氨法脱硫计算书
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%得水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约—200Pa,如果精度高一点,考虑以上两个因素、1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6、332m即塔径为6。
332米,取最大值为6、5米。
底面积S=πr2=3.14×3、252=33、17m2塔径设定时一般为一个整数,如6、5m,另外,还要考虑设备裕量得问题,为以后设备能够满足大气量情况下符合得运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5、)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右得裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23。
8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量得多少进行确定,如果含量高,可适当调高吸收区高度、2。
5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3。
7米-3。
8米进行设计、吸收区总高度为13.7米—13、8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都就是2.5米,上层喷淋距离吸收区最下层喷淋为3、23米,下层距离烟气进口为5米,烟气进口距离下层底板为2。
48米。
总高为10、71米。
(5)除雾段高度计算除雾器设计成两段、每层除雾器上下各设有冲洗喷嘴。
氨法脱硫设备计算
1 基本数据尾气流量:105000 m3/h〔70℃〕;尾气温度:70℃;尾气SO2含量:2000mg/m3;吸收介质:15%NH3溶液;撞击速度:15m/s〔12~18m/s〕;操作液气比:V L/V G=0.5~0.8L/m3处理尾气出口浓度到达:≤100 mg/Nm³;现场条件:气温15.8 ℃〔平均〕,相对湿度76%,当地大气压100.85 kPa。
2 设计的基本考虑2.1 反应器为保证尾气SO2脱除至≤100 mg/Nm³〔折算后为0.08723g/ m3〕,且气量较大,采用一级二层撞击流气液反应器吸收,每层三对;气体导管数为12。
2.2 进气和撞击速度由所给条件可知,尾气流量为105000 m3/h〔70℃〕;进气和撞击速度皆取为15m/s。
3 设备尺寸计算3.1撞击流气液反应器〔吸收塔〕设备计算3.1.1气体导管直径气体导管直径d 0应满足S m d V G /3600/10500015412320=⨯⨯=π 故 m d 454.0360015785.0121050002/10=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=取d 0=0.45m核算撞击速度 s m u /29.151245.0785.03600/1050002=⨯⨯= u 在12~18m/s 范围内,故d 0=0.45 m 是可行的。
3.1.2 吸收塔直径D R取D R =8d 0,有m d D R 6.345.0880=⨯=⨯=所计算塔径为最小塔径,还应根据气体在塔内的轴向空塔流速进行计算。
取空塔气速为1.4m/s 时,有m D R 15.54.1785.03600/1050002/1=⎪⎪⎭⎫ ⎝⎛⨯=实际取塔径 D R = 5.2m 。
塔内实际空速:s m U GR /37.12.5785.03600/1050002=⨯= 3.1.3 进气总管与分气管直径总管气速假定为15m/s ,则总管直径m D GT 57.1360015785.01050002/1=⎪⎪⎭⎫ ⎝⎛⨯⨯=取D GT =1.6m 根据承担的送气任务,分气管横截面积取为气体导管的2倍,有m d D b 636.045.0220=⨯==取D b =0.60m ,分气管横截面积为22283.060.0785.0m A =⨯=假设分气管置于塔内设计成非圆异形管,应保证其横截面积不小于0.283 m 2。
