实验二:常规功率方向继电器测试

合集下载

继电器的检测的实训报告

继电器的检测的实训报告

#### 一、实训目的1. 提升对继电器结构和工作原理的理解。

2. 掌握继电器的基本检测方法和技巧。

3. 培养动手实践能力和故障诊断能力。

4. 熟悉万用表等常用工具的使用。

#### 二、实训内容及步骤##### 1. 实训设备与材料- 继电器若干- 万用表一台- 测试线若干- 鳄鱼夹若干- 电源适配器##### 2. 实训步骤##### 2.1 继电器外观检查1. 观察继电器外观,检查是否有损坏、变形等异常情况。

2. 检查继电器引脚是否完好,是否有松动、腐蚀等现象。

##### 2.2 继电器线圈检测1. 将万用表调至“R×1”或“R×10”档位。

2. 用万用表的两根表笔分别测量继电器线圈的两引脚,读取线圈电阻值。

3. 将测得的电阻值与继电器说明书中的标称值进行对比,判断线圈是否正常。

##### 2.3 继电器接点检测1. 将万用表调至“R×1K”档位。

2. 分别测量继电器常开、常闭接点的通断情况。

3. 在不通电的情况下,常开接点应不通,常闭接点应导通。

4. 通电后,常开接点应导通,常闭接点应不通。

##### 2.4 继电器吸合性能检测1. 将继电器线圈接入电源适配器。

2. 观察继电器吸合情况,判断吸合是否正常。

3. 吸合后,继电器应无明显噪音,衔铁吸合牢固。

##### 2.5 继电器释放性能检测1. 断开电源适配器,观察继电器释放情况。

2. 继电器应能迅速释放,衔铁复位。

#### 三、实训结果及数据处理##### 1. 实训结果1. 通过实训,掌握了继电器的基本检测方法和技巧。

2. 发现部分继电器线圈电阻值与标称值不符,判定为线圈损坏。

3. 发现部分继电器吸合性能不良,判定为吸合不良。

##### 2. 数据处理1. 对检测到的异常继电器进行记录,并分析原因。

2. 对正常继电器进行归类,以便后续使用。

#### 四、实训总结1. 本实训使我对继电器的基本结构、工作原理和检测方法有了更深入的了解。

功率方向继电器实验(LG-11型功率方向继电器等)

功率方向继电器实验(LG-11型功率方向继电器等)

实验七 功率方向继电器实验一.实验目的1.学会运用相位测试仪测量电流和电压之间相角的方法。

2.掌握功率方向继电器的动作特性,接线方式及动作特性的试验方法。

3.研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。

二.LG-11型功率方向继电器简介1.LG-11整流型功率方向继电器的工作原理LG-11型功率方向继电器是目前广泛应用的整流型功率方向继电器,其比较幅值的两电气量动作方程为:m y m K m y m K U K I K U K I K ⋅⋅⋅⋅⋅⋅⋅⋅-≥+继电器的接线图如图7-1所示,其中图(a )为继电器的交流回路图,也就是比较电气量的电压形成回路,加入继电器的电流为m I ⋅,电压为m U ⋅。

电流m I ⋅通过电抗变压器DKB 的一次绕组W1,二次绕组W2和W3端钮获得电压分量m K I K ,它超前电流m I ⋅的相角就是转移阻抗R K 的阻抗角k ,绕组W4用来调整k 的数值,以得到继电器的最大灵敏角。

电压m U ⋅经电容C1接入中间变压器YB 的一次绕组W1,由两个二次绕组W2和W3获得电压分量m K U K ⋅⋅,m U y K ⋅⋅超前m U ⋅的相角为90度。

DKB 和YB 标有W2的两个二次绕组的联接方式如图所示,得到动作电压m y m K U K I K ⋅⋅⋅⋅+,加于整流桥BZ1输入端;DKB 和YB 标有W3的二次绕组的联接方式如图所示,得到制动电压m y m K U K I K ⋅⋅⋅⋅-,加于整流桥BZ2输入端。

图(b )为幅值比较回路, 它按循环电流式接线,执行元件采用极化继电器JJ 。

继电器最大灵敏度的调整是利用改变变压器DKB 第三个二次绕组W4所接的电阻值来实现的。

继电器的内角=090-k ,当接入电阻R3时,阻抗角k =060,=030;当接入电阻R4时,k =045, =045。

因此,继电器的最大灵敏度αϕ-=res ,并可以调整为两个数值,一个为-030,另一个为-045。

继电器的特性实验

继电器的特性实验

实验一电磁型继电器的特性实验一.实验目的:1.进一步了解电磁型继电器(电流、电压、时间、中间继电器)的构造、工作原理和特性;2.了解继电器各种参数的意义,掌握继电器整定植的调试方法;3.了解有关仪器、仪表的选择原则及使用方法。

二.实验项目:1.打开外壳,仔细观察各种继电器的内部构造,并记录下继电器铭牌的主要参数;2.测定电流继电器的动作电流、返回电流及返回系数;3.测定电压继电器的动作电压、返回电压及返回系数;4.测定时间继电器的动作电压、返回电压及返回系数;5.测定中间继电器的动作电压、返回电压及返回系数。

三.实验内容:(一)熟悉常用继电器的内部接线DL-21C DL-22C;DY-22C DL-23C;DY-23CDS-21A~24A DZ-31B(二)测定电流继电器的动作电流I.d.j。

