC的中点,∴∴⇔又∵,a=c∴⇒⇒b=∴cosB=,∵B∈(0,π),∴角B的大小为.16.如图,在三棱柱ABC﹣A1B1C1中,侧面A1ABB1是菱形,侧面C1CBB1是矩形.(1)D是棱B1C1上一点,AC1∥平面A1BD,求证:D为B1C1的中点;(2)若A1B⊥AC1,求证:平面A1ABB1⊥平面C1CBB1.【考点】LY:平面与平面垂直的判定.【分析】(1)连结AB1交A1B于E,连结DE,由AC1∥平面A1BD可得AC1∥DE,由E为AB1的中点即可得出D是B1C1的中点;(2)证明A1B⊥平面AB1C1,得出A1B⊥B1C1,再结合B1C1⊥BB1得出B1C1⊥平面A1ABB1,于是平面A1ABB1⊥平面C1CBB1.【解答】证明:(1)连结AB1交A1B于E,连结DE.∵AC1∥平面A1BD,AC1⊂平面AB1C1,平面AB1C1∩平面A1BD=DE,∴AC1∥DE,∵侧面A1ABB1是菱形,∴E是AB1的中点,∴D是B1C1的中点.(2)∵侧面A1ABB1是菱形,∴AB1⊥A1B,又A1B⊥AC1,AB1∩AC1=A,AB1⊂平面AB1C1,AC1⊂平面AB1C1,∴A1B⊥平面AB1C1,又B1C1⊂平面AB1C1,∴A1B⊥B1C1,∵侧面C1CBB1是矩形,∴B1C1⊥BB1,又BB1∩A1B=B,BB1⊂平面A1ABB1,A1B⊂平面A1ABB1,∴B1C1⊥平面A1ABB1.∵B1C1⊂平面C1CBB1,∴平面A1ABB1⊥平面C1CBB1.17.已知椭圆C:的离心率为,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1(1)求椭圆C的方程;(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由题意c=1,根据椭圆的离心率,即可求得a的值,b2=a2﹣c2=1,即可求得椭圆方程;(2)根据椭圆的准线方程,即可求得AM的方程,代入椭圆方程,利用韦达定理即可求得A1及B1,k1==﹣3k,存在λ=﹣3,使得k1=λk恒成立.【解答】解:(1)由椭圆的焦距2c=2,则c=1,双曲线的离心率e==,则a=,则b2=a2﹣c2=1,∴椭圆的标准方程:;(2)设A(x0,y0),则2y02=2﹣y02,则B(﹣x0,﹣y0),k=,右准线方程x=2,则M(2,0),直线AM的方程为y=(x﹣2),,整理得:(x0﹣2)2x2+2y02(x﹣2)2﹣2(x0﹣2)2=0,该方程两个根为x0,,∴x0•===•x0,则=, =(﹣2)=,则A1(,),同理可得B1(,﹣),则k1==﹣3k,即存在λ=﹣3,使得k1=λk恒成立.18.数列{a n}满足,n=1,2,3,….(1)求a3,a4,并求数列{a n}的通项公式;(2)设b n=,记F(m,n)=,求证:m<n,F(m,n)<4对任意的;(3)设S k=a1+a3+a5+…+a2k﹣1,T k=a2+a4+a6+…+a2k,W k=,求使W k>1的所有k的值,并说明理由.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)a3=a1+4=4,a4=2a2=4.当n=2k,k∈N*时,a2k+2=2a2k,可得数列{a2k}是首项与公比都为2的等比数列.当n=2k﹣1,k∈N*时,a2k+1=a2k﹣1+4,∴数列{a2k﹣1}是首项为0,公差为4的等差数列.利用等差数列与等比数列的通项公式即可得出.(2)b n==,设数列{b n}的前n项和为A n,利用错位相减法可得A n=4﹣<4.根据b n≥0,可得F(m,n)≤A n,F(m,n)<4.(3)S k=a1+a3+a5+…+a2k﹣1=2k(k﹣1),T k=a2+a4+a6+…+a2k=2k+1﹣2.W k==,对k分类讨论即可得出.【解答】(1)解:a3=a1+4=4,a4=2a2=4.当n=2k,k∈N*时,a2k+2=2a2k,∴数列{a2k}是首项与公比都为2的等比数列.∴.即n=2k,k∈N*时,a n=.当n=2k﹣1,k∈N*时,a2k+1=a2k﹣1+4,∴数列{a2k﹣1}是首项为0,公差为4的等差数列.∴a2k﹣1=4(k﹣1).即n=2k﹣1,k∈N*时,a n=2n﹣2.综上可得:a3=4,a4=4.a n=,k∈N*.(2)证明:b n==,设数列{b n}的前n项和为A n,则A n=0+1+++…+,A n=++…++,∴=1++…+﹣=﹣,∴A n=4﹣<4.∵b n≥0,∴F(m,n)≤A n,故对任意的m<n,F(m,n)<4.(3)解:S k=a1+a3+a5+…+a2k﹣1==2k(k﹣1),T k=a2+a4+a6+…+a2k==2k+1﹣2.W k==,∴W1=0,W2=1,W3=>1,W4=>1,W5=>1,W6=<1.k≥6时,W k+1﹣W k=﹣=<0,∴当k≥6时,W k+1<W k.∴当k≥6时,W k+1≤W6<1.综上可得:使W k>1的所有k的值为3,4,5.19.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:)【考点】7G:基本不等式在最值问题中的应用.【分析】(1)用总收入减去来回两次的运行成本和冷藏成本即可;(2)利用基本不等式得出W的最大值,令其最大值大于或等于零解出x,再验证车速是否符合条件即可;(3)利用导数判断W的最大值函数的单调性,即可得出W的最大值,再验证车速即可.【解答】解:(1)汽车来回一次的运行成本为×1300v2×+×v2×=v,冷藏成本为10x×=,∴W=100x﹣v﹣.(2)∵v+≥2=5•,∴W≤100x﹣5•,当且仅当v=即v=40•时取等号.令100x﹣5•≥0,得2≥,解得x≥,当x=时,v=40•=20∈(0,80],∴每次至少进货千克,才可能使销售后不会亏本.(3)由(2)可知W≤100x﹣5•=5(2x﹣•),x∈[,1000],设f(x)=2x﹣•,则f′(x)=2﹣(•+)=2﹣(+),∵x∈[,1000],∴ =∈[,2],∵函数y=x+在[,2]上单调递增,∴当=2时, +取得最大值,∴f′(x)≥2﹣>0,∴f(x)在[,1000]上单调递增,∴当x=1000时,f(x)取得最大值f已知函数(e为自然对数的底数,m∈R).(1)求函数f(x)的单调区间和极值;(2)当时,求证:∀x>0,f(x)<x2lnx恒成立;(3)讨论关于x的方程|lnx|=f(x)的根的个数,并证明你的结论.【考点】6D:利用导数研究函数的极值;52:函数零点的判定定理;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值;(2)设g(x)=x2lnx,求出函数的导数,根据函数的单调性证明即可;(3)设F(x)=f(x)﹣|lnx|,通过讨论m的范围,求出函数的单调区间,根据单调性判断函数的零点即方程根的个数.【解答】解:(1)f′(x)=,由f′(x)=0得x=1,x<1时,f′(x)>0,x>1时,f′(x)<0,∴f(x)在(﹣∞,1]递增,在递减,在[,+∞)递增,当且仅当x=时,g(x)min=﹣;∴f(x)≤﹣≤g(x),两等号不同时取,故∀x>0,f(x)<x2lnx恒成立;(3)设F(x)=f(x)﹣|lnx|,∴F(x)=f(x)﹣lnx,x≥1,∵f(x),﹣lnx都在递增,∴F(x)在(0,1]递增,∵F(1)=+m,∴m≤﹣时,∀0<x<1,F(x)<F(1)≤0,∴F(x)在(0,1)无零点,当m>﹣时,F(1)>0,∀0<x<1,F(x)<<+m+lnx,显然∈(0,1),∴F()<+m+ln=0,∵F(x)的图象不间断,∴F(x)在(0,1)恰有1个零点,综上,m=﹣时,方程|lnx|=f(x)恰有1个实根,m<﹣时,方程|lnx|=f(x)无实根,m>﹣时,方程|lnx|=f(x)有2个不同的实根.2017年高考熟中模拟卷B.选修4-2:矩阵与变换21.已知矩阵M对应的变换将点(﹣5,﹣7)变换为(2,1),其逆矩阵M﹣1有特征值﹣1,对应的一个特征向量为,求矩阵M.【考点】OU:特征向量的意义.【分析】根据矩阵的变换求得M=,利用矩阵的特征向量及特征值的关系,利用矩阵的乘法,即可求得M的逆矩阵,即可求得矩阵M.【解答】解:由题意可知:M=,M﹣1=,∴M﹣1=,设M﹣1=,则=,=,则,解得:,则M﹣1=,det(M﹣1)=﹣20+18=﹣2,则M=.∴矩阵M=.C.选修4-4:坐标系与参数方程22.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,取相同的单位长度,建立极坐标系,已知曲线C1的参数方程为,(,α为参数),曲线C2的极坐标方程为,求曲线C1与曲线C2的交点的直角坐标.【考点】Q4:简单曲线的极坐标方程.【分析】求出曲线C1的普通方程和曲线C2的直角坐标方程,两方程联立,能求出曲线C1与曲线C2的交点的直角坐标.【解答】解:∵曲线C1的参数方程为,(,α为参数),∴曲线C1的普通方程为y=1﹣2x2,x∈,∵曲线C2的极坐标方程为,∴曲线C2的直角坐标方程为y=﹣,两方程联立:,得2﹣x﹣=0,解得,,∵x∈,∴,y=﹣,∴曲线C1与曲线C2的交点的直角坐标为().【必做题】第22题、第23题,每题10分共计20分.请答题卡的指定区域内作答解答应写出文字说明、证明过程或演算步骤.23.在英国的某一娱乐节目中,有一种过关游戏,规则如下:转动图中转盘(一个圆盘四等分,在每块区域内分别标有数字1,2,3,4),由转盘停止时指针所指数字决定是否过关.在闯n关时,转n次,当次转得数字之和大于n2时,算闯关成功,并继续闯关,否则停止闯关,闯过第一关能获得10欧元,之后每多闯一关,奖金翻倍.假设每个参与者都会持续闯关到不能过关为止,并且转盘每次转出结果相互独立.(1)求某人参加一次游戏,恰好获得10欧元的概率;(2)某人参加一次游戏,获得奖金X欧元,求X的概率分布和数学期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)记“某人参加一次游戏,恰好获得10欧元”为事件A,由题意他只闯过了第一关,没有过第二关,由此求出所求的概率;(2)根据题意知X的所有可能取值,计算对应的概率,写出随机变量X的概率分布,计算数学期望值.【解答】解:(1)记“某人参加一次游戏,恰好获得10欧元”为事件A,由题意知,他只闯过了第一关,没有过第二关,因此,他第一关转得了2、3、4中的一个,第二关转得了(1,1),(1,2),(1,3),(2,1),(2,2)中的一个,∴所求的概率为P(A)=×(5×)=;(2)根据题意,X的所有可能取值为0,10,20,40;计算P(X=0)=,P(X=10)=,P(X=20)=××=,P(X=40)=××=,∴X的概率分布为:数学期望为:E(X)=0×+10×+20×+40×=.24.(1)证明:;(2)证明:;(3)证明:.【考点】D5:组合及组合数公式.【分析】(1)利用组合数的计算公式可得:(k+1)=(k+1)•=.(2)由(1)可得: =,左边==(﹣1)k+1=,即可证明.(3)==+.由(2)可知:==.设f(n)=,则f(1)=1, =f(n﹣1).可得f(n)﹣f(n﹣1)=.利用累加求和方法即可得出.【解答】证明:(1)(k+1)=(k+1)•==(n+1).(2)由(1)可得: =,∴左边==(﹣1)k+1== =右边.∴.(3)==+由(2)可知: ==.设f(n)=,则f(1)=1,=f(n﹣1).∴f(n)﹣f(n﹣1)=.∴n≥2时,f(n)=f(1)+f(2)﹣f(1)+…+f(n)﹣f(n﹣1)=1++…+.n=1时也成立.∴f(n)=1++…+.n∈N*.即:.。
2019届高三数学下学期二模考试试题文(含解析)
2019届高三数学下学期二模考试试题文(含解析)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.【答案】D【解析】【分析】求解不等式可得,据此结合交集、并集、子集的定义考查所给的选项是否正确即可.【详解】求解不等式可得,则:,选项A错误;,选项B错误;,选项C错误,选项D正确;故选:D.【点睛】本题主要考查集合的表示方法,交集、并集、子集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.2.i为虚数单位,复数z满足z(1+i)=i,则|z|=()A. B. C. 1 D.【答案】B【解析】试题分析:由得,所以,故答案为B.考点:复数的运算.3.某统计部门对四组数据进行统计分析后,获得如图所示的散点图,关于相关系数的比较,其中正确的是()A. B.C. D.【答案】C【解析】【分析】根据相关系数的特点,可知(1)(3)为正相关,(2)(4)为负相关,再由相关性的强弱可比较出大小关系。
【详解】根据散点图的特征,数据大致呈增长趋势的是正相关,数据呈递减趋势的是负相关;数据越集中在一条线附近,说明相关性越强,由题中数据可知:(1)(3)为正相关,(2)(4)为负相关;故,;,;又(1)与(2)中散点图更接近于一条直线,故,,因此,.故选:C.【点睛】相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关;r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系。
4.已知向量,若为实数,,则()A. 2B. 1C.D.【答案】C【解析】和平行,故,解得.5.在平面直角坐标系中,双曲线的一条渐近线与圆相切,则()A. B. C. D.【答案】B【解析】【分析】符合条件的渐近线方程为,与圆相切,即d=r,代入公式,即可求解【详解】双曲线C的渐近线方程为,与圆相切的只可能是,所以圆心到直线的距离d=,得,所以,故选B。
2019江苏省南通市高三二模数学试卷含答案
南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。
2019年高三第二次模拟考试理科数学含解析
2019年高三第二次模拟考试理科数学含解析本试卷共4页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若﹁p∨q是假命题,则A. p∧q是假命题B. p∨q是假命题C. p是假命题D. ﹁q是假命题【答案】A若﹁p∨q是假命题,则,都为为假命题,所以为真命题,为为假命题,所以p∧q 是假命题,选A.2.下列四个函数中,既是奇函数又在定义域上单调递增的是A. B. C. D.【答案】CA,为非奇非偶函数.B在定义域上不单调。