氨法脱硫计算书
备注
比较重要的输出数据
序号 名 称 1 烟气含硫量及脱硫量计算 脱硫进口SO2浓度 脱硫进口SO2量 每小时脱除SO2量 年脱除SO2量 2 吸收剂消耗量计算 NH3理论消耗量 NH3实际消耗量 3 脱硫产物计算 (NH3)2SO3理论生产量 (NH3)2SO4理论生产量 4 脱硫耗水量计算 脱硫蒸发水量 清洁冲洗水 泵与风机冷却用水 单套脱硫装置耗水量 5 氧化空气量计算 需氧量 空气温度 理论需空气量 6 主要参数汇总 塔底(NH4)2SO3浓度 抽出塔外(NH4)2SO4体积流量 NH3耗量 NH3耗量(年) 工艺水量 工艺水量(年)
kg/h ℃ m3/h
% t/年 kg/h t/年 kg/h t/年
SO2---1/2O2 一般为25℃
所有锅炉数据 估算 ~10% 溶液密度按1100㎏/m3
包括冷却水等
计算结果
735.86 192.06 188.22 66.82
99.99 102.01
341.15 388.21
9647.16 1000.00 1000.00 11647.16
符号 Cso2 Ms
M3
M4 M5 Mwe Mgyw Mwq Mw Vo2 Vk
Mw
物料计算
单位
计算公式或数值来源
mg/Nm3 kg/h kg/h t/年
kg/h kg/h
kg/h 不含水 kg/h 不含水
kg/h kg/h kg/h kg/h
估计 估计 Mgyc+Mgys+Mww+Mwe+Mgyw+Mwq
氨法脱硫
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
氨法脱硫计算书
存储时间 工艺水泵流量 工艺水泵扬程 工艺水泵功率 事故池容积 事故泵流量 事故泵全部排出浆液时间
1~2小时
2.00 12.81
100.05 12.51 8小时 8.00
流量裕量×1.1 扬程(压头)裕量×1.2
% 2~3小时
1.36 90 3
10 1.5~2 一般为亚铵液泵流量的2~3倍
5.12 1.50 8.53
4.28 一般为2开1备 一般为3 2.00 3.00
6.82 20~3Байду номын сангаасmin 2~5倍的关系 30.00 13.65 4.00
0.5~0.8倍关系
0.80 10.92
10.92 1~2小时 1.00 23.29
主要设备选型
序号 吸收塔系统 1 名 称 符号 ν Q D S H L/G Qc 单位 m/s m3/h Nm3/h m s m 计算公式或数值来源 取值3.5~4 V"*(273+50)/273 (4*Q/3.14/ν /3600)0.5 1.5~1.8 一般=循环泵台数 取值1.0~1.1 (L/G)*V"/1000 2~3 计算结果 3.60 394846.15 261000.00 6.23 1.33 1.60 3 1.15 300.15 3 110.05 备注 烟气流速 烟气量(工况) 烟气量(标况) 计算直径(内径) 液气接触时间 喷淋层间距 喷淋层数 液气比 浆液循环量 每塔循环泵运行数量 选取循环泵流量 选取循环泵扬程 循环泵功率 浆液停留时间 塔浆池容积 塔内液位 亚铵液泵流量 亚铵液泵扬程 亚铵液泵功率 2 吸收剂供给系统 氨水罐容积 存储时间 氨水浓度 氨水泵流量 氨水泵扬程 氨水泵功率 m3 密度按1000㎏/m3近似考虑 储存8~12小时 3%~10% 24.48 12 5.00 2.04
脱硫计算书【可编辑范本】
脱硫计算书一、参数确定1、过量空气系数α确定烟气计算时的空气过量系数与燃烧设备型式、燃料种类有关。
常用一般链条炉采用烟煤的过量空气系数为1。
3;,对于油气炉为1。
1,流化床炉为1。