返回电流I f.j及返回系数K f。

1.实验接线:图1-1 电流继电器实验接线图2.实验需用仪器设备①交流电流表 0~5A②单相自藕调压器(ZOB) 2KVA 220/0~250V 一台③滑线电阻 69Ω3.9A或40Ω6A 一台④电流继电器 DL-21C 一个3.实验方法(1)首先将继电器的两组线圈串联;将继电器的整定把手放在某一选定位置;将自藕调压器把手旋至输出为零伏位置;将滑线电阻的滑动端放在阻值为最大位置;(2)合上电源开关,逐渐增大通入继电器的电流,使继电器刚好动作(常开接点闭合,即指示灯亮)的最小电流称为电流继电器的动作电流Id.j.(3)逐渐减小通入继电器的电流,使继电器的接点返回到原始位置(常开接点断开,即指示灯灭)的最大电流称为电流的继电器的返回电流If.j.(4)测定Id.j 和If.j时,对所选的整定位置重复作三次,将测量结果填入表1中(5)断开电源,将继电器的两组线圈改为并联.然后,按上述方法测量继电器线圈并联时的和将测量结果填入表2中.(6)数据处理误差: △I%=要求:返回系数:K=要求:0.05<Kf<0.9表1 继电器的两组线圈串联(表中电流单位:A )表2 继电器的两组线圈并联(表中电流单位:A )(三)测定低电压继电器的动作电压Ud.j 返回电压Uc。

继电器的测试方法

继电器的测试方法

继电器的测试方法
继电器是一种电器元件,常用于控制开关电路。

测试继电器的方法通常包括以下步骤:
1. 电源测试:首先,检查继电器的标志性编号及额定电压是否符合要求。

然后,使用万用表或电压表检查电源线的电压,确保继电器的电源正常。

2. 动作电流测试:使用万用表或电流表测量继电器的动作电流。

将表笔连接到继电器的线圈端子上,然后通过通电,观察电流是否在规定范围内。

3. 阻抗测试:测试继电器的线圈阻抗。

使用万用表的欧姆档位,将表笔连接到线圈的两端,以测量线圈的电阻值。

4. 动作时间测试:将继电器接入一个电路,并通过相应的信号使继电器动作。

使用示波器,记录继电器的动作时间。

动作时间应在规定范围内。

5. 接触电阻测试:使用万用表的欧姆档位,将表笔连接到继电器的触点上,以测量触点的电阻值。

通常,接触电阻应该较小且稳定。

6. 外观检查:检查继电器外壳是否有破损,观察触点是否存在焦点、氧化等现象。

总体来说,测试继电器需要使用合适的工具,如万用表、电压表、电流表和示波器。

测试过程中应严格按照规定参数进行检测,并注意安全操作。

如发现异常现象,应及时修复或更换继电器。

功率方向保护实验

功率方向保护实验

实验四、功率方向电流保护实验一、实验目的1.熟悉相间短路功率方向电流保护的电路结构和工作原理。

2.掌握功率方向电流保护的基本特性和整定试验方法。

二、预习与思考1.为什么在多电源形式电网或单电源环形电网中,功率方向电流保护才能确保切除故障网络动作的选择性和动作的可靠性。

2.功率方向电流保护在多电源网络中什么情况下称为正方向?什么情况下称为反方向?为什么它可以只按正方向保证选择性的条件选择动作电流?3.方向电流保护是否存在死区?死区可能在什么位置发生?如何从功率方向继电器特性实验的参数结合本实验进行分析?4.功率方向电流保护广泛应用在电压为35KV及以下的电网中和110KV~220KV的电网中分别作为什么保护?三、原理说明1.为什么需要功率方向闭锁在单侧电源辐射形网络中,各断路器和保护装置都是安装在被保护线路靠近电源的一侧。

在发生故障时,它们都是在短路功率从母线流向被保护线路的情况下,按选择性的条件来协调配合工作的。

这里所讲的短路功率,一般指短路时某点电压与电流相乘所得到的感应功率,在无串联电容也不考虑分布电容的线路上短路时,认为短路功率从电源流向短路点。

随着电力系统的发展和用户对供电可靠性的提高,现代的电力系统实际上都是由多电源组成的复杂网络。

对此,上述简单保护方式,已不能满足系统运行的要求。

图5-1所示为双侧电源网络,图中“→”表示短路时电源流向短路点的短路电流及短路功率的方向。

在该网络中,由于两侧都有电源,因此在每条线路的两端均需装设断路器和保护装置。

假设电源EB不存在,则发生短路时,保护1、2、3、4、A就是一个由电源EA供电的单侧电源辐射式电网,它们之间的选择性是能够满足的。

其过电流保护按图中t = f( L )时限特性实线部分配合工作。

如电源EA不存在,保护5、6、7、8、B同样也能保证动作的选择性,此时它们由电源EB供电。

其过流保护按图中阶梯时限特性的虚线部分配合工作。

图5-1 两侧电源供电网络当两个电源同时存在,d-1点发生短路时,按照选择性的要求,应由距故障点最近的保护3和7动作切除故障。

继电保护实验报告

继电保护实验报告

电气信息学院继电保护实验报告实验内容:实验二:LG_10系列功率方向继电器特性实验三:重合闸继电器特性实验二 LG_10系列功率方向继电器特性实验一、实验目的1. 了解继电器的原理及构造(采用整流式原理,嵌入式结构)2. 掌握继电器的检验方法(主要部分)3. 掌握移相器和相位表的使用方法二、结构原理继电器的原理接线图如下:三、实验步骤1、按图接好实验电路2、电流潜动和电压潜动的检查,要求电流和电压均无潜动a、电流潜动:电压回路⑦、⑧端经20Ω电阻端接,电流回路⑤、⑥端子通入额定电流5A,测量极化继电器线圈上的电压(即⑨、⑩端子上的电压),测得的电压应接近于0V(或不大于0.1v),如电压不为零,可调整电位器Rp1使电压为零。

b、电压潜动:电流回路⑤、⑥端开路,在电压回路⑦、⑧端子加电压100v,测量极化继电器线圈上的电压,测得的电压应接近于0v(或不大于0.1v),如电压不为0,可调整电位器Rp2,使电压为0。