D为非奇非偶函数。
所以选C.3.如图,是⊙O上的四个点,过点B的切线与的延长线交于点E.若,则A. B. C. D.【答案】B因为A,B,C,D是⊙O上的四个点,所以∠A+∠BCD=180°,因为∠BCD=110°,所以∠A=70°.因为BE 与⊙O相切于点B,所以∠DBE=∠A=70°.故选B.4.设平面向量,若//,则等于A. B. C. D.【答案】D因为//,所以,解得。
所以,即。
所以222441245a b a -==+=,选D.5.已知是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则的最大值是A. B. C. D.【答案】 B作出不等式组表示的平面区域,得到如图的四边形ABCD ,其中A (1,1),B (5,1),,D (1,2),因为M 、N 是区域内的两个不同的点,所以运动点M 、N ,可得当M 、N 分别与对角线BD 的两个端点重合时,距离最远,因此|MN|的最大值是22(51)(12)17BD =-+-=|,选B.6.已知数列的前项和为,,,则A. B. C. D.【答案】C由得,所以,即。
所以数列是以为首项,公比的等比数列,所以,选C.7.一个几何体的三视图如图所示,则这个几何体的表面积为336俯视图侧(左)视图A . B. C. D. 【答案】A视图复原的几何体是长方体的一个角,如图:直角顶点处的三条棱长分别为,其中斜侧面的高为。
2019年高三二模数学(文科)(含答案)
2019年高三二模数学(文科)(含答案)一、选择题(本大题共12小题,共60分)1.已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若集合A={x|x<2},B={x|x2-5x+6<0,x∈Z},则A∩B中元素的个数为()A. 0B. 1C. 2D. 33.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 284.函数y=的部分图象大致是()A. B.C. D.5.执行如图所示的程序框图,输出的S值为()A. 1B.C.D.6.已知某几何体的三视图如图,则该几何体的表面积是( )A.B.C.D.7.已知F是抛物线C:y2=4x(p>0)的焦点,抛物线C的准线与双曲线Γ:(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e=A. B. C. D.8.定义在R上的函数满足:且,若,则的值是A. B. 0 C. 1 D. 无法确定9.已知f(x)=sin x cosx+cos2x-,将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则=()A. B. 1 C. D. 010.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A. B. C. D.11.函数f(x)=的零点个数为()A. 3B. 2C. 1D. 012.设x,y满足约束条件且z=x+ay的最小值为7,则a=()A. B. 3 C. 或3 D. 5或二、填空题(本大题共4小题,共20分)13.若x,y满足约束条件,则z=x+2y的最小值为______.14.在平面直角坐标系xOy中,角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),则cos(2θ+)=______.15.设数列{a n}的前n项和为S n,且a1=-1,a n+1=S n•S n+1,则数列{a n}的通项公式a n=______.16.已知曲线x2-4y2=4,过点A(3,-1)且被点A平分的弦MN所在的直线方程为______ .三、解答题(本大题共5小题,共70分)17.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.18.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:支持不支持合计年龄不大于50岁______ ______ 80年龄大于50岁10______ ______合计______ 70100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:,n=a+b+c+d,P(K2>k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.63519.在平面xOy中,已知椭圆过点P(2,1),且离心率.(1)求椭圆C的方程;(2)直线l方程为,直线l与椭圆C交于A,B两点,求△PAB面积的最大值.20.已知函数f(x)=x2+a ln x.(1)当a=-2时,求函数f(x)的单调区间和极值;(2)若g(x)=f(x)+在上是单调增函数,求实数a的取值范围.21.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求的值.答案和解析1.【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念求其共轭复数得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选B.2.【答案】A【解析】解:集合A={x|x<2},B={x|x2-5x+6<0,x∈Z}={x|2<x<3,x∈Z}=∅,则A∩B=∅,其中元素的个数为0.故选:A.化简集合B,根据交集的定义写出A∩B,再判断其中元素个数.本题考查了集合的化简与运算问题,是基础题.3.【答案】B【解析】解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.4.【答案】A【解析】解:当x=2时,f(2)==ln3>0,故排除C,当x=时,f()==4ln>0,故排除D,当x→+∞时,f(x)→0,故排除B,故选:A.根据函数值的变化趋势,取特殊值即可判断.本题考查了函数图象的识别,考查了函数值的特点,属于基础题.5.【答案】D【解析】解:由于=-,则n=1,S=-1;n=2,S=-+-1=-1;n=3,S=2-+-+-1=2-1;…n=2016,S=-1;n=2017,S=-1.2017>2016,此时不再循环,则输出S=-1.故选:D.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.【答案】C【解析】根据三视图知该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,结合图中数据计算它的表面积即可.本题考查了根据几何体三视图求表面积的应用问题,是基础题目.解:根据三视图知,该几何体是底面为等腰三角形,高为2的直三棱柱,画出几何体的直观图,如图所示,结合图中数据,计算它的表面积是S三棱柱=2××2×1+2×2+2×2+2×2=6+8.故选:C.7.【答案】D【解析】【分析】本题主要考查了抛物线的性质,双曲线的渐近线方程及其性质,属于中档题. 【解答】解:已知抛物线方程为,则2p=4,解得p=2,则F(1,0),抛物线准线方程为x=-1,设AB与x轴交点为M,则|MF|=2,双曲线:的渐近线方程为:,将x=-1代入到,解得,则,又△ABF为等边三角形,则,则,则,则,解得.故选D.8.【答案】A【解析】解:∵函数f(x)满足f(2-x)+f(x-2)=0,∴f(2-x)=-f(x-2),∴f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),∴函数f(x)为奇函数,又f(x)满足f(x)=f(4-x),∴f(x)=f(x-4),∴f(x+8)=f(x+8-4)=f(x+4)=f(x+4-4)=f (x),∴函数为周期函数,周期T=8,∴f(2014)=f(251×8+6)=f(6),又f(6)=f(6-8)=f(-2)=-f(2)=-1,故选:A.先由条件f(2-x)+f(x-2)=0推出f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),故函数f(x)为奇函数,再由条件f(x)=f(4-x)推出函数为周期函数,根据函数奇偶性和周期性之间的关系,将条件进行转化即可得到结论.本题主要考查了抽象函数及其应用,利用函数的周期性和奇偶性进行转化是解决本题的关键.9.【答案】B【解析】【分析】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,利用y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象和性质,求得的值,属于中档题.【解答】解:∵f(x)=sinxcosx+cos2x-=sin2x+•-=sin(2x+),将f(x)的图象向右平移个单位,再向上平移1个单位,得到y=g(x)=sin(2x-+)+1=sin2x+1的图象.若对任意实数x,都有g(a-x)=g(a+x)成立,则g(x)的图象关于直线x=a对称,再根据g(x)的周期为=π,可得=1,故选B.10.【答案】C【解析】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.本小题主要考查直三棱柱ABC-A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.11.【答案】B【解析】解:函数f(x)=,可得:-1+lnx=0,可得:x=e;3x+4=0可得x=-.函数的零点为:2个.故选:B.利用分段函数,分别为0,然后求解函数的零点即可.本题考查函数的零点的求法,考查计算能力.12.【答案】B【解析】解:如图所示,当a≥1时,由,解得,y=.∴.当直线z=x+ay经过A点时取得最小值为7,∴,化为a2+2a-15=0,解得a=3,a=-5舍去.当a<1时,不符合条件.故选:B.如图所示,当a≥1时,由,解得.当直线z=x+ay经过A 点时取得最小值为7,同理对a<1得出.本题考查了线性规划的有关知识、直线的斜率与交点,考查了数形结合的思想方法,属于中档题.13.【答案】-4【解析】解:作出不等式组对应的平面区域,由z=x+2y,得y=-x+,平移直线y=-x+,由图象可知当直线经过点A时,直线y=-x+的截距最小,此时z最小,由,得A(-2,-1)此时z=-2+2×(-1)=-4.故答案为:-4.作出不等式组对应的平面区域,利用z的几何意义即可得到结论.本题主要考查线性规划的应用,利用图象平行求得目标函数的最小值,利用数形结合是解决线性规划问题中的基本方法.14.【答案】-1【解析】解:角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点(),∴cosθ=,sinθ=,∴sin2θ=2sinθcosθ=,cos2θ=2cos2θ-1=-,则cos(2θ+)=cos2θ-sin2θ=--=-1,故答案为:-1.利用任意角的三角函数的定义求得cosθ 和sinθ的值,再利用二倍角公式求得sin2θ和cos2θ的值,再利用两角和的余弦公式求得要求式子的值.本题主要考查任意角的三角函数的定义,二倍角的正弦公式,两角和的余弦公式的应用,属于基础题.15.【答案】【解析】【分析】本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.由已知数列递推式可得数列{}是以-1为首项,以-1为公差的等差数列,求其通项公式后,利用a n=S n-S n-1求得数列{a n}的通项公式.【解答】解:由a n+1=S n•S n+1,得:S n+1-S n=S n•S n+1,即,∴数列{}是以-1为首项,以-1为公差的等差数列,则,∴.∴当n≥2时,.n=1时上式不成立,∴.故答案为:.16.【答案】3x+4y-5=0【解析】【分析】设两个交点的坐标分别为(x1,y1),(x2,y2),利用点差法求得直线的斜率,进一步求出直线方程,然后验证直线与曲线方程由两个交点即可.本题主要考查了直线与圆锥曲线的综合问题.解题的关键是充分运用数形结合的数学思想、方程的数学思想和转化的数学思想来解决较为复杂的综合题.【解答】解:设两个交点的坐标分别为(x1,y1),(x2,y2)所以x12-4y12=4,,两式相减得(x1+x2)(x1-x2)=4(y1+y2)(y1-y2),又=3,=-1,∴=-,所以直线的方程为y+1=-(x-3),即3x+4y-5=0.由点A(3,-1)在双曲线内部,直线方程满足题意.∴MN所在直线的方程是3x+4y-5=0.故答案为:3x+4y-5=0.17.【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π-(A+B))=sin C2cos C sinC=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2-2ab•,∴(a+b)2-3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+.【解析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.【答案】解:(1)20;60;10;20;30.(2),所以能在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关;(3)记5人为abcde,其中ab表示教师,从5人任意抽3人的所有等可能事件是:abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde共10个,其中至多1位教师有7个基本事件:acd,ace,ade,bcd,bce,bde,cde,所以所求概率是.【解析】本题考查独立性检验的应用,考查概率的计算,本题解题的关键是根据所给的数据填在列联表中,注意数据的位置不要出错.(1)根据条件中所给的数据,列出列联表,填上对应的数据,得到列联表.支持不支持合计年龄不大于50岁20 60 80年龄大于50岁10 10 20合计30 70 100(2)假设聋哑没有关系,根据上一问做出的列联表,把求得的数据代入求观测值的公式求出观测值,把观测值同临界值进行比较得到结论.(3)列举法确定基本事件,即可求出概率.19.【答案】解:(1)椭圆C:过点P(2,1),且离心率.