1~1.2,ﻪ过剩空气系数计算方法按GB/T 15317一94工业锅炉节能监测方法中公式1计算.2、锅炉热效率:75~85%3、按锅炉110%工况计算二、燃煤烟气量计算1、1k g煤完全燃烧烟气量计算➢ 理论空气量:a0ar ar ar ar =8.88226.46 3.332V C H ++(S -O )➢ 实际空气量:a1a0=V V α•➢ 理论干烟气量:d0ar ar ar a0=1.8860.70.800.79V C S N V +++➢ 理论湿烟气量:w0d0ar a ad ar =11.12 1.24V V H ++•0(V M +M )➢ 实际干烟气量:d1d0a =V V α+0(-1)V➢ 实际湿烟气量:w1w0ad a =V V α+0(-1)(1+1.24M )V2、烟气组成)d (24.112.11)1(21.080.079.0700.0866.1ar a a ar 0a ara arar22222M V H V V V N V V S V C V O H O N SO CO ++=-=+===α1w 22V V CO CO = 1w 22V V SO SO = 1w 22V V N N =1w 22V V O O =1w 22V V O H OH =3、烟气密度烟气ρO H O N SO O C C C C C 22222804.0429.125.1927.2977.1C ++++=烟气ρ 4、蒸汽与燃料用量换算生产1t 蒸汽需热量2446820kJ.根据燃料得到低位燃烧发热量,根据热平衡计算。
5、烟气量计算燃料用量燃料用量湿干•=•=1w 1d V Q V Q 考虑除尘器和烟道漏风率§:除尘器漏风率:<5%烟道漏风率:每10m取1%。
氨法脱硫系统工艺优化分析与应用
氨法脱硫系统工艺优化分析与应用氨法脱硫技术是一种常用于燃煤电厂和工业锅炉中的脱硫技术。
通过将氨水与烟气中的二氧化硫进行反应,将其转化为硫酸铵,从而达到减少空气污染物排放的目的。
在实际应用中,氨法脱硫系统存在一些问题和不足之处,如脱硫效率不高、氨逃逸严重、脱硫废水处理难等,因此需要对其工艺进行优化分析和改进。
一、工艺原理氨法脱硫技术的基本原理是将含有二氧化硫的烟气经过喷雾塔,与氨水进行接触反应,生成硫酸铵颗粒并形成脱硫废水。
其中主要的反应方程式为:SO2 + 2NH3 + H2O = (NH4)2SO3(NH4)2SO3 + H2SO4 = 2NH4HSO4在这个反应过程中,氨水起到了中和和还原作用,将二氧化硫转化为相对无害的硫酸铵颗粒,从而达到净化烟气的目的。
二、系统组成氨法脱硫系统主要由喷雾塔、吸收器、氧化器、堆肥池、除氨设备、再生器和脱硫废水处理设施等部分组成。
喷雾塔是氨法脱硫系统的核心部件,用于将烟气和氨水进行充分接触和反应;吸收器用于收集并处理含有硫酸铵颗粒的烟气;氧化器用于将硫酸铵颗粒转化为硫酸铵;堆肥池用于暂存和处理脱硫废水;除氨设备用于去除脱硫废水中的氨气;再生器用于再生氨法脱硫系统中使用的氨水;脱硫废水处理设施用于处理脱硫废水中的污染物。
三、存在问题虽然氨法脱硫技术已经在国内外的燃煤电厂和工业锅炉中得到广泛应用,但在实际操作中还存在一些问题和难点:1. 脱硫效率不高。
由于烟气中的湿度和温度变化较大,以及烟气中存在着除硫剂的分布不均匀问题,导致氨法脱硫系统的脱硫效率不稳定,难以保证达标排放。
2. 氨逃逸严重。
在氨法脱硫过程中,由于氨水蒸气的挥发和气泡塔的氨泄漏等原因,导致氨气逃逸严重,不仅对环境造成污染,还会引起安全隐患。
3. 脱硫废水处理难。
由于氨法脱硫系统产生的废水中含有大量的硫酸铵和氨,难以直接排放,需要进行专门的处理和再利用。
四、优化分析针对氨法脱硫系统存在的问题和难点,可以从以下几个方面进行优化分析和改进:1. 提高脱硫效率。
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
化工行业氨回收法脱硫系统的设计与计算
化工行业氨回收法脱硫系统的设计与计算作为当前工业烟气脱硫应用中的主流技术,湿法脱硫的基本原理都是以一种的吸收剂,即脱硫剂。
按脱硫剂的种类划分,烟气脱硫技术碱性物质作为SO2可分为如下几种方法:1、钙法;2、镁法;3、氨法;4、碱法。
