第3章-线性规划的灵敏度分析与最优解的解释
最优化方法(线性规划)——用Lingo对线性规划进行灵敏度分析
lingo 软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。
一、用lingo 软件求解线性规划例1:m a x 23..43103512,0z x ys t x y x y x y =++≤+≤≥在模型窗口输入:model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<12;! the optimal value is :7.454545 ;End如图所示:运行结果如下(点击 工具栏上的‘solve ’或点击菜单‘lingo ’下的‘solve ’即可):Global optimal solution found. Objective value: 7.454545(最优解函数值)Infeasibilities: 0.000000Total solver iterations: 2(迭代次数)Variable (最优解) Value Reduced CostX 1.272727 0.000000Y 1.636364 0.000000Row Slack or Surplus Dual Price1 7.454545 1.0000002 0.000000 0.9090909E-013 0.000000 0.5454545例2:12123124125m a x 54..39028045z x x s t x x x x x x x x x x =+++=++=++=≥在模型窗口输入:model:max=5*x1+4*x2;x1+3*x2+x3=90;2*x1+x2+x4=80;x1+x2+x5=45;end运行(solve )结果如下:Global optimal solution found.Objective value: 215.0000Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostX1 35.00000 0.000000X2 10.00000 0.000000X3 25.00000 0.000000X4 0.000000 1.000000X5 0.000000 3.000000Row Slack or Surplus Dual Price1 215.0000 1.0000002 0.000000 0.0000003 0.000000 1.0000004 0.000000 3.000000例323123234235m in 2..22312z x x s t x x x x x x x x x x =-+-+=-+=-+=≥在模型窗口输入:model:min=-x2+2*x3;x1-2*x2+x3=2;x2-3*x3+x4=1;x2-x3+x5=2;end运行结果如下:Global optimal solution found.Objective value: -1.500000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX2 2.500000 0.000000X3 0.5000000 0.000000X1 6.500000 0.000000X4 0.000000 0.5000000X5 0.000000 0.5000000Row Slack or Surplus Dual Price1 -1.500000 -1.0000002 0.000000 0.0000003 0.000000 0.50000004 0.000000 0.5000000例4:(非线性)m in ..124x y zs t x y x z +++≤+= 在模型窗口输入:model :min =@abs (x)+@abs (y)+@abs (z);x+y<=1;2*x+z=4;@free (x);@free (y);@free(z);End求解器状态如下:(可看出是非线性模型!)运行结果为:Linearization components added:Constraints: 12Variables: 12Integers: 3Global optimal solution found.Objective value:(最优解函数值) 3.000000Objective bound: 3.000000 Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 3Variable(最优解) Value Reduced Cost X 2.000000 0.000000Y -1.000000 0.000000 Z 0.000000 0.000000Row Slack or Surplus Dual Price1 3.000000 -1.0000002 0.000000 1.0000003 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5:m a x 603020864842 1.5202 1.50.585,,0S x y zx y z x y z x y z y x y z =++++≤++≤++≤≤≥ 在模型窗口输入:Lingo 模型:model:max=60*x+30*y+20*z;8*x+6*y+z<48;4*x+2*y+1.5*z<20;2*x+1.5*y+0.5*z<8;y<5;end(一)求解报告(solution report )通过菜单Lingo →Solve 可以得到求解报告(solution report )如下:Global optimal solution found at iteration: 0Infeasibilities: 0.000000Objective value: 280.0000Total solver iterations: 2Variable Value Reduced CostX 2.000000 0.000000Y 0.000000 5.000000Z 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000分析Value,Reduced Cost ,Slack or Surplus ,Dual Price 的意义如下:1、最优解和基变量的确定Value 所在列给出了问题的最优解。
灵敏度分析(第三章线性规划4)
初始单纯形表 x1 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
12 12
b2 20
0
0
x4 x5 f
1 1 5
0
最优单纯形表 x1 x2 0 1 0 x3 0 1 2 x4 2 1 2 x5 1 1 3 bi 424-b
2
5 x1 8 x2
f
1 0 0
实例1
产品 资源 原料甲 原料乙 A 1 1 5 B 1 2 8 C 1 2 6 资源拥 有量 12kg 20kg
利润 (元/kg)
在实例1中,假设产品C 的资源消耗量由 试分析最优解的变化情况。
1 2
2 变为 1
,
x4 x5 f
x1 1 1 5
•设XB=B1b是最优解,则有XB=B1b 0
•b的变化不会影响检验数 •b的变化量b可能导致原最优解变为非基可行解 设b’=b+ b 为保证最优基不变,必须满足XB=B-1b’ 0
1. 分析b1=16和b2=20时,最优基和最优解的变化
初始单纯形表 x1 x4 x5 f 1 1 5 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
5 x1 8 x2
f
1 0 0
保持b1=12,分析b2在什么范围内 变化时,最优基不变?