可得:,解得a=2,c=,则b=,椭圆方程为:;(2)设直线方程为,A(x1,y1)、B(x2,y2),联立方程组整理得:x2+2mx+2m2-4=0,x1+x2=-2m,-4,直线与椭圆要有两个交点,所以,即:,利用弦长公式得:,由点线距离公式得到P到l的距离.S=|AB|•d=•=≤=2.当且仅当m2=2,即时取到最大值,最大值为:2.【解析】本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.(1)利用已知条件列出方程组,然后求解a,b即可得到椭圆方程;(2)联立直线与椭圆方程,利用韦达定理以及弦长公式结合点到直线的距离公式表示三角形的面积,然后通过基本不等式求解最值即可.20.【答案】解:(Ⅰ)∵函数f(x)=x2+a ln x,∴函数f(x)的定义域为(0,+∞).当a=-2时,=.当x变化时,f′(x)和f(x)的值的变化情况如下表:x(0,1)1(1,+∞)f′(x)-0+f(x)递减极小值递增由上表可知,函数f(x)的单调递减区间是(0,1)、单调递增区间是(1,+∞)、极小值是f(1)=1.(Ⅱ)由g(x)=x2+a ln x+,得.若函数g(x)为[1,+∞)上的单调增函数,则g′(x)≥0在[1,+∞)上恒成立,即不等式2x-+≥0在[1,+∞)上恒成立.也即a≥在[1,+∞)上恒成立.令φ(x)=,则φ′(x)=-.当x∈[1,+∞)时,φ′(x)=--4x<0,∴φ(x)=在[1,+∞)上为减函数,∴φ(x)max=φ(1)=0.∴a≥0.∴a的取值范围为[0,+∞).【解析】本题考查函数的单调区间和极值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意构造法和导数性质的合理运用.(Ⅰ)函数f(x)的定义域为(0,+∞).当a=-2时,=,由此利用导数性质能求出函数f(x)的单调区间和极值.(Ⅱ)由g(x)=x2+alnx+,得,令φ(x)=,则φ′(x)=-.由此利用导数性质能求出a的取值范围.21.【答案】解:(1)直线l的参数方程为(t为参数),消去参数,可得直线l的普通方程y=2x+1,曲线C的极坐标方程为ρsin2θ-16cosθ=0,即ρ2sin2θ=16ρcosθ,得y2=16x即直线l的普通方程为y=2x+1,曲线C的直角坐标方程为y2=16x;(2)直线的参数方程改写为(t为参数),代入y2=16x,得,,,.即的值为.【解析】本题考查三种方程的转化,考查参数方程的运用,属于中档题.(1)利用三种方程的转化方法,求直线l的普通方程与曲线C的直角坐标方程;(2)直线的参数方程改写为(t为参数),代入y2=16x,利用参数的几何意义求的值.。
2019届高三数学二模考试试题理(含解析)
2019届高三数学二模考试试题理(含解析)第Ⅰ卷(共60分)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】利用交集定义直接求解即可.【详解】∵集合,,∴.故选:B.【点睛】本题考查集合交集的运算,考查交集定义,属于基础题.2.已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,求得在复平面内对应的点的坐标即可.【详解】∵,∴,∴在复平面内对应的点的坐标为,位于第一象限.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.3.设,满足约束条件,则的最小值是()A. -4B. -2C. 0D. 2【答案】A【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.【详解】作出不等式组对应的平面区域如图(阴影部分),由得,平移直线,由图象可知当直线,过点时,直线的截距最大,此时最小,由,解得.代入目标函数,得,∴目标函数的最小值是.故选:.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法,属于基础题.4.抛物线的焦点为,点是上一点,,则()A. B. C. D.【答案】B【解析】【分析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选:B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.5.已知等比数列的首项为,且,则()A. B. C. D.【答案】C【解析】【分析】利用等比数列的通项公式可得,再利用通项公式及其等差数列的求和公式即可得出答案.【详解】设等比数列的公比为,∵,∴,解得.∴.故选C.【点睛】本题考查等差数列与等比数列的通项公式及其求和公式,考查推理能力与计算能力,解题时注意整体思想的运用,属于中档题.6.函数的图象大致是()A. B.C. D.【答案】A【解析】【分析】根据函数奇偶性排除,;根据函数零点选A.【详解】因为函数为奇函数,排除,;又函数的零点为和,故选:A.【点睛】本题考查函数奇偶性与函数零点,考查基本分析判断能力,属基础题.7.某学生5次考试的成绩(单位:分)分别为85,67,,80,93,其中,若该学生在这5次考试中成绩的中位数为80,则得分的平均数不可能为()A. B. C. D.【答案】D【解析】【分析】根据中位数为,可知,从而得到平均数小于等于,从而确定结果.【详解】已知四次成绩按照由小到大的顺序排序为:,,,该学生这次考试成绩的中位数为,则所以平均数:,可知不可能为本题正确选项:【点睛】本题考查统计中的中位数、平均数问题,关键是通过中位数确定取值范围,从而能够得到平均数的范围.8.已知某几何体是由一个三棱柱和一个三棱锥组合而成的,其三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】【分析】根据三视图还原几何体,可知为三棱柱和三棱锥的组合体,分别求解体积,加和得到结果.【详解】由题意可知,该几何体的直观图如图所示:即该几何体为一个三棱柱与一个三棱锥的组合体则三棱柱体积;三棱锥体积所求体积本题正确选项:【点睛】本题考查组合体体积的求解,关键是通过三视图准确还原几何体.9.已知函数部分图像如图所示,则下列判断正确的是()A. 直线是函数图像的一条对称轴B. 函数图像的对称中心是,C.D. 函数的最小正周期为【答案】C【解析】【分析】先根据对称轴求得,再根据正弦函数性质求对称轴、对称中心、周期以及函数值,最后作判断.【详解】由图可知,是函数的对称轴,所以解得,因为,所以,,,函数的最小正周期为,由得对称轴方程为,由得对称中心为,,故选:C.【点睛】本题考查根据图象求三角函数解析式以及正弦函数性质,考查基本分析判断与求解能力,属中档题.10.已知数列的首项,且满足,则的最小的一项是()A. B. C. D.【答案】A【解析】【分析】利用配凑法将题目所给递推公式转化为,即证得为首项为,公差为的等差数列,由此求得的表达式,进而求得的表达式,并根据二次函数的对称轴求得当时有最小值.【详解】由已知得,,所以数列为首项为,公差为的等差数列,,则,其对称轴.所以的最小的一项是第项.故选A.【点睛】本小题考查由数列的递推公式求数列的通项公式,考查二次函数求最值的方法,属于中档题.11.在平面直角坐标系中,双曲线的一条渐近线与相切,则()A. B. C. D.【答案】B【解析】【分析】符合条件的渐近线方程为,与圆相切,即d=r,代入公式,即可求解【详解】双曲线C的渐近线方程为,与圆相切的只可能是,所以圆心到直线的距离d=,得,所以,故选B。
2019届高三下学期高三第二次模拟联考数学(理)试题—含答案
2019届高三下学期高三第二次模拟联考数学(理)试题—含答案2019学年度第二学期高三第二次模拟联考数学(理科)试卷年级班级姓名学号注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3.请将答案写在答题卡各题目的答题区域内,超出答题区域书写的答案无效。
4.作图题可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破弄皱,不准使用涂改液、修正带。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知,则()A.{1,2}B.{1,2,3}C.{0,1,2}D.{1,2,3,4,}2.设复数满足,则复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如下图的茎叶图为某次10名学生100米跑步的成绩(s),由茎叶图可知这次成绩的平均数,中位数,众数分别为()A.51.95260B.525460C.51.95360D.5253624.已知随机变量服从正态分布,且,,等于()A.0.2B.C.D.5.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.4B.2C.3D.56.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.B.C.D.7.若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是()ABCD8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.设x,y满足约束条件,则的最大值为A.B.C.-3D.310.将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是()A.函数的最小正周期为B.是函数的一条对称轴C.函数在区间上单调递增D.函数在区间上的最小值为11.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A.B.C.D.12.已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,,则()A.B.C.D.第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
2019届高三数学二模试卷理科附答案
2019届高三数学二模试卷理科附答案理科数学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019•乐山调研]若与互为共轭复数,则的值为()A.B.C.D.2.[2019•济南外国语]已知集合,,则()A.B.C.D.3.[2019•九江一模] 的部分图像大致为()A.B.C.D.4.[2019•榆林一模]已知向量,满足,,,则()A.2 B.C.D.5.[2019•湘潭一模]以双曲线的焦点为顶点,且渐近线互相垂直的双曲线的标准方程为()A.B.C.D.6.[2019•武邑中学]在中,角,,的对边分别为,,,若,,,则角()A.B.C.或D.或7.[2019•新乡调研]某医院今年1月份至6月份中,每个月为感冒来就诊的人数如下表所示:()上图是统计该院这6个月因感冒来就诊人数总数的程序框图,则图中判断框、执行框依次应填()A.;B.;C.;D.;8.[2019•优创名校联考]袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为()A.B.C.D.9.[2019•成都一诊]在各棱长均相等的四面体中,已知是棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.10.[2019•长沙一模]已知是函数图象的一个最高点,,是与相邻的两个最低点.设,若,则的图象对称中心可以是()A.B.C.D.11.[2019•湖北联考]已知偶函数满足,现给出下列命题:①函数是以2为周期的周期函数;②函数是以4为周期的周期函数;③函数为奇函数;④函数为偶函数,则其中真命题的个数是()A.1 B.2 C.3 D.412.[2019•宜昌调研]已知椭圆:上存在、两点恰好关于直线:对称,且直线与直线的交点的横坐标为2,则椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.[2019•泉州质检]若函数的图象在点处的切线过点,则______.14.[2019•湖北联考]设,满足约束条件,则的最大值为____.15.[2019•镇江期末]若,,则_______.16.[2019•遵义联考]已知三棱锥中,面,且,,,,则该三棱锥的外接球的表面积为__________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019•潍坊期末]已知数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)数列满足,求数列的前项和.18.(12分)[2019•开封一模]大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:分数人数25 50 100 50 25参加自主招生获得通过的概率(1)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过的前提下认为学习先修课程与优等生有关系?优等生非优等生总计学习大学先修课程250没有学习大学先修课程总计150(2)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.(i)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;(ii)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.参考数据:参考公式:,其中.19.(12分)[2019•湖北联考]如图,在四棱锥中,,,,且,.(1)证明:平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.20.(12分)[2019•河北联考]在直角坐标系中,直线与抛物线交于,两点,且.(1)求的方程;(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由.21.(12分)[2019•泉州质检]已知函数.(1)讨论的单调性;(2)当时,,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】[2019•九江一模]在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(,),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为.