世界上普遍使用的商业化技术是钙法,所占比例在90%以上。
但因钙法脱硫存在二次污染等问题,不适合中国国情,故不推荐使用。
与湿法脱硫中所采用的其他几种脱硫剂相比,氨法具有明显优势。
首先,氨与硫氧化物之间的反应是选择性优先反应,只要反应条件控制得当,不会与其他物质化合,氨利用充分,脱硫效率高。
其次,脱硫剂用量小无废渣废水。
从反应,需2mol 的NH3。
每吸收1 t SO2 ,需NH3 0. 59 物质的量来看,吸收1 mol 的SO2t。
商品液氨的纯度近似达到100 % ,因此脱硫剂利用率高,脱硫产物量少,易处理。
第三,氨法工艺的热利用效率高。
以氨为脱硫剂时,热效应好,此外,氨剂可达到充分利用,不会无效地带走热量。
最后,脱硫脱硝一举两得。
相对于其他行业而言,化工类企业在烟气脱硫在应用氨法时具有先天优势—作为工业副产品的氨水供应十分充足,因此,氨法特别适合化工行业采用。
现就一例3台45t/h燃煤锅炉共用一套氨法脱硫装置的工程作以下设计和计算。
1 锅炉系统概况某化工集团现有3台45t/h循环流化床锅炉,采用三电场电除尘器进行锅炉后的烟气除尘,需要对3台锅炉增加烟气脱硫装置,使脱硫后的烟气能够达标排放。
3台锅炉系统的设计参数见表1。
设计技术指标见表2。
表1 设计参数表2 设计技术指标2 脱硫工艺选择和工艺流程2.1 脱硫工艺选择根据企业提供的3台锅炉的燃煤实际情况和工况实际参数,本方案选择氨回收法作为本工程的脱硫工艺,并增加硫酸铵回收装置以回收脱硫副产物硫酸铵,在保证高效脱硫的同时增加效益。
2.2 工艺流程工艺流程见图1。
图1 工艺流程2.2.1 气路系统从引风机出口至主烟道间的烟管开口把烟气引入FGD(烟道气脱硫)系统,在引风机后的烟管上设置旁路挡板,以阻止烟气直接从烟道排入烟囱。
2-220氨法脱硫技术方案
220t/h锅炉烟气脱硫工程技术方案目录1 项目概况 (3)2 基本参数及设计要求 (4)3 规范和标准(不仅限于此) (5)4 脱硫系统技术指标 (11)二、技术方案及工艺特点 (12)1设计原则 (12)2 氨法脱硫概述 (13)4本工艺技术特点 (15)5脱硫及硫酸铵回收工艺系统描述 (16)6 主要经济技术指标 (27)7脱硫系统运行费用与硫酸铵回收统计(年运行时间按7500小时计) . 27 8主要设备选型及设备表 (28)三、投资概算 (35)四、工程施工周期 (35)五、施工组织计划....................................................... 错误!未定义书签。
六、施工准备......................................................... 错误!未定义书签。
补充说明: ................................................................. 错误!未定义书签。
一、技术方案设计大纲1 项目概况随着工业经济的不断发展,世界环境日益恶化。
尤其是随着发展中国家的工业化进程的不断推进,排向大气的污染物绝对量快速增长.人类越来越被因自己而造成的恶果而感到疲于应付、甚至恐惧。
燃煤电厂所排放烟气中的二氧化硫是造成大气污染主要的因素之一,它不仅能造成酸雨危害人类,而且据最近世界环境专家断言,还是破坏大气臭氧层的一个重要因素。
因此,二氧化硫的治理迫在眉睫.燃煤电厂S02排放超过全国SO2排放总量的50%.随着新型能源基地的发展战略逐渐向煤电并举,输电为主的方向转变,在燃煤电厂的设计或脱硫改造工程中,如何合理选用脱硫工艺,并以较低的初投资和运行费用达到脱硫后SO2排放量符合国家排放标准的规定以及建设机组环境评价要求,是燃煤电厂烟气脱硫行业健康发展的关键问题。
脱硫设计计算书