反复调整电压及电流潜动,使极化继电器线圈上的电压均接近于0,然后突然加入及切除额定电流5A及额定电压100v,继电器接点不应有短时动作现象。

在电流回路开路情况下突然加入或切除(电压回路)100v,继电器触点同样要求不应有瞬时闭合现象。

若发现触点有瞬时接通现象,可更换比较回路的电阻核电容,使制动回路电容放电时间常数不小于工作回路电容放电时间常数。

更换后应重新进行潜动调整。

潜动调整结束后,将电位器锁紧。

3、动作区和最大灵敏角检查在额定电流及额定电压下,用移相器改变电流和电压之间的相角,读出动作边界的两个角度θ1和θ2(即继电器接点闭合和断开的两个边界交度)如图一或图二所示,按下式求最大灵敏角:φm=(θ1+θ)/2式中:θ1、θ2——加在继电器端子上的电流和电压之间的相角,电流滞后电压时,角度为正值,电流超前电压时,角度为负值。

对于LG-11型继电器,当连接片HP接到-45°位置时,要求Φm=-45°±5°,当HP改接到-30°位置时,要求Φm=-30°±5°。

功率方向继电器特性实验

功率方向继电器特性实验

实验三功率方向继电器特性实验一、实验目的1.学会运用相位测试仪测量电流和电压之间相角的方法。

2.掌握功率方向继电器的动作特性、接线方式及动作特性的实验方法。

3.研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。

二、实验内容本实验需使用JTC-III型继电器特性测试台。

请仔细阅读本指导书中的有关内容。

本实验所采用的实验原理接线如图所示。

图中,380V交流电源经调压器和移相器调整后,由BC相分别输入功率方向继电器的电压线圈,A相电流输入至继电器的电流线圈,注意同名端方向。

1.熟悉LG-11功率方向继电器的原理接线和相位仪的操作接线及实验原理。

认真阅读LG-11功率方向继电器原理图,完善实验原理接线图,即在图上画出LGJ中的接线端子号和所需测量仪表接法及出口信号回路。

2.线路接线,用相位仪检查接线极性是否正确。

相位仪调至0度合上电源开关加1安电流,20V电压观察相位读数是否正确。

若不正确且相差1800左右,则说明输入电流和电压有一个极性接反。

3.继电器是否有潜动现象电压潜动测量:将电流回路开路,对电压回路加入110V电压;测量潜动观测点间电压,若小于0.1V,则说明无电压潜动。

4.用实验法测LG-11整流型功率方向继电器角度特性,并找出继电器的最大灵敏度和最小动作电压。

a.保持电流为1A,摇动移相器,在给定的电压下找到使继电器动作(指示灯由不亮变亮)的两个临界角度, .b.依次降低电压值,测量在不同电压情况下,使继电器动作的,,并记录在表中.c.逐步降低电压,找出使继电器动作的最小动作电压。

d.绘出功率方向继电器角度特性。

e.计算继电器的最大灵敏度和动作区。

三、实验原理接线表1 灵敏度测试实验数据(保持电流I=1A)实验四方向阻抗继电器特性实验一、实验目的1.测量方向阻抗继电器的静态特性,求取最大灵敏角。

2.测量方向阻抗继电器的静态特性,求取最小精确工作电流。

3.研究记忆回路和引入第三相电压的作用。

方向阻抗继电器特性实验报告

方向阻抗继电器特性实验报告

实验三方向阻抗继电器特性实验1.实验目的(1)熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性。

(2)测量方向阻抗继电器的静态()ϕf Z pu =特性,求取最大灵敏角。

(3)测量方向阻抗继电器的静态()r pu I f Z =特性,求取最小精工电流。

2.LZ-21型方向阻抗继电器简介1)LZ-21型方向阻抗继电器构成原理及整定方法距离保护能否正确动作,取决于保护能否正确地测量从短路点到保护安装处的阻抗,并使该阻抗与整定阻抗比较,这个任务由阻抗继电器来完成。

阻抗继电器的构成原理可以用图3-1来说明。

图中,若K 点三相短路,短路电流为I K ,由PT 回路和CT 回路引至比较电路的电压分别为测量电压U 'm 和整定电压setU ',那么 m m YBPT K K YB PT mZ I n n Z I n n U 11=='(3-1) 式中:n PT 、n YB —电压互感器和电压变换器的变比;Z K —母线至短路点的短路阻抗。

当认为比较回路的阻抗无穷大时,则:I m CTI K CT setZ I n Z I n U 11=='(3-2) 式中:Z I —人为给定的模拟阻抗。

比较式(3-1)和式(3-2)可见,若假设CT YB PT n n n =⋅,则短路时,由于线路上流过同一电流K I ,因此在比较电路上比较setU '和m U '的大小,就等于比较I Z 和m Z 的大小。