(1)求,的极坐标方程;(2)设点的极坐标为,求面积的最小值.23.(10分)【选修4-5:不等式选讲】[2019•湘潭一模]设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.2019届高三第二次模拟考试卷理科数学(二)答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】∵,,又与互为共轭复数,∴,,则.故选A.2.【答案】C【解析】∵集合,,∴,,∴.故选C.3.【答案】B【解析】,则函数是偶函数,图象关于轴对称,排除A,D,,排除C,故选B.4.【答案】A【解析】根据题意得,,又,∴,∴,∴.故选A.5.【答案】D【解析】由题可知,所求双曲线的顶点坐标为,又∵双曲线的渐近线互相垂直,∴,则该双曲线的方程为.故选D.6.【答案】A【解析】∵,,,∴由正弦定理可得,∵,由大边对大角可得,∴解得.故选A.7.【答案】C【解析】∵要计算1月份至6月份的6个月的因感冒来就诊的人数,∴该程序框图要算出所得到的和,①当时,,没有算出6个月的人数之和,需要继续计算,因此变成2,进入下一步;②当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成3,进入下一步;③当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成4,进入下一步;④当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成5,进入下一步;⑤当时,用前一个加上,得,仍然没有算出6个月的人数之和而需要继续计算,因此变成6,进入下一步;⑥当时,用前一个加上,得,刚好算出6个月的人数之和,因此结束循环体,并输出最后的值,由以上的分析,可得图中判断框应填“”,执行框应填“”.故选C.8.【答案】C【解析】∵随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有,,,共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为,故选C.9.【答案】C【解析】设各棱长均相等的四面体中棱长为2,取中点,连结,,∴是棱的中点,∴,∴是异面直线与所成角(或所成角的补角),,,∴,∴异面直线与所成角的余弦值为,故选C.10.【答案】D【解析】结合题意,绘图又,,∴周期,解得,∴,,令,得到,∴,令,,得对称中心,令,得到对称中心坐标为,故选D.11.【答案】B【解析】偶函数满足,即有,即为,,可得的最小正周期为4,故①错误;②正确;由,可得,又,即有,故为奇函数,故③正确;由,若为偶函数,即有,可得,即,可得6为的周期,这与4为最小正周期矛盾,故④错误.故选B.12.【答案】C【解析】由题意可得直线与直线的交点,,设,,则,,∵、是椭圆上的点,∴①,②,①﹣②得:,∴,∴,∴,∴,故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】1【解析】函数,可得,∴,又,∴切线方程为,切线经过,∴,解得.故答案为1.14.【答案】5【解析】作出,满足约束条件,所示的平面区域,如图:作直线,然后把直线向可行域平移,结合图形可知,平移到点时最大,由可得,此时.故答案为5.15.【答案】【解析】由得,即,又,解得,∴.16.【答案】【解析】取的中点,连结、,∵平面,平面,∴,可得中,中线,由,,,可知,又∵,、是平面内的相交直线,∴平面,可得,因此中,中线,∴是三棱锥的外接球心,∵中,,,∴,可得外接球半径,因此,外接球的表面积,故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)∵,,成等差数列,∴,当时,,∴,当时,,,两式相减得,∴,∴数列是首项为,公比为的等比数列,∴.(2),∴,∴.18.【答案】(1)见解析;(2)见解析.【解析】(1)列联表如下:优等生非优等生总计学习大学先修课程50 200 250没有学习大学先修课程100 900 1000总计150 **** ****由列联表可得,因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.(2)(i)由题意得所求概率为.(ii)设获得高校自主招生通过的人数为,则,,,1,2,3,4,∴的分布列为0 1 2 3 4估计今年全校参加大学先修课程的学生获得大学自主招生通过的人数为.19.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面中,,,且,∴,,∴,又∵,,平面,平面,∴平面,又∵平面,∴,∵,,∴,又∵,,平面,平面,∴平面.(2)方法一:在线段上取点,使,则,又由(1)得平面,∴平面,又∵平面,∴,作于,又∵,平面,平面,∴平面,又∵平面,∴,又∵,∴是二面角的一个平面角,设,则,,这样,二面角的大小为,即,即,∴满足要求的点存在,且.方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系,且由(1)知是平面的一个法向量,设,则,,∴,,设是平面的一个法向量,则,∴,令,则,它背向二面角,又∵平面的法向量,它指向二面角,这样,二面角的大小为,即,即,∴满足要求的点存在,且.20.【答案】(1);(2)在轴的正半轴上存在一点,使得的外心在上.【解析】(1)联立,得,则,,从而.∵,∴,即,解得,故的方程为.(2)设线段的中点为,由(1)知,,,则线段的中垂线方程为,即.联立,得,解得或,从而的外心的坐标为或.假设存在点,设的坐标为,∵,∴,则.∵,∴.若的坐标为,则,,则的坐标不可能为.故在轴的正半轴上存在一点,使得的外心在上.21.【答案】(1)见解析;(2).【解析】解法一:(1),①当时,↘极小值↗∴在上单调递减,在单调递增.②当时,的根为或.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.若,即,在上恒成立,∴在上单调递增,无减区间.若,即,0 0↗极大值↘极小值↗∴在,上单调递增,在上单调递减.综上:当时,在上单调递减,在单调递增;当时,在,上单调递增,在上单调递减;当时,在上单调递增,无减区间;当时,在,上单调递增,在上单调递减.(2)∵,∴.当时,恒成立.当时,.令,,设,∵在上恒成立,即在上单调递增.又∵,∴在上单调递减,在上单调递增,则,∴.综上,的取值范围为.解法二:(1)同解法一;(2)令,∴,当时,,则在上单调递增,∴,满足题意.当时,令,∵,即在上单调递增.又∵,,∴在上有唯一的解,记为,↘极小值↗,满足题意.当时,,不满足题意.综上,的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【答案】(1);;(2)2.【解析】(1)∵曲线的参数方程为(为参数),∴曲线的普通方程为,∴曲线的极坐标方程为,设点的极坐标为,点的极坐标为,则,,,,∵,∴,∴,,∴的极坐标方程为.(2)由题设知,,当时,取得最小值为2.23.【答案】(1);(2).【解析】(1)∵,∴的解集为.(2)∵,∴,即,则,∴.。
2019年高三二模联考数学(理)试卷
第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则为()A. B. C. D.【答案】A【解析】分析:利用一元二次不等式的解法化简集合和利用绝对值不等式的解法化简集合,从而得到的值.详解:因为集合;集合,所以,故选A.点睛:本题主要考查了一元二次不等式,绝对值不等式的解法以及集合的交集,属于容易题,在解题过程中要注意在求交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.已知x,y满足不等式组,则目标函数的最小值为( )A. 1B. 2C. 4D. 5【答案】B【解析】分析:画出不等式组表示的可行域,平移直线,结合可行域可得直线经过点时取到最小值.详解:画出不等式组表示的可行域,如图,平移直线,设可行域内一点,由图可知,直线经过点时取到最小值,联立,解得,的最小值为,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.【答案】D【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】赋值i=1,T=0,S=0,判断条件成立,执行i=1+1=2,T=0+1=1,S=0;判断条件成立,执行i=2+1=3,T=1+1=2,S;判断条件成立,执行i=3+1=4,T=2+1=3,S;判断条件不成立,算法结束,输出S.此时i=4,4<4不成立.故判断框中应填入的条件是,故选:D.【点睛】本题考查程序框图,考查学生的读图能力,是基础题.4.已知为实数,直线,,则“”是“”的()A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】A【解析】分析:根据直线平行的条件以及充分不必要条件的定义即可判断.详解:直线,,若“”,则,解得或,即时,可推出,不能推出,故“”是“”的充分不必要条件,故选A.点睛:本题主要考查直线平行的性质以及充分条件与必要条件,属于简单题.高中数学的每个知识点都可以结合充分条件与必要条件考查,要正确解答这类问题,除了熟练掌握各个知识点外,还要注意一下几点:(1)要看清,还是;(2)“小范围”可以推出“大范围”;(3)或成立,不能推出成立,也不能推出成立,且成立,即能推出成立,又能推出成立;(4)一定看清楚题文中的条件是大前提还是小前提.5.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是A. B. C. D.【答案】D【解析】分析:先根据函数的最小正周期为,求出的值,再由平移后得到为偶函数,可得,进而可得结果.详解:由函数的最小正周期为,可得,,将的图象向左平移个单位长度,得的图象,平移后图象关于轴对称,,,,故选D.点睛:已知的奇偶性求时,往往结合正弦函数及余弦函数的奇偶性和诱导公式来解答:(1)时,是奇函数;(2)时,是偶函数.6.已知定义在R上的函数,则三个数,,,则a,b,c之间的大小关系是( )A. B.C. D.【答案】C【解析】分析:求出的导数,得到函数的在上递增,利用对数函数与指数函数的性质可得,,从而比较函数值的大小即可.详解:时,,,可得在上递增,由对数函数的性质可得所以,由指数函数的性质可得,由可得,所以,根据函数的单调性可得,故选C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.双曲线C:的左、右焦点分别为,,点M,N在双曲线上,且,,线段交双曲线C于点Q,,则该双曲线的离心率是()A. B. C. 2 D.【答案】D【解析】分析:运用双曲线的对称性结合,可设出的坐标,由可得的坐标,再由在双曲线上,满足双曲线的方程,消去参数可得从而可得到双曲线的离心率.详解:由,可得,由,可设,由,可得,可得,由在双曲线上,可得,消去整理可得,,故选D.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.8.已知函数定义在上的函数,则下列说法中正确的个数是()①关于x的方程,有个不同的零点②对于实数,不等式恒成立③在上,方程有5个零点④当,时,函数的图象与x轴围成的面积为4A. 0B. 1C. 2D. 3【答案】B【解析】分析:根据函数的表达式,作出函数的图象,利用数形结合分别判断即可.详解:由表达式可知.①当时,方程等价为对应方程根的个数为五个,而,故①错误;②由不等式等价为,在恒成立,作出函数图象如图,由图可知函数图象总在的图象上方,所以不等式恒成立,故②正确;③由,得,设,则在上,方程有四个零点,故③错误;④令得,,当时,函数的图象与轴围成的图形是一个三角形,其面积为,故④错误,故选B.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的、函数的图象与性质,以及函数的零点与不等式恒成立问题,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.i为虚数单位,设复数z满足,则z的虚部是____【答案】【解析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.10.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线极坐标方程为,它与曲线,为参数相交于两点A、B,则___.【答案】2【解析】分析:先利用直角坐标与极坐标间的关系,将极坐标方程为化成直角坐标方程,再将曲线的参数方程化成普通方程,最后利用直角坐标方程的形式,利用垂径定理及勾股定理,由圆的半径及圆心到直线的距离,即可求出的长.详解:,利用进行化简,,为参数),相消去可得圆的方程为:得到圆心,半径为,圆心到直线的距离,,线段的长为,故答案为.点睛:本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.11.一个几何体的三视图如图所示,则该几何体的体积____.【答案】【解析】分析:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,分别求出圆锥与球体的体积,求和即可.详解:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中,圆锥的底面半径为,高为,体积为;球半径为,体积为,所以,该几何体的体积为,故答案为.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12.若其中,则的展开式中的系数为_____.【答案】280【解析】分析:利用微积分基本定理,求得,可得二项展开式通项为令得进而可得结果.详解:因为,所以,展开式的通项为令得所以,的展开式中的系数为,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.13.已知,二次三项式对于一切实数x恒成立,又,使成立,则的最小值为____.【答案】【解析】分析:对于一切实数恒成立,可得;再由,使成立,可得,所以可得,可化为,平方后换元,利用基本不等式可得结果.详解:已知,二次三项式对于一切实数恒成立,,且;再由,使成立,可得,,,令,则(当时,等号成立),所以,的最小值为,故的最小值为,故答案为.