设 计 计 算 书一、脱硫塔根据技术协议:锅炉情况:锅炉类型:煤粉炉锅炉额定蒸发量:75t锅炉最大烟气量:151000m 3/h烟气温度:140℃燃煤含硫量:按2%考虑(1.5-3.0%)燃煤量:12t1.每秒烟气量:151000 m 3/h=151000/3600 m 3/s=41.9 4m 3/s2.脱硫塔内烟气上升速度≤4m/s,此处取为3.5m/s3.脱硫塔直径(m ):此处取直径为4m4.金宇轮胎现场情况:烟囱进烟道为2400×1800×5(外径),标高为8.2m,烟道底部表面标高为7.3m5.脱硫塔高度确定:(1)循环池内除硫液循环时间为10分钟,单台水泵流量为200m 3/t,两台水泵流量200m 3/h×2=400m 3/h;400m 3/h=0.11 m 3/s则循环水池至少体积为0.11 m 3/s ×10min ×60s=66 m 3此处循环水池体积为66 m 3×1.15=75.9 m 3 此处取为76 m 3循环水池深度为m m m h 05.647623==π(2)烟气在脱硫塔内反应段长度为8m(3) 最上一层喷头距最下一层除雾器为2m,除雾器间距为1.5-2m(4)进烟口距分布板为0.5m(5)地表距上液面为4m(6)进烟道口高度为1.8m脱硫塔高度为:H=4m+1.5m+1.8m+0.5m+8m+2m+1.5m=19.3mH 取为20m计:脱硫塔内部几何尺寸:Ф4000×20m6.(1)烟气进口温度为140℃,烟气流量为151000 m 3/h ,压力为:103.5Kpa(2)烟气出口温度为65℃,压力为:102.7Kpa,烟气流量为:124541 m 3/h(3)烟气单位体积比热容为1.409KJ/m 3℃(4)水单位质量比热容为4.187KJ/ Kg ℃(5)空气温度为65℃时,1立方空气带走水蒸气的质量为0.05Kg(6)烟气中一个小时带走水蒸汽质量为:0.05Kg ×124541 m 3/h=6227Kg/小时 烟气一个小时带走水量为6.227t(7)进烟道烟气热量值 :151000 m 3/h ×140℃×1.409KJ/m 3℃=KJ(8)出烟道烟气热量值:124541 m 3/h ×65℃×1.409 KJ/m 3℃=KJ(9)烟气中带走水蒸气的热量值:6227Kg×4.187KJ/ Kg℃×45℃=1173240KJ(喷头喷出水温℃,成为水蒸气温度为65℃,温差为45℃)(10)喷头喷水温度取为20℃,一小时喷水量为mKg/h,最大升温10℃,则:KJ-KJ=mKg/h×10℃×4.187KJ/ Kg℃+1173240KJ得出:m=656136Kg(11)技术协议中规定液气比≤3设一个小时喷水量为mkg,烟气量为151000m3/h,则Mkg/151000m3/h≤3,则m≤453000Kg基于以上(9)、(10)两条件,喷头喷水量为400000Kg,计400 m3(12)最高一层喷头至地面高度为15.8m, 喷头压力为0.15Mpa(15mH2O),则水泵扬程为(15.8m+15m)×1.3=40.04m水泵功率:1000Kg/m3×9.8N/kg×40.04m×200m3/h × 1.5/3600 s/h×1000×0.97×0.96 = 35.1Kw循环水泵取流量为200m3/h,扬程为40m,功率37KW二、氧化再生池氢氧化钠与二氧化硫反应生成亚硫酸钠,根据分子式(Na)2SO37H2O知:亚硫酸钠与七个水生成晶体,所以为方便输送亚硫酸钠,亚硫酸钠与水的质量比大于1。
氨法脱硫计算过程
氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔烟气流速:取D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO2安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140 m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
氨法脱硫投资及运行费用估算
二期每小时SO2脱除量
t/h
3.4(S=1.7)
1.7
脱硫效率
%
99.7
1.8
脱硫后SO2含量
mg/Nm3
≤50(50~150不影响运行费用)
1.9
一、二期总共每小时脱除的SO2量
t/h
4.0
二
运行消耗数据
项目
单位
数量×单价=小计(元/h)
2.1