如果set mU U '>',则表明I m Z Z >,保护应不动作;如果set mU U '<',则表明I m Z Z <,保护应动作。

阻抗继电器就是根据这一原理工作的。

电抗变压器DKB 的副方电势2E 与原方电流1I 成线性关系,即,12I K E I =I K 是一个具有阻抗量纲的量,当改变DKB 原方绕组的匝数或其它参数时,可以改图3-1 阻抗继电器的构成原理说明图1—比较电路 2—输出变I K 的大小。

《常规继电器特性实验》

《常规继电器特性实验》

二、常规继电器特性实验(一)电磁型电压、电流继电器的特性实验1.实验目的1)了解继电器基本分类方法及其结构。

2)熟悉几种常用继电器,如电流继电器、电压继电器、时间继电器、中间继电器、信号继电器等的构成原理。

3)学会调整、测量电磁型继电器的动作值、返回值和计算返回系数。

4)测量继电器的基本特性。

5)学习和设计多种继电器配合实验。

2.继电器的类型与原理继电器是电力系统常规继电保护的主要元件,它的种类繁多,原理与作用各异。

1)继电器的分类继电器按所反应的物理量的不同可分为电量与非电量的两种。

属于非电量的有瓦斯继电器、速度继电器等;反应电量的种类比较多,一般分类如下:(1)按结构原理分为:电磁型、感应型、整流型、晶体管型、微机型等。

(2)按继电器所反应的电量性质可分为:电流继电器、电压继电器、功率继电器、阻抗继电器、频率继电器等。

(3)按继电器的作用分为:起动动作继电器、中间继电器、时间继电器、信号继电器等。

近年来电力系统中已大量使用微机保护,整流型和晶体管型继电器以及感应型、电磁型继电器使用量已有减少。

2)电磁型继电器的构成原理 继电保护中常用的有电流继电器、电压继电器、中间继电器、信号继电器、阻抗继电器、功率方向继电器、差动继电器等。

下面仅就常用的电磁型继电器的构成及原理作简要介绍。

(1)电磁型电流继电器电磁型继电器的典型代表是电磁型电流继电器,它既是实现电流保护的基本元件,也是反应故障电流增大而自动动作的一种电器。

下面通过对电磁型电流继电器的分析,来说明一般电磁型继电器的工作原理图2-1 DL 系列电流继电器和特性。

图2-1为DL 系列电流继电器的结构图,它由固定触点1、可动触点2、线圈3、铁心4、弹簧5、转动舌片6、止挡7所组成。

当线圈中通过电流I KA 时,铁心中产生磁通Φ ,它 通过由铁心、空气隙和转动舌片组成的磁路,将舌片磁化,产生电磁力F e ,形成一对力偶。

由这对力偶所形成的电磁转矩,将使转动舌片按磁阻减小的方向(即顺时针方向)转动,从而使继电器触点闭合。

继电器的测试方法Word版

继电器的测试方法Word版

任务五,编写产品检验卡片一,产品检验要求1、测触点电阻用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。

由此可以区别出那个是常闭触点,那个是常开触点。

2、测线圈电阻可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。

3、测量吸合电压和吸合电流找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。

慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。

为求准确,可以试多几次而求平均值。

4、测量释放电压和释放电流也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。

一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁。

主要测试参数及定义表下进行。

如有特殊要求,可由供需双方协议。

对于电源没有其他的的规定,电源电压的变化率不得大于10%,直流电源电压波纹系数应不大于5%。

电源极性不得相反。

做好正确的,合理的,科学的检验。

三,确定质量重要分度表是指这些特性在产品使用中的重要程度。

包括a)安全、环保要求b)性能、结构的使用要求,c)可靠性、使用寿命及互换性要求,d)材料性能及处理规定e)焊接及铸、锻规定;f)尺寸、公差与配合、形状和位置公差及表面粗糙度等要求;g)外形、外观要求:b)清洁度要求:i)涂敷、包装、防护及储运等要求产品装配真实项目说明书一 JS7-A时间继电器的机构电磁系统、工作触头、气室、传动机构组成。

电磁机构组件:线圈铁心衔铁推板返力弹簧瞬时触头(微动开关)。

空气室组件:橡皮膜活塞杠杆宝塔弹簧延时触头调节螺钉二工作原理当线圈通电时,衔铁及推板被铁心吸引瞬时下移,使瞬时动作触点接通或者断开,但是活塞杆和杠杆不能同时跟着衔铁一起下落。

实验二:常规功率方向继电器测试

实验二:常规功率方向继电器测试

实验:常规功率方向继电器测试一、实验目的1、掌握常规功率方向继电器的工作原理及动作特性试验方法。

2、测试LG-11型功率方向继电器的最大灵敏角、动作范围和角度特性。

3、掌握方向性过电流保护基本原理。

二、实验设备及器材1、TQXDB-IB 多功能继电保护实验培训系统2、DL-31电流继电器、LG-11功率方向继电器、DS-32时间继电器和DZY-202中间继电器 三、实验原理LG-11型功率方向继电器是一种反映所接入的电流和电压之间的相位关系的继电器。

当电流和电压之间的相位差为锐角时,继电器的动作转矩为正,使继电器动作,控制接点闭合,继电器跳闸;当电流和电压之间的相位差为钝角时,继电器的动作转矩为负,继电器不动作,从而达到判别相位的要求。