点睛:本题主要考查一元二次不等式恒成立问题以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).14.已知直角梯形ABCD中,,,,,,P是腰CD上的动点,则的最小值为____.【答案】【解析】分析:以为轴,为原点,过与垂直的直线为轴,建立坐标系,可设,可得,,利用二次函数配方法可得结果.详解:以为轴,为原点,过与垂直的直线为轴,建立坐标系,由,,,,,可得,在上,可设,则,,,即的最小值为,故答案为.点睛:本题主要考查向量的坐标运算、向量模的坐标表设计以及利用配方法求最值,属于难题. 若函数为一元二次函数,常采用配方法求函数的最值,其关键在于正确化简为完全平方式,并且一定要先确定其定义域.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.在锐角中,角A,B,C的对边分别为a,b,c,且.求角B的大小;已知,的面积为,求边长b的值.【答案】(1);(2).【解析】分析:(1)由,利用正弦定理得,结合两角和的正弦公式以及诱导公式可得,进而可得结果;(2)利用(1),由已知及正弦定理可得,结合的面积为,可得,由余弦定理可得结果详解:(1)由已知得,由正弦定理得,∴,又在中,,∴所以∴.(2)由已知及正弦定理又 SΔABC=,∴,得由余弦定理得.点睛:本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.16.某大学在一次公益活动中聘用了名志愿者,他们分别来自于,,三个不同的专业,其中专业人,专业人,专业人,现从这人中任意选取人参加一个访谈节目. (Ⅰ)求个人来自于两个不同专业的概率;(Ⅱ)设表示取到专业的人数,求的分布列与数学期望.【答案】(1) (2)见解析.【解析】分析:(1)先利用组合知识结合古典概型概率公式求出,“个人来自于同一个专业”的概率,“个人来自于三个不同专业”的概率,再由对立事件的概率公式求解即可;(2)这人中任意选取人,的可能取值为,利用组合知识结合古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)令A表示事件“3个人来自于两个不同专业”,表示事件“3个人来自于同一个专业”,表示事件“3个人来自于三个不同专业”,则由古典概型的概率公式有;(2)随机变量X的取值为:0,1,2,3则,,,,X 0 1 2 3P.点睛:本题主要考查互斥事件的概率公式以及对立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.17.如图,四边形ABCD与BDEF均为菱形,,且.求证:平面BDEF;求二面角的余弦值;若M为线段DE上的一点,满足直线AM与平面ABF所成角的正弦值为,求线段DM的长.【答案】(1)见解析;(2)二面角的余弦值为;(3).【解析】分析:(1)由菱形的性质可得,由等腰三角形的性质可得,根据线面垂直的判定定理可得平面;(2)先证明为等边三角形,可得,于是可以为坐标轴建立坐标系,利用向量垂直数量积为零,列方程组求出平面的法向量与平面的法向量,利用空间向量夹角余弦公式可得结果;(3)设由直线与平面所成角的正弦值为,利用空间向量夹角余弦公式列方程求得,从而可得结果.详解:(1)设与相交于点,连接,∵四边形为菱形,∴,且为中点,∵,∴,又,∴平面.(2)连接,∵四边形为菱形,且,∴为等边三角形,∵为中点,∴,又,∴平面.∵两两垂直,∴建立空间直角坐标系,如图所示,设,∵四边形为菱形,,∴.∵为等边三角形,∴.∴,∴,设平面的法向量为,则令,得设平面的法向量为,则,令,得所以又因为二面角为钝角,所以二面角的余弦值为(3)设所以化简得解得:所以.点睛:本题主要考查线面垂直的证明以及利用空间向量求二面角与线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.已知数列的前n项和满足,为常数,,求的通项公式;设,若数列为等比数列,求a的值;在满足条件的情形下,,若数列的前n项和为,且对任意的满足,求实数的取值范围.【答案】(1) ;(2) ;(3) .【解析】【分析】(1)利用项和公式求数列的通项.(2)根据解得.(3)利用裂项相消求,再求得,再解不等式即得实数的取值范围.【详解】(1),且.数列是以为首项,为公比的等比数列,.(2)由得,,,,因为数列为等比数列,所以,,解得.(3)由(2)知,,所以,所以,解得.【点睛】(1)本题主要考查项和公式求数列的通项,考查等比数列的性质,考查裂项相消求和,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.19.已知椭圆的两个焦点分别为和,过点的直线与椭圆相交于x轴上方的A,B两点,且.求椭圆的离心率;求直线AB的斜率;设点C与点A关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】(1) 离心率;(2) ,.【解析】分析:(1)由得,化为,从而可得结果;(2)(i)由(1)可设圆的方程可写,设直线AB的方程为,联立,结合点B为线段AE的中点可得,,从而可得结果;(ii)由(i)可知当时,得,由已知得,求出外接圆方程与直线的方程,联立可得结果.详解:(1)由得,从而整理,得,故离心率(2) 解法一:(i)由(I)得,所以椭圆的方程可写设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.依题意,而①②w由题设知,点B为线段AE的中点,所以③联立①③解得,将代入②中,解得.解法二:利用中点坐标公式求出,带入椭圆方程消去,解得解出(依照解法一酌情给分)(ii)由(i)可知当时,得,由已知得.线段的垂直平分线l的方程为直线l与x轴的交点是外接圆的圆心,因此外接圆的方程为. 直线的方程为,于是点H(m,n)的坐标满足方程组,由解得故点睛:本题主要考查椭圆与直线的位置关系以及椭圆离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.20.已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.【答案】(1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增。
精品解析:【市级联考】山东省威海市2019届高三二模考试数学(理科)试题(解析版)
高三理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足2(1)(3)z i i +=+,则||z =( )A.B.C. D. 8【答案】C 【解析】 【分析】先根据复数的乘除法求出复数z 的代数形式,然后再求出||z 即可. 【详解】∵2(1)(3)z i i +=+,∴2(3)86(86)(1)(43)(1)711(1)(1)i i i i z i i i i i i i +++-====+-=-+++-,∴||z === 故选C .【点睛】本题考查复数的运算和复数模的求法,解题的关键是正确求出复数的代数形式,属于基础题.2.已知集合x y y A 2log |{==,14}2x ≤≤,{2}B x =≤,则A B ⋂=( ) A. [1,2]- B. ]2,0[C. [1,4]-D. [0,4]【答案】B 【解析】 【分析】根据对数的单调性求出集合A ,解不等式得到集合B ,然后再求出B A 即可得到答案. 【详解】由题意得2214}{|log log {|}[1,212]2A y y y y ≤≤=≤≤=-=-,又{2}[0,4]B x =≤=,∴[0,2]A B ⋂=.故选B .【点睛】本题考查集合的交集,解题的关键是根据题意得到集合,A B ,属于基础题.3.下图所示茎叶图中数据的平均数为89,则x 的值为( )A. 6B. 7C. 8D. 9【答案】B 【解析】 【分析】根据茎叶图中的数据及平均数的定义得到关于x 的方程,解方程可得所求. 【详解】茎叶图中的数据为:86,80,90,91,91x +, 由数据平均数为89得1(8680909191)895x +++++=, 解得7x =. 故选B .【点睛】解答本题时首先要由茎叶图得到相关数据,解题的关键是要明确茎叶图中茎中的数字表示十位数字,叶中的数字表示各位数字,属于基础题.4.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,M 为其终边上一点,则cos2α=( ) A.32-B.23C. 13-D.13【答案】D 【解析】 【分析】先根据三角函数的定义求出36cos =α,然后再根据二倍角的余弦公式求出cos2α. 【详解】∵M 为角α终边上一点,∴cosα===,∴221cos22cos12(133αα=-=⨯-=.故选D.【点睛】本题考查三角函数的定义和倍角公式,考查对基础知识的掌握情况和转化能力的运用,属于基础题.5.若,x y满足约束条件210,220,20,x yx yx y-+≤⎧⎪-+≥⎨⎪+-≤⎩则3z x y=-的最大值为( )A. 2B. 1C. 0D. -1【答案】A【解析】【分析】画出不等式组表示的可行域,由3z x y=-得zxy-=3,平移直线并结合z的几何意义得到最优解,进而可得所求最大值.【详解】画出不等式组表示的可行域,如图中阴影部分所示.由3z x y=-得zxy-=3,所以z表示直线zxy-=3在y轴上截距的相反数.平移直线zxy-=3,结合图形可得当直线经过可行域内的点A时,直线在y轴上的截距最小,此时z取得最大值. 由21020x y x y -+=⎧⎨+-=⎩解得11x y =⎧⎨=⎩,所以)1,1(A ,所以max 3112z =⨯-=. 故选A .【点睛】利用线性规划求目标函数的最值问题是常考题型,一般以选择题、填空题的形式出现,难度适中.解题时要熟练画出可行域,把目标函数适当变形,把所求最值转化为求直线的斜率、截距、距离等问题处理,主要考查数形结合在解题中的应用和计算能力.6.函数sin 22y x x =的图象可由2cos 2y x =的图象如何变换得到( )A. 向左平移12π个单位 B. 向右平移12π个单位 C. 向左平移6π个单位D. 向右平移6π个单位【答案】B 【解析】 【分析】由题意化简得sin 222cos[2()]12y x x x π=+=-,然后再把函数2cos 2y x =的图象经过平移后可得到所求答案.【详解】由题意得sin 222sin(2)2cos[(2)]2cos(2)3236y x x x x x ππππ==+=-+=-+ 2cos(2)2cos[2()]612x x ππ=-=-,所以将函数2cos 2y x =的图象向右平移12π个单位可得到函数2cos[2()]12y x π=-,即函数sin 22y x x =+的图象.故选B .【点睛】在进行三角函数图象的变换时要注意以下几点:①变换的方向,即由谁变换到谁;②变换前后三角函数名是否相同;③变换量的大小.特别注意在横方向上的变换只是对变量x 而言的,当x 的系数不是1时要转化为系数为1的情况求解.7.若P 为ABC ∆所在平面内一点,且|||2|PA PB PA PB PC -=+-u u r u u r u u r u u r u u u r,则ABC ∆的形状为( ) A. 等边三角形 B. 等腰三角形C. 直角三角形D. 等腰直角三角形【答案】C 【解析】 【分析】由条件可得||||BA CA CB =+uu r uu r uu r ,即||||C A C B C A C B -=+u u r u u r u u r u u r,进而得到CA CB ⊥,所以ABC ∆为直角三角形. 【详解】∵|||2|PA PB PA PB PC -=+-u u r u u r u u r u u r u u u r , ∴|||()()|||BA PA PC PB PC CA CB =-+-=+u u r u u r u u u r u u r u u u r u u r u u r , 即||||CA CB CA CB -=+u u r u u r u u r u u r ,两边平方整理得0CA CB ⋅=, ∴CA CB ⊥,∴ABC ∆为直角三角形. 故选C .【点睛】由于向量具有数和形两方面的性质,所以根据向量关系式可判断几何图形的形状和性质,解题时需要对所给的条件进行适当的变形,把向量的运算问题转化为几何中的位置关系问题,解题中要注意向量线性运算的应用,属于中档题.8.已知函数()ln ln()f x x a x =+-的图象关于直线1x =对称,则函数()f x 的值域为( ) A. )2,0( B. [0,)+∞C. (2]-∞D. (,0]-∞【答案】D 【解析】 【分析】根据函数()f x 的图象关于直线1x =对称可得(1)(1)f x f x +=-,由此可得2a =,所以()l n l n (2f x x x =+-,再结合函数的单调性和定义域求得值域.【详解】∵函数()ln ln()f x x a x =+-的图象关于直线1x =对称∴(1)(1)f x f x +=-,即ln(1)ln(1)ln(1)ln(1)x a x x a x -+-+=++--, ∴(1)(1)(1)(1)x a x x a x --+=+--, 整理得(2)0a x -=恒成立, ∴2a =,∴()ln ln(2)f x x x =+-,定义域为)2,0(. 又2()ln ln(2)ln(2)f x x x x x =+-=-, ∵02x <<时,2021x x <-≤, ∴2ln(2)0x x -≤,∴函数()f x 的值域为(,0]-∞. 故选D .【点睛】解答本题时注意两点:一是函函数()y f x =的图象关于x a =对称()()f a x f a x ⇔+=-()(2)f x f a x ⇔=-;二是求函数的值域时首先要考虑利用单调性求解.本题考查转化及数形结合等方法的利用,属于中档题.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A. 6B. 8C. 26D. 【答案】B 【解析】 【分析】根据三视图画出四棱锥的直观图,然后再结合四棱锥的特征并根据体积公式求出其体积即可.【详解】由三视图可得四棱锥为如图所示的长方体1111ABCD A B C D -中的四棱锥11C DEE D -,其中在长方体1111ABCD A B C D -中,14,2,3AB AD AA ===,点1,E E 分别为11,AB A B 的中点.