2 B b' 1
1
1 12 1 b2
24 b 2 12 b 2
0
解之得:12≤b2≤24
即:当12≤b2≤24时,最优基不变
3.2 增加新约束条件的分析
产品 资源 原料甲 原料乙 原料丙 利润 (元/kg)
线性规划的灵敏度分析与应用知识点总结
线性规划的灵敏度分析与应用知识点总结线性规划是一种重要的数学优化方法,它通过建立一个数学模型,根据特定的约束条件和目标函数,求解出使目标函数取得最大(最小)值的决策变量的取值。
而灵敏度分析则是针对线性规划模型中的参数进行变动时,目标函数值和决策变量的取值产生的变化进行评估和分析。
本文将对线性规划的灵敏度分析进行总结,并探讨其在实际应用中的一些重要知识点。
一、灵敏度分析的基本概念和原理灵敏度分析是指在线性规划模型中,通过变动参数的大小和取值范围,分析其对目标函数值和决策变量的解产生的影响程度。
主要包括以下几个方面的分析内容:1. 目标函数系数的灵敏度分析目标函数系数表示决策变量对目标函数的贡献程度,通过改变目标函数系数可以分析目标函数值的变动情况。
当目标函数系数发生较大变动时,可能导致最优解的决策变量发生改变。
2. 约束条件右侧常数的灵敏度分析约束条件的右侧常数表示资源的可利用程度,通过改变约束条件右侧常数可以分析资源的利用程度对决策变量解的影响。
当约束条件右侧常数发生较大变动时,可能会改变最优解的取值范围。
3. 决策变量的灵敏度分析决策变量的灵敏度分析可以评估决策变量值的改变对目标函数值和约束条件的违背程度产生的影响。
通过改变决策变量的取值范围,可以判断最优解的稳定性和可行性。
二、灵敏度分析的具体应用灵敏度分析在实际应用中有广泛的应用价值,主要包括以下几个方面:1. 评估模型的可靠性通过灵敏度分析,可以评估线性规划模型中参数的变动对解的影响程度,从而判断模型的可靠性和稳定性。
当参数变动对解的影响较小时,说明模型具有较好的鲁棒性。
2. 制定决策方案灵敏度分析可以帮助决策者评估决策方案的可行性和稳定性,从而选取出最优的决策方案。
在实际应用中,决策者可以通过改变参数的取值范围,确定决策方案的合理范围。
3. 资源优化分配通过灵敏度分析,可以评估资源可利用程度的变动对决策变量的解产生的影响。
在资源有限的情况下,通过调整资源的利用程度,实现资源的优化分配。
线性规划(5)
若要保证最优解不变,必须有:-5+0.5a≤0,a≤10 -15-1.5a≤0,a≥-10 即-10≤a≤10,c1在[40,60]之间变化,最优解不变。 仍为:x1=15,x2=20;但最优值将随着c1的增大而增大;缩小而 缩小。那么c2=30在多大范围内发生变化,最优解不变?
2、b1=120,问b1在多大范围内发生变化最优基不变,最优 解和最优值是否发生变化? 设b1变化为b1+a, 由最终单纯形表和初始单纯形表可以看出,基矩阵B和B-1分别为:
0 x4 2 1 -1 -1
0 x5 -5 -1 2 -3
xB
0 5 4
X3 25 X1 35 X2 10 cj
松弛变量的检验数对应着对偶问题的最优解。
而且是这三种资源的影子价格。
即∶资源一的影子价格为=y1=-c3=0
资源二的影子价格为=y2=-c4=1 资源三的影子价格为=y3=-c5=3
分析∶资源一的影子价格为0,说明增加这种资源
引例:生产计划问题
胜利家具厂生产桌子和椅子两种家具。桌 子售价50元/个,椅子销售价格30/个,生产 桌子和椅子要求需要木工和油漆工两种工 种。生产一个桌子需要木工4小时,油漆工 2小时。生产一个椅子需要木工3小时,油 漆工1小时。该厂每个月可用木工工时为 120小时,油漆工工时为50小时。问该厂如 何组织生产才能使每月的销售收入最大?