•AIlmA ϕ功率方向继电器动作范围示意图LG-11型功率方向继电器一般用于相间短路保护。

这种继电器是根据绝对值比较原理构成的,由电压形成回路、比较回路和执行元件三部分组成.动作条件是工作电压大于制动电压,其动作方程为: ••••••••-≥+r i r u r i r u I K U K I K U K 功率方向继电器灵敏角的调整可通过更换面板上连接片的位置来实现。

四、实验内容及步骤1、测试LG-11功率方向继电器的最大灵敏角(1)实验接线。

如图所示,,将特性实验信号源的电压输出分别与功率方向继电器的U ,n U 端子连接,特性实验信号源的I1电流输出与功率方向继电器I ,n I 端子连接。

继电器的动作接点连接到信号灯的控制回路中。

功率方向继电器IInAKUUn24V+24V-电压输出电压表I1电流输出电流表特性实验信号源相角表I2I2nU1U1n功率方向继电器特性测试接线图(2)整定值设置。

打开功率方向继电器面板前盖,改变灵敏角连接片,可设定功率方向继电器的整定值,首先设置灵敏角为-30°。

(3)保持电流为5A(或合适值),电压为57V(或合适值),摇动移相器,测出使继电器动作的两个临界角度1J ϕ和2J ϕ,纪录于表1。

电力系统整流型功率方向继电器实验指导书

电力系统整流型功率方向继电器实验指导书

电力系统整流型功率方向继电器实验指导书一、实验目的1、加深对功率方向继电器原理、特性的理解,掌握基本的实验方法。

二、实验类型验证型三、实验仪器MRT-2000多功能继电保护测试仪,LG—11功率方向继电器。

四、实验原理LG—11功率方向继电器是按幅值比较原理来实现的,构成如图(一)所示图(一) LG—11功率方向继电器构成图1、 构成:①电压形成回路:由DKB、YB 组成:JI J U A I K U K U ···+=JI J U B I K U K U ···-=R1、R2——消除潜动、调整平衡。

C1——与YB 的励磁电抗形成谐振,使超前90o,其记忆作用用于消除死区,记忆时间为几十毫秒; ②比较回路:由半导体整流桥BZ1,BZ2组成的环流是比较回路。

aAi U®·bBi U®·③执行元件——极化继电器J,非常灵敏标记“*”,当电流从*端流入时,J 动作,反之则不动。

0³-b a i i 时,J 动作;2、 动作方程:oo90arg90££-Û³+Þ³········JIJ U JIJU JIJU BAIKU K IKUK IKUK UU-Ki Ku 、分别为中间变压器变比和电抗变压器变比。

从理论上讲,当Uj =0或Ij =0时,极化继电器J 不动。

但由于比较回路中各元件参数的不完全对称,可能使得在仅有Uj =0或Ij =0时,J 动作,即潜动。

仅有Uj 时动,电压潜动,仅有Ij 时动,叫电流潜动。

潜动对保护的影响:对正方向接地短路时,有利于保护正确动作;当反方向接地短路时,可能导致GJ 误动,使得保护误动。

消除方法:调R1(电流潜动时),调R2(电压潜动时)。

功率方向保护实验报告

功率方向保护实验报告

一、实验名称功率方向保护实验二、实验目的1. 熟悉相间短路功率方向电流保护的基本工作原理;2. 进一步了解功率方向继电器的结构及工作原理;3. 掌握功率方向电流保护的基本特性和整定实验方法;4. 通过实验验证功率方向保护在实际应用中的有效性。

三、实验原理功率方向保护是一种利用电压和电流的乘积来判别电流流向(相位)的继电保护。

其主要元件是功率方向继电器,由电流互感器和电压互感器取得电流、电压信号,以判明短路故障位于保护装置处的正向或反向。

在多侧电源的系统中,功率方向保护可以有效地保证继电保护的选择性。

四、实验仪器设备1. 功率方向继电器2. 电流互感器3. 电压互感器4. 断路器5. 电源6. 测量仪表7. 实验线路五、实验步骤1. 搭建实验线路,包括电流互感器、电压互感器、断路器、测量仪表等。

2. 将电流互感器、电压互感器的二次侧接入功率方向继电器。

3. 设置功率方向继电器的动作参数,如动作电流、动作时间等。

4. 进行实验,观察功率方向继电器的动作情况。

六、实验内容1. 正方向故障实验- 设置故障点,使故障电流从母线流向线路;- 观察功率方向继电器的动作情况,记录动作电流和动作时间;- 分析实验结果,验证功率方向继电器在正方向故障时的保护效果。

2. 反方向故障实验- 设置故障点,使故障电流从线路流向母线;- 观察功率方向继电器的动作情况,记录动作电流和动作时间;- 分析实验结果,验证功率方向继电器在反方向故障时的保护效果。

3. 多侧电源系统实验- 设置多侧电源系统,包括母线、线路、断路器等;- 在不同侧电源下,分别进行正方向和反方向故障实验;- 观察功率方向继电器的动作情况,记录动作电流和动作时间;- 分析实验结果,验证功率方向保护在多侧电源系统中的保护效果。

七、实验结果与分析1. 正方向故障实验结果:- 功率方向继电器在正方向故障时能够可靠动作,动作电流和动作时间符合预期;- 实验结果表明,功率方向保护在正方向故障时具有较好的保护效果。

实验二 功率方向继电器特性实验

实验二   功率方向继电器特性实验

实验二 LG_10系列功率方向继电器特性实验一、实验目的1. 了解继电器的原理及构造(采用整流式原理,嵌入式结构)2. 掌握继电器的检验方法(主要部分)3. 掌握移相器和相位表的使用方法二、结构原理继电器的原理接线图如下:LG-11型继电器可作为相间故障保护中的方向元件。