纯氨水(15%)
元/h
14t/h×420元/t=5880
副产品氨水(15%)
元/h
14t/h×200元/t=2800
2.2
脱硫系统运行压力
Pa
2000
2.3
脱硫系统耗水费用、蒸汽费
元/h
水:20t×5元/t=100
蒸汽:1.5t×100元/t=150
2.4
脱硫系统耗电费用
元/h
2800kw×0.8元/kw=2240
2.5
氨法脱硫投资及运行费用估算(理论数值)
序号
项目
单位
氨法脱硫
一
相关数据
1.1
一期烟气量
Nm3/h
120000
1.2
二期烟气量
Nm3/h
180000(105×4×384=161280)
1.3
一期原烟气SO2含量
mg/Nm3
3500
1.4
二期原烟气SO2含量
mg/Nm3
18800
1.5
一期每小时SO2脱除量
万元
1504.8
三
建设费用
约3500万元
纯氨水硫酸铵产量及收益
元/h
8 t/h×600元/t=4800
大气污染控制工程课程设计说明书含计算书(1)
大气污染控制工程课程设计说明书含计算书一、课题名称DG-120/39型火电厂锅炉高硫无烟煤烟气氨法脱硫+袋式除尘系统设计。
二、课题条件大气是人类赖以生存的最基本的环境要素,构成了环境系统中的大气环境子系统。
但随着自然活动,更主要的是人类的生产生活,大气质量下降,污染日益严重。
而工业废气所排放的大量污染物是最主要的原因。
在我国针对工业废气的治理多采用符合我国国情和不同地区特点的先进技术,如:在各项建设中纳入大气污染防治规划与措施,实行“三同时”;由于燃煤是我国大气污染物的主要来源,从节约能源和控制大气污染双重目的出发,积极研究、开发节能、高效、少污染的新型锅炉,等。
但我国治理中存在着工业生产技术落后,资金不足,废气治理设施运转率低、效果差,乡镇企业缺乏规划与管理等问题。
本设计拟解决的关键问题就是锅炉烟气的消烟除尘。
使其排放到大气的烟尘达到国家规定的标准,不致造成环境污染。
设计所需的基础资料如下:1、煤与烟气的性质(1)煤的工业分析值 (煤中各元素所含的质量分数)C Y=65% H Y=2% O Y=10% N Y=1% S Y=3% A Y=15% W Y=4% ;V Y=8%属于高硫无烟煤(2)烟气的性质锅炉型号:DG-120/39 即,东方锅炉厂制造,蒸发量120t/h,出口蒸汽压力39MPa 燃烧方式是沸腾炉,所配发电机组功率25MW设计耗煤量:14t/h;排烟温度:160℃空气过剩系数=1.1飞灰率=28%烟气在锅炉出口前阻力960Pa污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。
连接锅炉、净化设备及烟囱等净化系统的管道假设长度300m,90°弯头50个。
2、处理要求环境空气质量标准GB3095—1996;大气污染物综合排放标准GB16297—1996;锅炉大气污染物排放标准GBl3271-2014中规定(颗粒物浓度排放标准:50mg/m3;二氧化硫排放标准:300mg/m3)。
氨法脱硫计算过程及江南氨回收法烟气脱硫技术
一、氨法脱硫计算过程风量(标态):,烟气排气温度:168℃:工况下烟气量:还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。
1、脱硫塔(1)塔径及底面积计算:塔内烟气流速:取D=2r=6.332m即塔径为6.332米,取最大值为6.5米。
底面积S=πr2=3.14×3.252=33.17m2塔径设定时一般为一个整数,如 6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。
(2)脱硫泵流量计算:液气比根据相关资料及规范取L/G=1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。
)①循环水泵流量:由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。
裕量为:119×20%=23.8m3/h,泵总流量为:23.8+119=142.8m3/h,参考相关资料取泵流量为140m3/h。