2 1 5 5 1 B 1 1 * 3 3 2 3 2 2
C3 X3 -1 2 0 X4 1 -1/2 -5 0 X5 -2 3/2 -15 20 15 1350 b
C3-70
若希望生产书柜,那么就需要把X3变为基变量,则要求 C3-70 ≥0, 即C3 ≥70元生产书柜有利。
线性规划的解的唯一性与最优性知识点总结
线性规划的解的唯一性与最优性知识点总结线性规划是一种数学优化方法,广泛应用于各个领域,如运筹学、经济学、管理学等。
在解决实际问题时,了解线性规划问题的解的唯一性与最优性是十分重要的。
本文将对线性规划的解的唯一性与最优性相关的知识点进行总结。
1. 线性规划问题的基本形式线性规划问题可用如下形式表示:\[\begin{align*}\text{目标函数:} & \text{max}\, z = c_1x_1 + c_2x_2 + \ldots +c_nx_n \\\text{约束条件:} & \begin{cases}a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1 \\a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \leq b_2 \\\ldots \\a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m \\\end{cases} \\\text{非负约束:} & x_1, x_2, \ldots, x_n \geq 0\end{align*}\]其中,目标函数为线性函数,约束条件为一组线性不等式,非负约束表示决策变量必须为非负数。
2. 解的存在性与唯一性线性规划问题的解可能存在以下情况:- 无解:约束条件相互矛盾,无法找到满足所有约束条件的解。
- 有界解:存在满足所有约束条件的解,但在此解上目标函数值无上界或下界,即目标函数值可以无限增大或无限减小。
- 无界解:在满足所有约束条件的解中,目标函数值既没有上界也没有下界,即可以一直朝着无限大或无限小的方向增加。
解的唯一性有以下情况:- 无穷多解:存在多个解能够同时满足所有约束条件且具有相同的目标函数值。
- 唯一解:满足所有约束条件的解只有一个。
3. 解的最优性解的最优性是指在满足约束条件的前提下,使得目标函数值最大或最小。
第三章 线性规划的灵敏度分析和最优解的解释
3.1 灵敏度分析简介
灵敏度分析是研究线性规划的参数(非可控输入)发生 变化对最优解的影响程度
线性规划的参数包括:
• 目标函数系数 • 约束条件右侧值 • 约束条件系数矩阵
最优解中包含的信息:
• 目标函数值 • 决策变量值 • 递减成本(reduced cost) • 松弛/剩余变量
4
3.1 灵敏度分析简介
利用Lingo 软件做灵敏度分析
16
17
利用Excel做灵敏度分析
Microsoft Excel 16.0 敏感性报告 工作表: [数据模型与决策第3章例题.xlsx]第三章例题1 报告的建立: 2021/5/29 10:48:56
可变单元格
单元格 $B$15 $C$15
名称 决策变量值 x1 决策变量值 x2
作者
John Loucks
St. Edward’s University
1
第三章 线性规划的灵敏度分析和最优解的解释
3.1 灵敏度分析简介 3.2 目标函数系数变化的分析 3.3 约束条件右端值变化的分析 3.4 传统灵敏度分析的局限性
2
第三章 线性规划的灵敏度分析和最优解的解释
3.1 灵敏度分析简介 3.2 目标函数系数变化的分析 3.3 约束条件右端值变化的分析 3.4 传统灵敏度分析的局限性
6
x1 < 6
2x1 + 3x2 < 19 x1 + x2 < 8
x1, x2 > 0
固定x2的系数7,改变x1 的系数
5
最优解:
Max 14/3x1 + 7x2
4
x1 = 5, x2 = 3
3
Max 7x1 + 7x2
线性规划的灵敏度分析
,
b3
33
5
1
,
5 1
,
15
1
5,5,15
故有 15 b3 5,b3 在[0,20]上变化时最优基不变。
若线性规划模型是一个生产计划模型,当求出cj或bi 的最大允许变化范围时,就可随时根据市场的变化来掌握 生产计划的调整。
灵敏度分析方法还可以分析工艺系数aij的变化对最优解 的影响,对增加约束、变量或减少约束、变量等情形的分 析,下面以一个例子来说明这些分析方法。
(8)增加新约束 5x1 x2 2x3 10
§2.4 灵敏度分析
Ch2 Dual Problem
Sensitivity Analysis
2023年2月1日星期三 Page 19 of 34
【解】加入松弛变量x4、x5、x6,用单纯形法计算,最优表如2-7所 示。
表2-7
Cj
2 -1
4
0
0
0
b
CB XB x1
x2
x3
x4
x5
x6
4 x3 0 5/7
1
1/7 3/7
0
2
2 x1 1 2/7
0 -1/7 4/7
0
1
0 x6 0 -2
0
0
-1
1
1
λj
0 -31/7 0 -2/7 -20/7 0
§2.4 灵敏度分析 Sensitivity Analysis
Ch2 Dual Problem