继电器采用嵌入式结构,全部元件安装在一个带透明盖子的金属外壳内。

继电器采用整流式原理比较电流电压综合量的绝对值,当继电器加入电流Ij 与电压Uj以后,首先经过电压形成回路,该回路分成电流及电压回路两部分。

1. 电流回路:电流Ij通过DKB的一次绕组W1,在其两个二次绕组W2、W3上得到相等同的电压Ud=KiIj,KiIj超前Ij的相位角为γ,此γ可以用DKB 的W4绕组回路电阻RΦ1和RΦ2来调节,γ的余角为α,称之为继电器的内角,LG-11型继电器的内角有两个数值,一个是30°、另一个是45°。

2. 电压回路:LG-11型继电器的电压Uj加到中间变压器YB,YB的一次绕组设有抽头,另外还有一附加绕组,改变YB的6、7、8三个抽头位置,加入或减去9、10小绕组可以对谐振回路进行调整。

YB的一次侧有一电容C1,C1与YB一次绕组构成对50Hz的串联谐振回路主要作用有二个:其一是经谐振回路在电感上取得电压,使电压移相90°,其二是在保护安装处正方向三相短路时,依靠谐振回路的记忆作用使继电器能可靠动作,从而消除了死区。

谐振回路谐振时,该回路的电抗与容性电抗相等(ωL=1/ωC1),电路呈现纯电阻性,Uc和Ul分别为电容器C1和绕组电感上的电压,故在YB一次绕组上的电压Ul比Uj超前90°,通过YB后把Ul转化为二次电压U2=Kul,K是一实数,故U2=KuUj,Ku是综合考虑了Uj与Ul大小的比例关系、考虑了Ul 超前Uj为90°的相移关系,又考虑了YB一次、二次绕组间的变比。

所以Ku 是一个复数的比例常数。

功率方向继电器的实验指导

功率方向继电器的实验指导

功率方向继电器的实验指导一.实验目的1.学会运用相位测试仪测量电流和电压之间相角的方法。

2.掌握功率方向继电器的动作特性,接线方式及动作特性的试验方法。

3.研究接入功率方向继电器的电流、电压的极性对功率方向继电器的动作特性的影响。

二.LG-11型功率方向继电器简介1.LG-11整流型功率方向继电器的工作原理LG-11型功率方向继电器是目前广泛应用的整流型功率方向继电器,其比较幅值的两电气量动作方程为:m y m K m y m K U K I K U K I K ⋅⋅⋅⋅⋅⋅⋅⋅-≥+继电器的接线图如图7-1所示,其中图(a )为继电器的交流回路图,也就是比较电气量的电压形成回路,加入继电器的电流为m I ⋅,电压为m U ⋅。

电流m I ⋅通过电抗变压器DKB 的一次绕组W1,二次绕组W2和W3端钮获得电压分量m K I K ,它超前电流m I ⋅的相角就是转移阻抗R K 的阻抗角 k ,绕组W4用来调整 k 的数值,以得到继电器的最大灵敏角。

电压m U ⋅经电容C1接入中间变压器YB 的一次绕组W1,由两个二次绕组W2和W3获得电压分量m K U K ⋅⋅,m U y K ⋅⋅超前m U ⋅的相角为90度。

DKB 和YB 标有W2的两个二次绕组的联接方式如图所示,得到动作电压m y m K U K I K ⋅⋅⋅⋅+,加于整流桥BZ1输入端;DKB 和YB 标有W3的二次绕组的联接方式如图所示,得到制动电压m y m K U K I K ⋅⋅⋅⋅-,加于整流桥BZ2输入端。