由题意得CE DE ==CE DE ⊥, 又1CE EE ⊥, 所以CE ⊥平面11DEE D 即线段CE 即为四棱锥的高.所以111111(3833DEE D C DEE D V S CE -=⋅⋅=⨯⨯⨯=四棱锥. 故选B .【点睛】本题考查三视图还原几何体和几何体体积的求法,考查空间想象能力和计算能力,解题的关键是由三视图得到几何体的直观图,属于中档题.10.在ABC ∆中,3AC =,向量 在上的投影的数量为2,3ABC S ∆-=,则=BC ( )A. 5B. 72C.D. 24【答案】C 【解析】 【分析】由向量AB 在AC 上的投影的数量为2-可得||cos 2AB A =-,由3=∆ABC S 可得1||||sin 32AB AC A =,于是可得3,||224A AB π==BC 的长度. 【详解】∵向量 在上的投影的数量为2-, ∴||cos 2AB A =-.①∵3=∆ABC S , ∴13||||sin ||sin 322AB AC A AB A ==, ∴||sin 2AB A =.② 由①②得tan 1A =-, ∵A 为ABC ∆的内角,∴43π=A ,∴2||3sin4AB π== 在ABC ∆中,由余弦定理得2222232cos323(2942BC AB AC AB AC π=+-⋅⋅⋅=+-⨯⨯-=,∴BC =故选C .【点睛】本题考查向量数量积的几何意义和解三角形,解题的关键是根据题意逐步得到运用余弦定理时所需要的条件,考查转化和计算能力,属于中档题.11.已知函数()f x 的定义域为R ,1122f ⎛⎫=-⎪⎝⎭,对任意的x R ∈满足()4f x x '>.当[0,2]απ∈时,不等式(sin )cos 20f αα+>的解集为( )A. 711,66ππ⎛⎫⎪⎝⎭B. 45,33ππ⎛⎫⎪⎝⎭C. 2,33ππ⎛⎫⎪⎝⎭D. 5,66ππ⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】根据题意构造函数2()()21g x f x x =-+,则()()40g x f x x ''=->,所以得到()g x 在R 上为增函数,又2111()()2()10222g f =-⨯+=.然后根据(sin )cos 20f αα+>可得21(sin )(sin )2sin 1(sin )cos 20()2g f f g ααααα=-+=+>=,于是21sin >α,解三角不等式可得解集.【详解】由题意构造函数2()()21g x f x x =-+, 则()()40g x f x x ''=->, ∴函数()g x 在R 上为增函数. ∵1122f ⎛⎫=-⎪⎝⎭, ∴2111()()2()10222g f =-⨯+=. 又(sin )cos 20f αα+>,∴21(sin )(sin )2sin 1(sin )cos 20()2g f f g ααααα=-+=+>=, ∴21sin >α, ∵02απ≤≤, ∴566ππα<<, ∴不等式(sin )cos 20f αα+>的解集为5,66ππ⎛⎫⎪⎝⎭.故选D .【点睛】解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.本题考查函数和三角函数的综合,难度较大.12.设1F ,2F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点()0,2P x a 为双曲线上一点,若21F PF ∆的重心和内心的连线与x 轴垂直,则双曲线的离心率为( )A.2B.2C.D.【答案】A 【解析】【分析】设21F PF ∆的重心和内心分别为,G I ,则02(,)33x aG .设(,)I I I x y ,根据双曲线的定义和圆的切线的性质可得I x a =,于是03x a =,03x a =,所以()3,2P a a .然后由点P 在双曲线上可得2212b a =,于是可得离心率.【详解】画出图形如图所示,设21F PF ∆的重心和内心分别为,G I ,且圆I 与21F PF ∆的三边1212,,F F PF PF 分别切于点,,M Q N ,由切线的性质可得1122||||,||||,||||PN PQ FQ F M F N F M ===. 不妨设点()0,2P x a 在第一象限内, ∵G 是21F PF ∆的重心,O 为12F F 的中点,∴1||||3OG OF =, ∴G 点坐标为02(,)33x a. 由双曲线的定义可得121212||||2||||||||PF PF a FQ F N F M F M -==-=-, 又12||||2F M F M c +=, ∴12||,||F M c a F M c a =+=-, ∴M 为双曲线的右顶点. 又I 是21F PF ∆的内心, ∴12IM F F ⊥.设点I 的坐标为(,)I I x y ,则I x a =. 由题意得GI x ⊥轴,∴03x a =,故03x a =, ∴点P 坐标为()3,2a a .∵点P 在双曲线22221(0,0)x y a b a b-=>>上, ∴22222294491a a a a b b -=-=,整理得2212b a =,∴c e a ====. 故选A .【点睛】本题综合考查双曲线的性质和平面几何图形的性质,解题的关键是根据重心、内心的特征及几何图形的性质得到点P 的坐标,考查转化和计算能力,难度较大.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在5(2x +的展开式中,4x 的系数是__________.【答案】80.【解析】【分析】先求出二项展开式的通项,然后可求出4x 的系数. 【详解】由题意得,二项展开式的通项为5552155(2)2(0,1,2,3,4,5)r r r r r r r TC x C x r ---+=⋅⋅==,令2r =得4x 的系数为325280C ⋅=. 故答案:80.【点睛】解答此类问题的关键是求出二项展开式的通项,然后再根据所求问题通过赋值法得到所求,属于基础题.14.已知抛物线22(0)y px p =>上一点M 到x 轴的距离为4,到焦点的距离为5,则=p __________.【答案】2或8.【解析】【分析】设00(,)M x y ,则0||4y =,由题意可得052p x +=,0162px =,两式消去0x 后解方程可得所求值. 【详解】设00(,)M x y ,则0||4y =,∴0162px =.①又点M 到焦点的距离为5, ∴052p x +=.② 由①②消去0x 整理得210160p p -+=,解得2p =或8p =.故答案为:2或8.【点睛】本题考查抛物线定义的应用,即把曲线上的点到焦点的距离转化为点到准线的距离,属于基础题.15.直三棱柱111ABC A B C -中,190,2BC A A A ︒∠==,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________.【答案】16π.【解析】【分析】设,AB c BC a ==,由三棱锥O ABC -的体积为1可得6=ac .然后根据题意求出三棱柱外接球的半径为22()12R =+,再结合基本不等式可得外接球表面积的最小值.【详解】如图,在Rt ABC ∆中,设,AB c BC a ==,则AC =分别取11,AC A C 的中点12,O O ,则12,O O 分别为111C B A Rt ∆和Rt ABC ∆外接圆的圆心,连12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心.连OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1, 即1()1132O ABC ac V -=⨯⨯=, ∴6=ac .在2Rt OO C ∆中,可得22222212()()112224O O AC a c R +=+=+=+, ∴222244(1)4(1)1644a c ac S R ππππ+==+≥+=球表,当且仅当c a =时等号成立, ∴O 球表面积的最小值为16π.故答案为:16π.【点睛】解答几何体外接球的体积、表面积问题的关键是确定球心的位置,进而得到球的半径,解题时注意球心在过底面圆圆心且垂直于底面的直线上,且球心到几何体各顶点的距离相等.在确定球心的位置后可在直角三角形中求出球的半径,此类问题考查空间想象力和计算能力,难度较大.16.“克拉茨猜想”又称“31n +猜想”,是德国数学家洛萨•克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n ,如果n 是偶数,就将它减半;如果n 为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数m 经过6次运算后得到1,则m 的值为__________.【答案】10或64.【解析】【分析】从第六项为1出发,按照规则逐步进行逆向分析,可求出m 的所有可能的取值.【详解】如果正整数m 按照上述规则经过6次运算得到1,则经过5次运算后得到的一定是2;经过4次运算后得到的一定是4;经过3次运算后得到的为8或1(不合题意);经过2次运算后得到的是16;经过1次运算后得到的是5或32;所以开始时的数为10或64.所以正整数m 的值为10或64.故答案为:10或64.【点睛】本题考查推理的应用,解题的关键是按照逆向思维的方式进行求解,考查分析问题和解决问题的能力,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知{}n a 是递增的等比数列,548a =,2344,3,2a a a 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足21a b =,1n n n b b a +=+,求数列{}n b 的前n 项和n S .【答案】(Ⅰ) 123-⋅=n n a .(Ⅱ) 323(1)n n S n =⋅+-.【解析】【分析】(Ⅰ)由条件求出等比数列的首项和公比,然后可得通项公式.(Ⅱ)由题意得1n n n b b a +-=,再利用累加法得到1323n n b -=⋅+,进而可求出n S . 【详解】(Ⅰ)设等比数列{}n a 的公比为(0)q q >,∵24a ,33a ,42a 成等差数列,∴324642a a a =+,即23111642a q a q a q =+,∴0232=+-q q ,解得2q =或1q =(舍去)又45111648a a q a ===,∴31=a .∴123-⋅=n n a .(Ⅱ)由条件及(Ⅰ)可得12326b a ==⨯=.∵1n n n b b a +=+,∴1n n n b b a +-=,∴11(2)n n n b b a n ---=≥,∴()()()112211n n n n n b b b b b b b b ---=-+-++-+123216n n n a a a a a ---=++++++L1332612n --⋅=+- 1323(2)n n -=⋅+≥.又16b =满足上式,∴1323(*)n n b n N -=⋅+∈ ∴11223(122)332233323(1)12nn n n n S b b b n n n --⋅=+++=+++++=+=⋅+--L L . 【点睛】对于等比数列的计算问题,解题时可转化为基本量(首项和公比)的运算来求解.利用累加法求数列的和时,注意项的下标的限制,即注意公式的使用条件.考查计算能力和变换能力,属于中档题.18.如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,ABC ∆为等边三角形,22PA AB ==,AC CD ⊥,PD 与平面PAC 所成角的正切值为515.(Ⅰ)证明://BC 平面PAD ;(Ⅱ)若M 是BP 的中点,求二面角P CD M --的余弦值.【答案】(Ⅰ)见解析.(Ⅱ)25511. 【解析】【分析】(Ⅰ)先证明DPC ∠为PD 与平面PAC 所成的角,于是可得CD =,于是60CAD ∠=︒.又由题意得到60BCA ∠=︒,故得AD BC //,再根据线面平行的性质可得所证结论. (Ⅱ) 取BC 的中点N ,连接AN ,可证得AN AD ⊥.建立空间直角坐标系,分别求出平面PCD 和平面CDM 的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值.【详解】(Ⅰ)证明:因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥又AC CD ⊥,CA PA A =I ,所以CD ⊥平面PAC ,所以DPC ∠为PD 与平面PAC 所成的角.在Rt PCD V 中,PC ==,所以CD =所以在Rt PCD V 中,2AD =,60CAD ∠=︒.又60BCA ∠=︒,所以在底面ABCD 中,AD BC //,又AD ⊂平面PAD ,BC Ë平面PAD ,所以//BC 平面PAD .(Ⅱ)解:取BC 的中点N ,连接AN ,则AN BC ⊥,由(Ⅰ)知AD BC //,所以AN AD ⊥,分别以AN ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系Axyz .则(0,0,2)P,1,022C ⎛⎫ ⎪ ⎪⎝⎭,(0,2,0)D,1,144M ⎛⎫- ⎪ ⎪⎝⎭所以3,02CD ⎛⎫= ⎪ ⎪⎝⎭uu u r ,(0,2,2)PD =-,9,14DM ⎫=-⎪⎪⎝⎭uuu u r设平面PCD 的一个法向量为()1111,,n x y z =,由1100n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即111130220y y z ⎧+=⎪⎨-=⎪⎩,得1111x z y ⎧=⎪⎨=⎪⎩, 令11y =,则1(3,1,1)n =.设平面CDM 的一个法向量为()2222,,n x y z =,由2200n CD n MD ⎧⋅=⎪⎨⋅=⎪⎩,即2222230940y y z ⎧+=⎪-+=,得222232x y z ⎧=⎪⎨=⎪⎩, 令21y=,则232n ⎫=⎪⎭u u r .所以121212331cos ,||||n n n n n n ++⋅<>===⋅u r u u r u r u u r u r u u r 由图形可得二面角P CD M --为锐角,所以二面角P CD M --的余弦值为25511. 