2023年2月1日星期三 Page 20 of 34
§2.4 灵敏度分析 Sensitivity Analysis
cj
-2 1
-4
0
线性规划灵敏度分析
淮北师范大学2011届学士学位论文线性规划灵敏度分析学院、专业数学科学学院数学与应用数学研究方向运筹学学生姓名陈红学号20071101008指导教师姓名张发明指导教师职称副教授2011年4月10日线性规划的灵敏度分析陈 红(淮北师范大学数学科学学院,淮北,235000)摘 要本文主要从价值系数j c 的变化,技术系数ij a 的变化,右端常数i b 的变化以及增加新的约束条件和增加一个新变量的灵敏度这几个方面来进行研究;资源条件是线性规划灵敏度分析中的主要应用内容,而对于资源条件b 的一个重要应用是:“影子价格问题”的实际应用,最后简述了线性规划在经济及管理问题上的典型应用和从求解例题的图解法揭示了最优解的一些重要特征。
关键词 单纯形法,灵敏度分析,最优解,资源条件,价值系数Sensitivity Analysis of Linear ProgrammingChen Hong(School of Mathematical Science,Huaibei Normal University ,Huaibei,235000)AbstractThis thesis is mainly from the variety of the cost coefficient ‘j c ’, the variety of technology coefficient ‘ij a ’, the var iety of the resources condition‘i b ’and increase the new restraint and new variable to analytical linear programming of sensitivity analysis 。
This thesis is mainly based on the simplex method and dual simplex method of linear programming to system analytical the influence of the variety upon the optical solution of the coefficient of the simplex table 。
浅谈线性规划问题的灵敏度分析
浅谈线性规划问题的灵敏度分析符龙飞2016年5月15日摘要线性规划是运筹学的一个重要的分支,本文主要讨论有关线性规划问题的灵敏度分析,灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析,在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.因此本文讨论在实际问题中当技术系数、资源系数、价值系数以及增加一个变量和增加一个约束条件时,原问题最优解的变化,对原线性规划问题进行灵敏度分析.关键词:线性规划;灵敏度;最优解AbstractLinear programming is an important branch of operational research, this paper mainly discusses the sensitivity analysis of linear programming, sensitivity analysis of the definition refers to the analysis of the sensitivity of its own because of changes in ambient conditions and displayed on things or to make the whole system of linear programming problems, we assume that the technology of data resources the data value and data vector or matrix elements in the known constant, but in the actual problems in these data are just some forecast data and estimates, the establishment of a linear programming model to deal with practical problems, will not change the data, is not very accurate, may be modified in this paper.When discussing technical factors, in the actual problem of resource factor, value factor and add a variable and add a constraint condition, the original problem of