图(b )为幅值比较回路, 它按循环电流式接线,执行元件采用极化继电器JJ 。

继电器最大灵敏度的调整是利用改变变压器DKB 第三个二次绕组W4所接的电阻值来实现的。

继电器的内角 =090- k ,当接入电阻R3时,阻抗角 k =060, =030;当接入电阻R4时, k =045, =045。

因此,继电器的最大灵敏度αϕ-=res ,并可以调整为两个数值,一个为-030,另一个为-045。

继电器测试方法范文

继电器测试方法范文

继电器测试方法范文继电器是一种电子设备,用于控制高功率电路的开关。

它通常由电磁线圈和一对电动触点组成。

在实际应用中,继电器经常需要进行测试,以确保其正常工作。

下面将介绍一些常用的继电器测试方法。

2.触点测试:接下来,测试继电器的触点是否正常工作。

触点是继电器的重要部分,应定期进行测试。

首先,将继电器的线圈连接到电源,并使用万用表测量触点的电阻。

应该得到一个稳定的低电阻值。

然后,使用继电器测试器或模拟信号通过继电器的输入端口来激活触点。

测试触点是否能够正常吸合和分离。

如果发现触点粘连或无法吸合,可能需要清洁或更换触点。

3.线圈电阻测试:继电器的线圈是电磁铁,通常由导线制成。

线圈电阻测试是判断继电器线圈是否正常的一种方法。

使用万用表将线圈的两个端子连接在一起,测量线圈的电阻。

将测量值与继电器的规格书中的额定电阻值进行比较。

如果电阻偏离太大,可能表示线圈损坏。

4.动作时间测试:动作时间是继电器从触点闭合到开启所需的时间。

通过测试继电器的动作时间可以了解继电器在不同条件下的响应能力。

使用继电器测试器或定时器启动继电器的线圈,并测量从激活线圈到触点闭合的时间。

将测量值与规格书中的动作时间进行比较,以确定继电器的工作性能。

5.线圈电压测试:继电器通常需要在特定的电压下工作。

使用万用表测量继电器线圈的电压,确保其与继电器的规格要求相匹配。

通过改变电压,可以测试继电器在不同电压下的工作性能。

6.绝缘电阻测试:为了确保继电器的安全性,绝缘电阻测试是必不可少的。

将万用表的两个探头连接到继电器的线圈和触点上,然后将测试电压应用于线圈和触点。

测量结果应该在规定范围内。

如果绝缘电阻值太低,表示继电器存在漏电问题,需要及时修复或更换。

7.跨触点检测:在一些情况下,继电器的触点可能会出现跨接现象,即正常情况下应该是开的触点却闭合了,或正常情况下应该是闭的触点却打开了。

为了检测触点的跨接情况,可以使用继电器测试器或模拟信号引入来激活继电器,并使用万用表检测其他触点是否关闭。

继电器实训测量实验报告

继电器实训测量实验报告

一、实验目的1. 理解继电器的基本原理和分类。

2. 掌握继电器的主要参数和特性。

3. 学会调整和测量继电器的动作值、返回值及返回系数。

4. 熟悉继电器在实际电路中的应用。

二、实验原理继电器是一种利用电磁作用来实现电路控制的电器,广泛应用于电力系统、自动控制、通信等领域。

本实验主要针对电磁型继电器进行测量实验。

三、实验设备1. 继电器实验台2. 电流表3. 电压表4. 调压器5. 滑线电阻6. 电流继电器7. 电压继电器8. 时间继电器9. 中间继电器10. 信号继电器四、实验内容1. 继电器动作值测量(1)将电流继电器按图接线,将动作值整定为1.2A,使调压器输出指示为0V,滑线电阻的滑动触头放在中间位置。

(2)查线路无误后,先合上三相电源开关,再合上单相电源开关和直流电源开关。

(3)慢慢调节调压器,使电流表读数缓慢升高,记下继电器刚动作(动作信号灯亮)时的最小电流值,即为动作值。

2. 继电器返回值测量(1)继电器动作后,再调节调压器使电流值平滑下降,记下继电器返回时的电流值,即为返回值。

3. 继电器返回系数计算返回系数 = 返回值 / 动作值4. 继电器基本特性测量(1)测量继电器在不同电流下的动作时间。

(2)测量继电器在不同电流下的返回时间。

5. 多种继电器配合实验(1)设计一个简单的电路,包含电流继电器、电压继电器、时间继电器等,观察其工作原理。

(2)调整各个继电器的参数,观察电路的变化。

五、实验结果与分析1. 动作值和返回值测量结果电流继电器动作值:1.2A电流继电器返回值:0.8A电压继电器动作值:10V电压继电器返回值:8V时间继电器动作时间:0.5s时间继电器返回时间:0.3s2. 返回系数计算结果电流继电器返回系数:0.67电压继电器返回系数:0.83. 继电器基本特性分析(1)动作时间和返回时间随电流的增加而增加。

(2)动作时间和返回时间随电压的增加而增加。

4. 多种继电器配合实验分析(1)电流继电器用于保护电路中的过电流故障。

毕设论文-功率方向继电器的实验与开发

毕设论文-功率方向继电器的实验与开发

功率方向继电器的实验与开发摘要:在单侧电源的电网中,电流保护能满足线路保护的需要。

但是,在两侧电源的电网及单电源环形电网中,只靠简单电流保护的电流定值和动作时限不能完全取得动作的选择性,为此,必须在保护回路中加方向闭锁,构成方向性电流保护,要求只有在流过断路器的电流的方向从母线流向线路侧时才允许保护动作。

保护动作的方向性,可以利用功率方向继电器来实现。

关键词:功率方向继电器;动作特性;实验The Experiment and The Development ofPower Directional RelayAbstract:In the unilateral power grid, current protection can meet the needs of the line protection. But in on both sides of the power grid in the power grid and single power supply, only by simple current of current protection setting value and action time limit can't achieve selective action, therefore, must be added direction to the protection circuit of closure, a directional current protection, the requirements only in the direction of the current through the circuit breaker from bus to line side is allowed to protect action. Directional protection action, can make use of power directional relay.Keywords:Power directional relay;Motion characteristics;Experiment1绪论1.1课题背景随着经济的不断发展,对电力的需求越来越大,电力供应开始出现紧张,在很多地方出现了供电危机,使其不得不采取限电、停电等措施,以缓解电力供应的紧张局面。

继电器检测实验报告

继电器检测实验报告

继电器检测实验报告一、实验目的1. 了解继电器的工作原理;2. 掌握继电器的正常工作状态;3. 了解继电器的故障类型和常见故障原因。

二、实验原理继电器是一种控制电气信号的装置,它能通过小电流来控制大电流的通断。

其基本原理如下:1. 继电器由线圈和触点两部分组成,线圈是继电器的控制部分,通过外部电源加电时产生磁场,进而激活触点;2. 当线圈充电后,磁场的作用使得触点闭合,将电源接通到被控制设备上;3. 当线圈断电时,磁场消失,触点恢复原状,断开电源。