配套功率可查相关资料,也可与泵厂家进行联系确定。
(3)吸收区高度计算吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。
2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3.7米-3.8米进行设计。
吸收区总高度为13.7米-13.8米。
(4)浓缩段高度计算浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。
总高为10.71米。
(5)除雾段高度计算除雾器设计成两段。
每层除雾器上下各设有冲洗喷嘴。
氨法脱硫 工程技术方案
氨法脱硫工程技术方案一、氨法脱硫工艺流程氨法脱硫工艺的基本流程如下:1. 烟气预处理:烟气中的尘粒和颗粒物会对后续的脱硫过程产生影响,因此需要对烟气进行预处理,通常采用除尘器和除酸雾装置对烟气进行处理。
2. SO2吸收:烟气中的SO2通过吸收剂(NH3水溶液)进行吸收,生成硫酸铵。
3. 浓缩:将吸收液中的硫酸铵进行浓缩,使浓缩得到的硫酸铵溶液能够供给硫磺循环造粒和再生装置。
4. 氨回收:将硫酸铵溶液中的NH3回收,生成可再利用的氨。
5. 硫磺循环造粒和再生:将硫酸铵溶液进行造粒,形成硫磺,再将硫磺通过热解等工艺进行再生。
6. 尾气处理:对氨法脱硫后产生的尾气进行处理,通常采用尾气冷却、再循环等方式。
以上是氨法脱硫的基本工艺流程,各流程之间有着协调配合的关系,可以实现SO2的高效脱除。
二、氨法脱硫工程技术方案1. 设备选择1.1 SO2吸收设备:常用的SO2吸收设备包括塔式吸收器和喷射器吸收器两种。
塔式吸收器具有吸收效率高、占地面积小等优点,而喷射器吸收器则具有结构简单、投资成本低等优点。
1.2 浓缩设备:常用的浓缩设备有蒸发器、结晶器等。
蒸发器通常用于将硫酸铵溶液进行浓缩,结晶器则用于将浓缩后的硫酸铵溶液进行造粒。
1.3 氨回收设备:常用的氨回收设备有蒸馏装置、吸附装置等。
蒸馏装置可以实现NH3的回收和再利用,吸附装置可以实现NH3的去除。
1.4 烟气预处理设备:常用的烟气预处理设备有除尘器、除酸雾装置等。
除尘器用于去除烟气中的尘粒,除酸雾装置则用于去除烟气中的酸雾。
2. 工艺优化优化氨法脱硫工艺可以提高脱硫效率、降低能耗和化学品消耗,具体包括:2.1 氨法脱硫工艺中SO2的吸收效率与吸收剂浓度和温度、烟气流速等因素有关,通过优化这些参数可以提高吸收效率。
2.2 浓缩设备的优化可以减少溶液浓缩过程中的能耗,提高硫磺的再生效率,具体包括采用多效蒸发器、提高浓缩温度等措施。
2.3 氨回收设备的优化可以减少NH3的损失,降低氨的消耗,具体包括采用高效的吸附剂、提高回收效率等措施。
氨法脱硫工艺操作规程
目录1 岗位的任务 (1)2 工艺原理 (1)3 岗位的工艺流程 (1)3.1 岗位工艺流程简述 (1)3.2 工艺流程图 (2)4 岗位的工艺指标 (2)5 开停车及运行控制 (2)5.1 试车前的条件和准备 (2)5.2 单体试车 (3)5.3 原始开车 (5)5.4 正常开停车 (6)5.5 正常生产控制 (8)5.6 巡回检查 (9)5.7主要设备参数 (9)6 双级活塞推料离心机的使用和操作 (9)6.1 使用前的检查 (9)6.2 空车运转 (9)6.3 操作、运转及调整 (10)6.4 停车 (11)6.5 故障处置 (11)6.6 操作要点 (11)7离心机安全规程 (12)7.1 注意安全事项 (12)1 岗位的任务用脱硫液(氨水)在脱硫塔内吸收来自锅炉烟气的二氧化硫,使烟气得到净化,吸收二氧化硫后的脱硫液一部分经氧化、浓缩、结晶、分离得到硫酸铵或亚硫酸铵,另一部分循环使用,调整、维护好脱硫液成份,并根据负荷调整氨水用量。