optimal solution Sensitivity analysis of the original linear programming problem.Keywords: Linear programming; sensitivity; optimal solution目录第一章前言 (1)1.1 线性规划问题及线性规划发展史 (1)1.2 灵敏度分析的概念 (1)1.3线性规划模型 (1)1.4灵敏度分析的方法及步骤 (2)1.5 符号说明 (2)第二章技术系数a的变化分析 (3)ij2.1 非基变量系数列向量发生变化 (3)2.2 基变量系数列向量发生变化 (4)第三章资源系数b的变化分析 (7)ic的变化分析 (10)第四章价值系数i4.1 非基变量价值系数变化 (10)4.2基变量价值系数变化 (11)第五章增加新的变量的变化分析 (13)第六章增加新约束条件的变化分析 (16)总结 (18)[参考文献] (19)第一章前言1.1 线性规划问题及线性规划发展史线性规划是我们研究运筹学最基本的也是最重要的问题之一,是运筹学中相对比较成熟的一个重要分支.线性规划是近几十年发展起来的一种数学规划的方法,它主要研究在给定的线性不等式或者线性方程约束条件下,对所求的目标函数在一定意义下的极值问题,使其线性指标最优.它广泛应用于工、商、农、军事、交通运输、经济管理以及计划等各个领域.具有应用广泛、适应性强、计算技术比较简单等特点,线性规划在理论上已经也来越成熟,其应用也越来越广泛和深入[1].线性规划的发展是运筹学史上几代人智慧的结晶.1939年,原苏联数学家康托洛维奇发表了《生产组织与计划中的数学方法》学术报告,首次提出了线性规划问题,但是他没有找到一个统一的求解这类问题的方法,1941年美国学者希奇柯克独立的提出了运输问题这样一类特殊的线性规划问题,1947年,美国学者丹捷格提出求解线性规划的单纯形法和许多相关的理论,为线性规划奠定了理论基础,推动了线性规划的发展.自此以后线性规划在计算上趋向成熟,应用也更加广泛深入[2].1.2 灵敏度分析的概念灵敏度分析顾名思义就是指对事物或者使整个系统因为其自身周围环境条件变化而表现出来的敏感程度的分析.在线性规划问题中,我们都假定技术数据、资源数据和价值数据向量或者矩阵中元素为已知常数,但是在实际的问题工作中这些数据往往只是一些预测的数据和估计值,在处理实际问题的建立线性规划模型时,这些数据并不是不会变化的,不是很精确,有可能进行了修改.如果市场条件发生了变动,价值系数的值就会发生变化,技术系数会随着工艺技术条件的变化而变化,同样,在资源投入量发生变化时,资源系数也会随之发生变化,它的值会根据资源投入后能产出多大经济效果来决定的一种决策选择.因此,当这些数据发生变化时,线性规划的最优目标值或者最优解会发生怎样的变化?或者是不是这些参数在一定的范围内其线性规划问题的最优解不会发生变化?这就是本文我们研究线性规划问题的灵敏度分析所要解决的问题.1.3线性规划模型线性规划模型的标准形式如下:max z CX(0)0AX b b X =≥⎧⎨≥⎩我们在求解线性规划问题时首先就应该把数学模型转化成标准形式.1.4灵敏度分析的方法及步骤要进行灵敏度分析,首先要弄明白的就是上述问题:①当系数发生变化时,最优解或者最优目标值发生变化,我们如何简便地求出新的最优目标值和最优解;②当系数在什么一定范围内,线性规划的最优解是不变的.我们可以将灵敏度度分析归纳为:(1)将参数的改变计算反映到最终单纯形表上来,具体的计算方法是按下列公式计算出由技术参数、资源参数和价值参数的变化引起的最终单纯形表上有关数字的变化,即*1b B b -∆=∆*1j j P B P -∆=∆()()*1mj j j j ij i i c z c z a y =∆-=∆--∑(2)检查原问题是否仍为可行解; (3)检查对偶问题是否仍为可行解.(4)我们可以按照下表1-1所列出的情况得出结论或者得出继续计算的步骤[3].表1-1原问题 对偶问题 结论或者继续计算的步骤 可行解 可行解 表中的解仍为最优解 可行解 非可行解 用单纯法继续迭代求最优解 非可行解 可行解 用对偶单纯形法继续迭代求最优解 非可行解非可行解引入人工变量,编制新的的单纯形表,求最优解1.5 符号说明①ij a 技术数据; ②i b 资源数据; ③j c 价值数据; ④B 最优基; ⑤s .t . 约束条件.第二章 技术系数ij a 的变化分析2.1 非基变量系数列向量发生变化如果我们用最优基B 来说,当非基变量j x 的系数列向量j A 改变为'j j jA A A =+∆就会有变化后的检验数为()'1j j B j j j j c C B A A Y A σσ-=-++∆=+∆ ()1,2,,j n =[4]在这里,对偶可行解为1B Y C B -=,我们要使原来的线性规划最优基B 仍然保持不变的话,必须有'0j σ≥,即j j Y A σ∆≥- ()1,2,,j n =而当()0,,,,0Tj ij P a ∆=∆时,则由上式可得()10,,0im i ij j ij y y y y a a σ⎡⎤⎢⎥⎢⎥⎢⎥=∆≥-∆⎢⎥⎢⎥⎢⎥⎣⎦我们可以导出 当0i y >时,有jij ja y σ∆≥-;当0i y <时,有jij ja y σ∆≤-.