三、实验材料和仪器1. 继电器:型号为JQC-3FF;2. 电源:直流电源,额定电压为12V;3. 多功能电表:用于测量电流、电压等参数;4. 实验电路板:用于搭建继电器实验电路。

四、实验步骤1. 搭建基本电路首先,根据实验要求,在实验电路板上搭建继电器实验电路,并将继电器正确安装在电路板上。

2. 施加电源将直流电源连接至电路板,调节电源电压为12V,确认电路板正常供电。

3. 连接多功能电表将多功能电表的电流表头与电路板中继电器线圈的电流通路连接,将电压表头与其电源线路连接,以便测量电流和电压。

4. 测试继电器正常工作状态4.1 先测试继电器的正常工作状态。

先确认线圈电流为12V,利用电流表测量线圈电流的大小,并记录下来;4.2 施加电压后,观察继电器的触点是否闭合,利用电压表测量触点闭合后电源电压的大小,并记录下来;4.3 断开电源,观察继电器的触点是否恢复原状。

5. 模拟继电器故障5.1 创造继电器线圈电流不足以激活触点闭合的情况,调低电源电压,观察继电器的触点是否闭合;5.2 创造继电器触点无法闭合的情况,将触点处加入阻抗元件或者短路,观察继电器的触点状态。

五、实验结果与分析根据实验步骤,我们得到了如下实验结果:1. 在正常工作状态下,继电器线圈电流为12V,线圈电流大小为0.5A;2. 继电器触点闭合后,电源电压为11.8V;3. 继电器触点恢复原状后,电源电压为12V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验:常规功率方向继电器测试
一、实验目的
1、掌握常规功率方向继电器的工作原理及动作特性试验方法。

2、测试LG-11型功率方向继电器的最大灵敏角、动作范围和角度特性。

3、掌握方向性过电流保护基本原理。

二、实验设备及器材
1、TQXDB-IB 多功能继电保护实验培训系统
2、DL-31电流继电器、LG-11功率方向继电器、DS-32时间继电器和DZY-202中间继电器 三、实验原理
LG-11型功率方向继电器是一种反映所接入的电流和电压之间的相位关系的继电器。

当电流和电压之间的相位差为锐角时,继电器的动作转矩为正,使继电器动作,控制接点闭合,继电器跳闸;当电流和电压之间的相位差为钝角时,继电器的动作转矩为负,继电器不动作,从而达到判别相位的要求。


A
I
lm
A ϕ
功率方向继电器动作范围示意图
LG-11型功率方向继电器一般用于相间短路保护。

这种继电器是根据绝对值比较原理构成的,由电压形成回路、比较回路和执行元件三部分组成.动作条件是工作电压大于制动电压,其动作方程为: •
•••••••-≥+r i r u r i r u I K U K I K U K 功率方向继电器灵敏角的调整可通过更换面板上连接片的位置来实现。

四、实验内容及步骤
1、测试LG-11功率方向继电器的最大灵敏角
(1)实验接线。

如图所示,,将特性实验信号源的电压输出分别与功率方向继电器的U ,n U 端子连接,特性实验信号源的I1电流输出与功率方向继电器I ,n I 端子连接。

继电器的动作接点连接到信号灯的控制回路中。

功率方向
继电器
I
In
A
K
U
Un
24V+
24V-
电压输出电压表I1电流输出
电流表
特性实验信号源
相角表
I2
I2n
U1
U1n
功率方向继电器特性测试接线图
(2)整定值设置。

打开功率方向继电器面板前盖,改变灵敏角连接片,可设定功率方向继电器的整定值,首先设置灵敏角为-30°。

(3)保持电流为5A(或合适值),电压为57V(或合适值),摇动移相器,测出使继电器动作的两个临界角度1J ϕ和2J ϕ,纪录于表1。

(4)计算最大灵敏角m ϕ。

(5)改变功率方向继电器的灵敏角为-45°,重复实验,并将测量和计算结果填入表1。

2、 模拟正方向短路故障 (1)实验接线,
方向性过电流保护实验接线如图所示。

由于电流继电器的触点容量比较小,不能直接接通跳闸线圈,因此利用DZY-202中间继电器的触点(容量较大)去跳闸。

为使短路电流不致过大,调节三相调压器输出为380V 。

图 方向性过电流保护正方向短路故障实验接线图 (2)整定值设置。

整定动作电流定值为2A ,时限为1s 。

(3)模拟正方向短路故障。

线路正常运行方式下设置出线末端三相短路故障,观测方向性 过电流保护的动作情况,将结果记入表2。

3、模拟反方向短路故障
如图,将1TA 的Ia 和In 端子反接,设置出线末端三相短路,模拟线路反方向短路故障,观测保护动作情况,将结果记入表2。

图2 方向性电流保护反方向短路故障实验接线图
五、实验数据及分析处理
功率方向继电器的最大灵敏角m ϕ为:2
2
1J J m ϕϕϕ+=
表1 最大灵敏角测试实验数据(保持电流为5A )
表2 方向性电流保护动作记录表
六、实验注意事项
1、本实验为强电类实验,实验中如有异常情况,应立即停止实验并切断电源。

2、实验中改接线,须遵循断电改接线原则。

3、特性实验信号源24V 电源和电压源出口严禁短接。

4、因功率方向继电器反映所接入的电流和电压之间的相位关系而动作,因此接线完毕后,一定要检查接线极性是否正确。

5、实验结束时应先拆电源端接线,后拆除负荷端接线。

七、思考题
LG-11型功率方向继电器的动作区是否等于180度为什么。

相关文档
最新文档