2 工艺原理反应方程式:SO2+2NH3+H2O=(NH4)2SO3SO2+(NH4)2SO3+H2O=2NH4HSO3NH3+ NH4HSO3=(NH4)2SO32(NH4)2SO3+O2=2(NH4)2SO43 岗位的工艺流程3.1岗位工艺流程简述锅炉烟气经除尘器除尘后部分进入脱硫系统的浓缩塔内,部分烟气被降温增湿后进入脱硫吸收系统的预脱硫段,烟气中的二氧化硫与喷入的氨水进行反应,生成亚硫酸铵,此级脱硫效率为85%(视氨水的浓度而定);未反应的氨水与生成的亚硫酸铵溶液一起随烟气进入脱硫塔底,在脱硫塔底部,游离氨与亚硫酸氢铵反应生成亚硫酸铵,亚硫酸铵溶液在脱硫塔外部循环泵的作用下,打到塔上部的两层喷淋层,经高效喷嘴雾化后与烟气中残留的二氧化硫等酸性气体再次进行吸收反应,生成亚硫酸氢铵落入到脱硫塔底部,同时亚硫酸铵溶液中的大量的水份对烟气中可能带入的微量氨进行洗涤吸收,也进入到脱硫塔底部。
脱硫计算书
计算结果 5.02 5.49 3.97 0.91 0.62 8.70 8.04 0.67 0.66 8.26 7.62 13.00 10.29 11.14 0.14 0.15 74.27 80.45 303759 264270 224492
备注
烟气带水按13%考虑
一台炉 一台炉 一台炉 359.1866
% %9;/Vy' VH20'/Vy' 0.01866Car/Vy' 0.01866Car/Vgy' 0.01866*0.375Sar/Vy' 0.01866*0.375Sar/Vgy' (0.79alfa'V0+0.008Nar)/Vy' (0.79alfa'V0+0.008Nar)/Vgy'
kcal/Nm3.℃
200℃ 插值法: tpy 插值法求85℃比热 t=126-i2*(85-50)/i1 插值法: t V ' * i3*4.18*(t-50) Q1/msh msh1+msh2
i1 i2 t i3 塔内烟气放热量 塔内烟气放热蒸发水量 3) 单塔蒸发水量 单塔蒸发水汽体积 2 脱硫耗水量 1) 脱硫结晶水 2) 石膏表面水 3) FGD废水 4) 脱硫蒸发水量 Q1 msh2 Mwe Vwe Mgyc Mgys Mww Mwe
2677.20 6.31
0.3300 0.3350 0.3313 0.3293 91.22 0.3296 68987833 25.77 32.08 39922.17 10.75 0.015 4.10 32.08
10.00 2.00 58.95 58.95 四台炉
797.53 24.92 2659.61
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
估计 估计 Mgyc+Mgys+Mww+Mwe+Mgyw+Mwq SO2---1/2O2 一般为25℃5Mw包括冷却水等
比较重要的输出数据
物料计算
序号 名 称 1 烟气含硫量及脱硫量计算 脱硫进口SO2浓度 脱硫进口SO2量 每小时脱除SO2量 年脱除SO2量 吸收剂消耗量计算 NH3理论消耗量 NH3实际消耗量 脱硫产物计算 (NH3)2SO3理论生产量 (NH3)2SO4理论生产量 脱硫耗水量计算 脱硫蒸发水量 清洁冲洗水 泵与风机冷却用水 单套脱硫装置耗水量 氧化空气量计算 需氧量 空气温度 6 理论需空气量 主要参数汇总 塔底(NH4)2SO3浓度 抽出塔外(NH4)2SO4体积流量 NH3耗量 NH3耗量(年) 工艺水量 工艺水量(年) Ms 符号 Cso2 单位 mg/Nm3 kg/h kg/h t/年 kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h ℃ m /h % t/年 kg/h t/年 kg/h t/年 所有锅炉数据 估算 ~10% 溶液密度按1100㎏/m3
3
计算公式或数值来源
计算结果 735.86 192.06 188.22 66.82 99.99 102.01
备注
2
M3
3
M4 M5 Mwe Mgyw Mwq Mw Vo2 Vk
不含水 不含水
341.15 388.21 9647.16 1000.00 1000.00 11647.16 47.06 25.00 171.22 10.00 3.10 102.01 36.21 11647.16 4134.74