例1已知线性规划问题12345max 2300Z x x x x x =---++s .t .()12341234347901,2,3,4,5j x x x x x x x x x j ⎧+++=⎪⎪+++=⎨⎪≥=⎪⎩ 23a 怎样变化时最优解保持不变?解:最终单纯形表如下表2-1j c2- 3- 1-0 0bB C B X 1x2x3x 4x5x2-1x 1 0 1-43 13- 1 3-2x0 1 2 13- 13 2j σ353138Z =-由此表可得[]133323234113312,311331233B cC B p a a σ-⎡⎤-⎢⎥⎡⎤=-=----⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦=+ 32323120233a a σ=+≥⇒≥-所以[232,)a ∈-+∞原最优解保持不变.2.2 基变量系数列向量发生变化仍然对于最优基B 来说,当基变量j x 的系数列向量j A 发生变化的时候,对于基向量B 和它的逆矩阵1B -都会有一定的影响,则线性规划的解的可行性、最优性以及它的最优目标值都会随之发生变化.我们要求出一个一般公式是很难的,因此,我们会用单纯形法重新求解变化后的线性规划问题.对于重新的求解可以在原来的单纯形终表上变换数据后进行迭代[5].例2已知线性规划问题1234max 534Z x x x x =+++s .t .()123412341234232800543412003453100001,2,3,4jx x x x x x x x x x x x x j +++≤⎧⎪+++≤⎪⎨+++≤⎪⎪≥=⎩如果非基变量3x 的系数由135⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦变为141⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,那么原线性规划的最优解是否还是最优?如果不是求出最优.解:由3110431154A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则330115110,,114444Y A σ⎡⎤⎛⎫⎢⎥∆==-<-=- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦因此不满足j j Y A σ∆≥-,那么原线性规划的最优解就不再是最优解了,根据灵敏度分析的步骤,求新的最优解我们应该先求出新的检验数'1'3330130,,111044B c C B A σ-⎡⎤⎛⎫⎢⎥=-+=-+=-< ⎪⎢⎥⎝⎭⎢⎥-⎣⎦所以可以取3x 为进基变量,然后计算1'311111401143312014B A -⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦-⎢⎥⎣⎦用它去替换原线性规划最优单纯形表表2-1的第3列,从而得到表2-2,继续迭代可以得到表2-3,如下表2-1 原线性规划最优单纯形表15341x2x3x4x5x6x7x5x 100 140 134- 0 1 141- 4x20022-111-2x100 34-1 114 0 0 34-1 1300134114141表2-2 改变后的单纯形表15341x2x3x4x5x6x7x5x 100 140 1 0 1 141- 4x 200 20 31 0 11-2x100 34-1 2- 0 0 34-1 13001341-141表2-3 迭代后的单形表15341x2x3x4x5x6x7x5x 1003 512- 0 0 13- 1 112-23- 4x 2003 23 0 1 13 0 13 13- 2x7003 712 1 0 23 0 112- 13 41003471213712 23我们由上表就可以看得出来,求得的最优解*7002001000,,,0,,0,0333X ⎛⎫= ⎪⎝⎭以及改变后的最优值*41003z =.第三章 资源系数i b 的变化分析我们知道,资源系数发生变化的问题关键就是怎样把i b 的变化直接的反映到原来线性规划问题的最终单纯形表,对于单纯形法的迭代过程,其实就是矩阵的初等变换过程,用所学的知识我们知道,对于分块矩阵[]BI我们进行初等变换时,把矩阵B 变成单位矩阵I ,会有单位矩阵I 变成矩阵1B -,即1IB -⎡⎤⎣⎦因此我们可以知道,若在已知的最终单纯形表中基可行解所对应的基“B ”(最终单纯形表中的基变量在初始单纯形表中的列向量所构成的矩阵),即可在最终单纯形表中找到“1B -”(初始单纯形表中的单位矩阵I 在最终单纯形表中所对应的矩阵),我们可以有'1b B b -=[6].例3对于线性规划问题12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 如果把第二个约束条件的右端项增大到32,那么分析一下最优解如何让变化.