【点睛】空间向量是求解空间角的有利工具,根据平面的法向量、直线的方向向量的夹角可求得线面角、二面角等,解题时把几何问题转化为向量的运算的问题来求解,体现了转化思想方法的利用,不过解题中要注意向量的夹角和空间角之间的关系,特别是求二面角时,在求得法向量的夹角后,还要通过图形判断出二面角是锐角还是钝角,然后才能得到结论.19.某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),己知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100 元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如下表:以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在 甲、乙两市场同时销售,以X (单位:吨)表示下个销售周期两市场的需求量,T (单位:元)表示下个销售周期两市场的销售总利润.(Ⅰ)当19n =时,求T 与X 的函数解析式,并估计销售利润不少于8900元的槪率;(Ⅱ)以销售利润的期望为决策依据,判断17n =与18n =应选用哪—个.【答案】(Ⅰ)解析式见解析;槪率为0.71;(Ⅱ) 18n =.【解析】【分析】(Ⅰ) 根据题意可得解析式为分段函数9500,? 19,6001900,19X T X X ≥⎧=⎨-<⎩.分析题意可得当18X ≥时可满足利润不少于8900元,求出16,17X X ==的概率后再根据对立事件的概率公式求解即可. (Ⅱ) 结合题意中的销售情况,分别求出当17n =和18n =时的销售利润的期望,比较后可得结论.【详解】(Ⅰ)由题意可知,当19X ≥,500199500T =⨯=;当19X <,500(19)1006001900T X X X =⨯--⨯=-,所以T 与X 的函数解析式为9500,? 19,6001900,19X T X X ≥⎧=⎨-<⎩. 由题意可知,一个销售周期内甲市场需求量为8,9,10的概率分别为0.3,0.4,0.3;乙市场需求量为8,9,10的概率分别为0.2,0.5,0.3.设销售的利润不少于8900元的事件记为A .当19X ≥,5001995008900T =⨯=>,当19X <,60019008900X -≥,解得18X ≥,所以()(18)P A P X =≥.由题意可知,(16)0.30.20.06P X ===⨯;(17)0.30.50.40.20.23P X ⨯⨯==+=;所以()(18)10.060.230.71P A P X ==--=≥.(Ⅱ)由题意得(16)0.06P X ==,(17)0.23P X ==,(18)0.40.50.30.30.30.20.35P X ⨯⨯⨯==++=,(19)0.40.30.30.50.27P X ⨯⨯==+=, (20)0.30.30.09P X ===⨯.①当17n =时,()(500161100)0.06500170.948464E T =⨯-⨯⨯+⨯⨯=;②当18n =时,()(500162100)0.06(500171100)0.23185000.718790E T ⨯⨯⨯⨯⨯⨯⨯⨯=-+-+=.因为84648790<,所以应选18n =.【点睛】本题考查应用概率解决生活中的实际问题,解题的关键是深刻理解题意,然后再根据题中的要求及数学知识进行求解,考查应用意识和转化、计算能力,是近年高考的热点之一,属于中档题.20.在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】【分析】(Ⅰ) 由160AF B ∠=︒,可得2a b =;由椭圆C经过点1)2,得2231144b b+=,求出22,a b 后可得椭圆的方程.(Ⅱ)将直线方程与椭圆方程联立消元后根据判别式为零可得1422+=k m ,解方程可得切点坐标为41(,)k P m m -,再根据直线和圆相切得到||OQ =||PQ ,进而得到OPQ S∆=,将1422+=k m 代入后消去m 再用基本不等式可得当三角形面积最大时1k =,于是可得m =【详解】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b +=,② 由①②得224,1a b ==, 所以椭圆C 的方程为2214x y +=. (Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得1422+=k m ,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4k x m-=, 设()11,P x y ,则124414km k x k m --==+,故111y kx m m =+=,因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将1422+=k m 式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k +≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得m = 所以直线l的方程为y x =±【点睛】解决解析几何问题的关键是将题中的信息坐标化,然后再利用一元二次方程根与系数的关系进行转化处理,逐步实现变量化一的目的.由于解题中要涉及到大量的计算,所以要注意计算的合理性,通过“设而不求”、“整体代换”等方法进行求解,考查转化和计算能力,属于难度较大的问题.21.已知函数2()(1)1xa x f x e x x -=>-+. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)证明:当[0,1]m ∈时,函数222()(0)xmx m e g x x x+-=>有最大值.设()g x 的最大值为)(m h ,求函数)(m h 的值域.【答案】(Ⅰ)答案见解析.(Ⅱ)答案见解析.【解析】 【分析】(Ⅰ)2222(22)1()(1)(1)x x a x a f x e x x -+-+-'=>-+,令2()2(22)1h x x a x a =-+-+-)1(->x ,然后根据判别式()241a ∆=-的符号讨论函数()h x 函数值的情况,进而得到()f x '的符号,于是可得函数的单调情况.(Ⅱ)由题意得23312(1)[]2(1)[()]1()xx x e m x f x m x g x x x -+-+-+'==,结合(Ⅰ)得当1a =时,21()1xx f x e x -=+在(0,)+∞上单调递减,且(0)1,(1)0f f ==,因此得到对任意)1,0[∈m ,存在唯一的(0,1]m x ∈,使()m f x m =,且()g x 在(0,)m x 单调递增,在(,)m x +∞单调递减,所以()g x 的最大值2()()21mx m m h x g x e x ==-+.设22()1x p x e x-=+(01)x <≤,则()p x 在]1,0(单调递减,可得(1)()(0)p h m p ≤<,进而可得所求值域.【详解】(Ⅰ)由2()(1)1xa x f x e x x -=>-+, 得222222112(22)1()2(1)(1)1(1)x x xa x x a x a f x e e e x x x x '----+-+-=+=>-+++. 令2()2(22)1(1)h x x a x a x =-+-+->-, 则()241a ∆=-,(1)当11≤≤-a 时,()2041a =∆-≤,所以()0h x ≤,()0f x '≤,所以()f x 在(1,)-+∞上单调递减.(2)当1a <-或1a >时,()241a ∆=->0,设0)(=x h 的两根为12,x x 且12x x <,则1211,22a a x x ---+==, ①若1a <-,可知121x x <-<,则当()2,x x ∈+∞时,()0,()f x f x '<单调递减;当()21,x x ∈-时,()0,()f x f x '>单调递增.②若1a >,可知121x x -<<,则当()()121,,x x x ∈-+∞U 时,()0,()f x f x '<单调递减; 当()12,x x x Î时,()0,()f x f x '>单调递增. 综上可知:当1a <-时,()f x在(1)2a -+∞上单调递减,在11,2(a -+-上单调递增;当11≤≤-a 时,()f x 在(1,)-+∞上单调递减;当1a >时,()f x在(-,)+∞上单调递减,在11(22a a ---上单调递增.(Ⅱ)由222()(0)xmx m e g x x x +-=>,得()()22224322222(1)2(1)()xx x m e xmx m e x x e m x g x x x --+---+'==23312(1)2(1)[()]1x x x e m x f x m x x x -⎡⎤+-⎢⎥+-+⎣⎦==,由(Ⅰ)可知当1a =时,21()1xx f x e x -=+在(0,)+∞上单调递减,且(0)1,(1)0f f ==, 所以对任意)1,0[∈m ,存在唯一的(0,1]m x ∈,使()m f x m =(反之对任意(0,1]m x ∈, 也存在唯一)1,0[∈m ,使()m f x m =).且当0m x x <<时,m x f >)(,()0g x '>,()g x 在(0,)m x 单调递增; 当m x x >时,()f x m <,()0g x '<,()g x 在(,)m x +∞单调递减.因此当m x x =时,()g x 取得最大值,且最大值222()()mx m m mmx m e h x g x x +-==22(21)m x m m m x e x +-=()()2222121m mx x m m m mf x x e e x x +--==+, 令22()(01)1xp x e x x-=<≤+, 则2242()0(1)xx p x e x +'=-≤+,所以()p x 在]1,0(单调递减,所以(1)()(0)p h m p ≤<,即2()2e h m -≤<-,所以)(m h 的值域为2[,2)e --.【点睛】解答关于导数的综合问题时要熟练掌握函数单调性的判断方法,理解函数单调性与导数的关系.在解题中,对于含参数问题要注意对隐含条件的挖掘,利用函数的单调性解不等式,注意对参数的讨论;对于函数的最值问题首先要考虑利用函数的单调性求解.本题综合考查利用导数研究单调性、求函数的最值等,难度较大.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x r y r αα=+⎧⎨=⎩ (α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin 36πρθ⎛⎫+= ⎪⎝⎭,且曲线1C 与2C 恰有一个公共点. (Ⅰ)求曲线1C 的极坐标方程;(Ⅱ)已知曲线1C 上两点A ,B 满足4AOB π∠=,求AOB ∆面积的最大值.【答案】(Ⅰ) 4cos ρθ=.(Ⅱ) 2+. 【解析】 【分析】(Ⅰ) 由题意得曲线2C 为直线,曲线1C 为圆,根据直线和圆相切可得圆的半径,进而可得圆的极坐标方程. (Ⅱ) 设()2121(,),0,0,4(),B A πθρρρθρ+>>,可得 MON S∆124ρρ=cos 4πθθ⎛⎫=+ ⎪⎝⎭,然后转化为三角函数的知识求解即可.【详解】(Ⅰ)曲线2C的极坐标方程为1sin()sin cos 362πρθρθρθ+=+=, 将sin ,cos y x ρθρθ==代入上式可得2C 直角坐标方程为1322y x +=, 即60x -=,所以曲线2C 为直线.又曲线1C 是圆心为(2,0),半径为||r 的圆, 因为圆1C 与直线1C 恰有一个公共点, 所以|26|||22r -==, 所以圆1C 的普通方程为2240x y x +-=,把222,cos x y x ρρθ+==代入上式可得1C 的极坐标方程为0cos 42=-θρρ,即4cos ρθ=.(Ⅱ)由题意可设()2121(,),0,0,4(),B A πθρρρθρ+>>,121||sin cos 2444MON S OA OB ππρρθθ∆⎛⎫===+ ⎪⎝⎭uu r uu u r ‖ ()21cos 2sin 24cos sin cos 422θθθθθ+⎛⎫=-=- ⎪⎝⎭224πθ⎛⎫=++ ⎪⎝⎭,所以当cos 214πθ⎛⎫+= ⎪⎝⎭时,AOB ∆的面积最大,且最大值为2+. 【点睛】本题考查参数方程、极坐标方程、直角坐标方程间的转化和极坐标方程的应用,利用极坐标方程解题时要注意用点的极径可解决长度问题,解题中往往涉及到三角变换,然后再转化成三角函数的问题求解,属于中档题.23.选修4-5:不等式选讲 已知正实数,a b 满足2a b +=.≤(Ⅱ) 若对任意正实数,a b ,不等式|1||3|x x ab +--≥恒成立,求实数x 的取值范围. 【答案】(Ⅰ)见解析.(Ⅱ) 3[,)2+∞. 【解析】 【分析】(Ⅰ) 由题意得22()2a b =+++利用基本不等式可得所证结论成立. (Ⅱ)先求出1ab ≤,故得对任意正实数,a b ,|1||3|x x ab +--≥恒成立,然后对x 进行分类讨论可得所求范围.【详解】(Ⅰ)22()262()212a b a b =+++≤+++=(Ⅱ)对正实数,a b 有a b +…所以2≤,解得1ab ≤,当且仅当a b =时等号成立. 因为对任意正实数,a b ,|1||3|x x ab +--≥恒成立, 所以|1||3|1x x +--≥恒成立.当1-≤x 时,不等式化为1(3)1x x ----≥,整理得41-≥,所以不等式无解; 当13x -<<时,不等式化为1(3)1x x +--≥,解得332x ≤≤; 当3x ≥时,不等式化为1(3)1x x +--≥,整理得41≥,不等式恒成立. 综上可得x 的取值范围是3[,)2+∞.【点睛】(1)利用基本不等式解题时注意“一正二定三相等”三个条件要缺一不可,一定要点明等号成立的条件.(2)解绝对值不等式的常用方法是根据对变量的分类讨论去掉绝对值,然后转化为不等式(组)求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉萨市2019届高三第二次模拟考试试卷
理科数学
一、选择题:本题共12小题,每小题5分,共60分 在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则=
A.B..D.