解:由最终单纯形表表3-1表3-1 最终单纯形表1x2x3x4x5x3x 152 0 0 1 54 152- 1x 72 1 0 0 14 12- 2x32114- 32i i z c -0 0 014 12因为003224880b ⎡⎤⎡⎤⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,由*1b B b -∆=∆,得*51514201011082420213042b ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥∆=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦将其加到表3-1一列数字上的最终单纯形表的基变量解,得表3-2.表3-21x2x3x4x5x3x 352 0 0 1 54 152- 1x 112 1 0 0 14 12- 2x12- 0 1 0 14- 32 i i z c -1412又因为上表中原问题是非可行解,因此我们需继续计算,采用对偶单纯形法可以得到表3-3表3-31x2x3x4x5x3x 15 0 5 1 0 0 1x 5 1 10 0 12x20 4-0 1 6-i i z c -12从表中我们可以看出新的最优解15x =,*2510z =⨯=.第四章 价值系数i c 的变化分析4.1 非基变量价值系数变化假设()12n A p p p =.若j j j c c c =+∆,j N ∈,则1T j j B j j j c c B p c σσ-=-=+∆如果使最优基不变,则必须有0j σ≤,因此非基变量价值系数j c ,j N ∈的变动范围应该满足j j c σ∆≤-例4已知线性规划问题123max 234Z x x x =---s .t .123412341234523234,,,,0x x x x x x x x x x x x x ---+=-⎧⎪-+-+=-⎨⎪≥⎩求解价值系数在什么范围变化时,最优解不变.解:表4-1是最终单纯形表表4-1j c →2-3- 4- 0 0b cB X b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x1151 0 75 15- 25- j σ95- 85- 15- 由单纯形法计算可得表4-2表4-2j c →2-3-34c -+∆0 0b cb x b1x2x3x4x5x3-2x 25 0 0 15- 25- 15 2-1x115175 15- 25- j σ0 0395c -+∆85- 15- 从表4-2中我们可以看出当395c ∆≤时,最优解不变. 4.2基变量价值系数变化如果B B B c c c =+∆,则对于j N ∀∈,11TT B j j j j B j c c B p c B p σσ--=-=-∆这时,若保持最优基不变,一定要使得0j σ≥,j N ∀∈.所以基变量价值系数Bc 满足不等式组的取值范围为1T B j jc B p j N σ-∆≤∀∈例5已知线性规划问题123max 2z x x x =-++s .t .1231241234624,,,0x x x x x x x x x x ++=⎧⎪-+=⎨⎪≥⎩当1c 变为4时,求新问题的最优解.解:这个线性规划模型的最终单纯形表为表4-3 .表4-31x2x3x4x2x 6 1 1 1 0 4x1030 11 i i 1c 是非基变量的系数,则()1133,132c c ∆≤--=≤-+=所以,1c 在12c ≤的范围内变化时,最优解不变.当1c 变为4时,超出范围,则重新计算()()1'1241144,42,003TB j c B p c c p σ-⎛⎫=-=-=-> ⎪⎝⎭把表4-3中13σ=-变为2,选择1x 为入基变量,4x 为出基变量,进行迭代,得到的最终单纯形表,表4-4表4-41x2x3x 4x2x83 0123 13- 4x 1031 013 13 i i c z - 0 053- 23- 新的最优解为:1234108,,033x x x x ====;最优值:*563z =.第五章 增加新的变量的变化分析增加一个新的变量实际上就是在单纯形表中增加一列,假如增加一个新的变量1n x +,1n c +是它所对应的价值系数,()111211,,,Tn n n mn A a a a ++++=是它在约束矩阵中的对应系数列向量,则增加一列'11'''2111'1n n n n mn a a A B A a +++++⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其检验数1111n n B n c C B A σ-+++=-+那么就得到了新问题的单纯形表,如果10n σ+≥,则原线性规划问题的最优解不变.我们通过具体例题来讨论增加新的约束条件.例6某生产加工厂计划用两种不同的原料生产四种商品,四种商品的收益和消耗的原料数以及消耗的原料定量如表5-1表5-1产品(万件)/原料(kg )甲 乙 丙 丁 提供量 第一种原料3 2 104 18 第二种原料 0 0 2 1/2 3 求:如果增加第一种原料,增加多少原最优基不变?解:设生产甲、乙、丙、丁四种产品各1x ,2x ,3x ,4x 万件,则线性规划模型为1234max 985019Z x x x x =+++s .t .