【答案】
【解析】
【分析】
可求出集合A,B,然后进行交集的运算即可.
【详解】,;
••• AnB={x|1vx<2}.
变换规律,正弦函数的图象的对称性,属于基础题.
7.已知双曲线:的一条渐近线过点,则的离心率为()
A.B.
.D.3
【答案】
【解析】
【分析】
求得双曲线的渐近线方程,由题意可得,再由离心率公 式,计算可得所求值.
【详解】双曲线的渐近线方程为,
由题意可得,可得,
则双曲线的离心率为.
故选:.
【点睛】本题考查双曲线的方程和性质,主要是渐近线 方程和离心率的求法,考查方程思想和运算能力,属于基础 题.
【详解】由,
得,其中,
设,
•••存在唯一的整数,使得,
•••存在唯一的整数,使得在直线的下方.
• •
•••当时,单调递减;当时,单调递增.
•••当时,,
又当时,,
直线过定点,斜率为,
所以要满足题意,则需,解得,
•••实数的取值范围是.
故答案为.
【点睛】本题考查用导数研究函数的性质和函数图象 的应用,具有综合性和难度,考查理解能力和运算能力,解 题的关键是正确理解题意,将问题转化为两函数图象的相对 位置关系处理,进而借助数形结合的方法得到关于参数的不 等式(组),进而得到所求.
(1)求直方图中的值;
(2)由频率分布直方图可认为,这种产品的质量指标 值服从正态分布,试计算这批产品中质量指标值落在上的件 数;
(3)设产品生产成本为,质量指标值为,生产成本与 质量指标值满足函数关系式,假设同组中的每个数据用该组
数据区间的右端点代替,试计算生产该食品的平均成本.参
考数据:若,贝畀,.
输出.
故选项.
【点睛】本题考查通过程序框图的输入值和循环结构, 得到输出值,属于简单题.
9.某简单几何体的三视图如图所示,若该几何体的所
有顶点都在球的球面上,则球的体积是
A.B.
.D.
【答案】B
【解析】
【分析】
由三视图还原几何体,可知该几何体为直三棱柱,底面 为等腰直角三角形,直角边长为2,侧棱长为2,然后将其
故选:.
【点睛】考查描述法的定义,对数函数的定义域,一元 二次不等式的解法,交集的运算.
2.若复数满足,则
A.B..D.1
【答案】D
【解析】
【分析】
把已知等式变形,利用复数代数形式的乘除运算化简求
得Z,再由复数模的计算公式求解.
详解】由(z+1)i=1+i,得z+1,
z=-i,则|z|=1.
故选:D.
故选A项.
【点睛】本题考查等差数列和等比数列求和公式的性质, 属于中档题.
11.设椭圆的两焦点分别为,,以为圆心,为半径的圆 与交于,两点,若为直角三角形,则的离心率为()
A.B..D.
【答案】B
【解析】
【分析】
由为直角三角形,得,可得,利用椭圆的定义和离心率 的概念,即可求解.
【详解】如图所示,因为为直角三角形,所以,
4.的展开式中的系数为()
A.-80B.-40.40D.80
【答案】
【解析】
【分析】
由题意分别找到展开式中和的系数,然后相加得到项的 系数.
【详解】要求的展开式中的系数
则中与展开式中相乘,以及中与展开式中相乘
而展开式中,项为,
项为.
所以的展开式中的项为
故选项
【点睛】本题考查二项式展开式与多项式相乘,其中某 一项的系数,属于基础题.
详解:(1)由已知可得,BF丄PF,BF丄EF,又,所以BF丄平面PEF.
又平面ABFD所以平面PEF丄平面ABFD.
(2)作PhUEF,垂足为H.由(1)得,PH丄平面ABFD.
以H为坐标原点,的方向为y轴正方向,为单位长,建 立如图所示的空间直角坐标系H?xyz.
由(1)可得,DELPE.又DP=2DE=1,所以PE=.又PF=1,EF=2,故PELPF.
【点睛】本题考查复数代数形式的乘除运算,考查复数
模的求法,是基础题.
3.在普通高中新课程改革中,某地实施“3+1+2”选课
方案.该方案中“2”指的是从政治、地理、化学、生物4
门学科中任选2门,假设每门学科被选中的可能性相等,那 么政治和地至少有一门被选中的概率是()
A.B..D.
【答案】D
【解析】
【分析】
三、解答题:共70分。解答应写出字说明、证明过程 或演算步骤。第17〜21题为必考题,每个试题考生都必须 作答。第22、23题为选考题,考生根据要求作答。
17.的内角的对边分别为,且.
(1)求A;
(2)若,点D在边上,,求的面积.
【答案】(1);
(2).
【解析】
【分析】
(1)由正弦定理、三角函数恒等变换化简已知可得:
本题可从反面思考,两门至少有一门被选中的反面是两 门都没有被选中,两门都没被选中包含1个基本事件,代入
概率的公式,即可得到答案.
【详解】设两门至少有一门被选中,则两门都没有选中},
包含1个基本事件,
贝农所以,故选D.
【点睛】本题主要考查了古典概型及其概率的计算,其 中解答中合理应用对立事件和古典概型及其概率的计算公 式求解是解答的关键,着重考查了运算与求解能力,属于基 础题.
女子善于织布,每天织的布都是前一天的2倍,已知她5天
共织布5尺,问这个女子每天分别织布多少? ”根据上题的 已知条件,可求得该女子第3天所织布的尺数为.
【答案】
【解析】
试题分析:设该女子第一末织布尺,则由题意得,解之 得,所以前三天织布的总尽数为,故应填.
考点:1.等比数列的定义与求和;2.数列的应用.
利用函数y=Asin(3x+$)的图象变换规律,求得平 移后的解析式,再令2xkn,求得结论.
【详解】将函数y=sin(2x)的图象向右平移个单位长
度后,所得图象对应的函数解析式为y=sin(2x),
令2xkn,求得x,k€乙故函数的对称中心为(,0),k€Z,
故选:A.
【点睛】本题主要考查函数y=Asin(3x+$ )的图象
【名师点睛】本题考查等比数列的定义与求和、数列的
应用以及数学化,属中档题;解决数列的应用问题,要明确 问题属于哪一种类型,即明确是等差数列问题还是等比数列 问题,是求还求,特别是在弄清项数.
16.设函数,其中,若存在唯一的整数,使得,则的取
值范围是
【答案】
【解析】
【分析】
由得到,设,,从而由题意可得存在唯一的整数,使得 在直线的下方.利用导数得到函数的单调性,然后根据两函 数的图象的相对位置关系得到关于实数的不等式组,进而得 到所求范围.
14.已知函数,若,贝y.
【答案】
【解析】
【分析】
根据题意,由的值分析可得,变形可得,则有则,代入
计算可得答案.
【详解】函数,若,
贝农变形可得,
贝
故答案为:.
【点睛】本题考查函数值计算,关键是求出函数的解析 式,属于基础题.
15.古代数学著作《九算术》有如下问题:“今有女子
善织,日自倍,五日织五尺,问日织几何? ”意思是:“一
BF丄PF,BF丄EF,又因为,利用线面垂直的判定定理可以得 出BF丄平面PEF,又平面ABFD利用面面垂直的判定定理证 得平面PEF丄平面ABFD.
(2)结合题意,建立相应的空间直角坐标系,正确写出
相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果
•••从该市任选一名高三学生,其成绩不低于90分的概
率是0.35.
故选:A.
【点睛】本题考查正态分布曲线的特点及曲线所表示的 意义,考查正态分布中两个量□和a的应用,考查曲线的对
称性,属于基础题.
6.将函数的图象向右平移个单位长度后,所得图象的 一个对称中心为()
A.B..D.
【答案】A
【解析】
【分析】
所以,贝畀解得,故选B
【点睛】本题主要考查了椭圆的标准方程及其简单的 几何性质的应用,其中解答中合理利用椭圆的定义和离心率 的概念求解是解答的关键,着重考查了运算与求解能力,属 于基础题.
12.已知定义在上的函数的导函数为,且,设,,贝畀
的大小关系为()
A.B..D.无法确定
【答案】A
【解析】
令,则.
5.经统计,某市高三学生期末数学成绩,且,则从该市
任选一名高三学生,其成绩不低于90分的概率是
A.0.35B.0.65.0.7D.0.85
【答案】A
【解析】
【分析】
由已知直接利用正态分布曲线的对称性求解.
【详解】•••学生成绩X服从正态分布N(85,a2),且
P(80vXV90)=0.3,
••• P(X>90)[1-P(80vXV90)],
【点睛】本题考查由频率分布直方图求频率和频率分布
表及平均数,求正态分布某段上的频率和频数.属于中档题.
19.如图,四边形为正方形,分别为的中点,以为折痕
把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
【答案】(1)证明见解析.
(2).
【解析】
分析:(1)首先从题的条件中确定相应的垂直关系,即
结合范围,可得,进而可求A的值.
(2)在厶AD中,由正弦定理可得,可得,利用三角形 内角和定理可求,即可求得,再利用三角形的面积公式即可 计算得解.