()1234343210418123201,2,3,4j x x x x x x x j ⎧+++≤⎪⎪+≤⎨⎪⎪≥=⎩增加第一种原料时,1b 就会发生变化,设1118b b =+∆,1(18,3)b b =+∆,则1111210221833314311636b b B b b -⎡⎤⎡⎤-+∆⎢⎥⎢⎥+∆⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--∆⎢⎥⎢⎥⎣⎦⎣⎦则需满足12203b +∆≥,11106b -∆≥原最优基不变,得136b -≤∆≤,即11524b ≤≤.函数1112(0,0,1,2)63t X b b =-∆+∆,113883Z b =+∆是1b ∆最优值和最优解,当16b ∆>,13b ∆<-时,原来的最优基就会改变,原问题的最优基如下表表5-2.表5-2j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-2 503x12- 13- 1 0 16- 43 1j σ4- 23- 0133- 103- 88Z =当16b ∆>时,情形如下,常数项用111223116b B b b -⎡⎤+∆⎢⎥=⎢⎥⎢⎥-∆⎢⎥⎣⎦代替,用对偶单纯法得表5-3.表5-3j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 243 0 1 23 103-1223b +∆503x12- 13- 116- 43 1116b -∆j σ4-23- 0 0133- 103-113883Z b =+∆用对偶单纯形法求解,第二行需乘以3-,第一行加上第二行乘以43-,可以得到单纯形表表5-4.表5-4j c9 8 50 19 0 0bB cB x 1x2x3x4x5x6x19 4x 00 41 02683x321 3-0 124-1132b ∆- j σ3- 02- 04-6-1904Z b =+∆当11302b ∆-≥,即16b ∆>,新的最优基42(,)B P P =,最优解为11(0,3,0,6)2b ∆-,最大收益为1904b +∆万元.第六章 增加新约束条件的变化分析我们在处理实际问题时,往往会遇到在其问题的基础上增加新的约束条件,如果新添加的约束条件能够使原来的最优解得到满足,那么它的最优解一定不变,反之,则需对问题继续进行分析.例7对于线性规划问题 12max 2z x x =+s .t .212121251562245,0x x x x x x x ≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩增加一个新的约束条件123212x x +≤,分析最优解的变化.解:把原来线性规划问题最优解带入新的约束条件中,因为 73273212222⨯+⨯=> 则约束条件可以写成1263212x x x ++=,6x 为基变量,反映到表3-1中得表6-1.表6-11x2x 3x 4x5x6x 0 3x 152 0 0 1 54 152- 0 2 1x 72 1 0 0 14 12- 0 1 2x 320 1 0 14- 320 06x12 3 2 0 01 i i c z -14121将1x ,2x 列系数变为单位向量,用对偶单纯法进行迭代,得最终单纯形表,表6-2.表6-21x2x 3x 4x5x 6x0 3x 15 0 0 1 52 0 5-2 1x 4 1 0 0 13 0 13-1 2x 0 0 1 0 12- 0 16x13 2 0 16 1 23- i i c z -16- 013-则新的最优解为*124,0,8x x z ===.总结从本文中讨论我们可以看出,在线性规划问题中,一些数据发生变化时,特别是当数据变化的幅度较小时,用灵敏度分析新的问题要比从头求解新问题简便的多,因此我们要学会掌握线性规划问题的灵敏度分析并加以推广.[参考文献][1] 李小光.线性规划中的灵敏度分析[J].2000,20(3),15-20.[2] 张伯声.运筹学[M].北京:科学出版社,2008,65-75.[3] 党耀国,李邦义.运筹学[M].北京:科学出版社,2009,61-73.[4] 施泉生.运筹学[M].北京:中国电力出版社,2004,44-50.[5] 孙麟平.运筹学[M].北京:科学出版社,2005,32-38.[6] 吕蓬,潘志.运筹学数学规划篇[M].北京:清华大学出版社,2011,32-40.。
第三章 第五节 灵敏度分析
5.1 目标函数中价值系数cj的变化分析
考虑检验数 σj
1. 若ck是非基变量的系数: 设ck变化为 ck + ∆ck, 则σk’= σk+ ∆ck 只要 σk’≤ 0 ,即 ∆ck ≤ - σk ,则 最优解不变;否则,将最优单纯形表 中的检验数 σk 用 σk’取代,继续用单 纯形法的表格计算。
由上式,可得 Δb2≥-4/0.25=-16 , Δb2≥-4/0.5=-8 , b2≤2/0.125=16。所以Δb2 的变化范围是[-8, 16];显然原b2 =16,加它的变化范围后, b2的 变化范围是[8,32]。
2010-10-31 20
5.3
增加一个变量xj的分析
若增加一个新变量 xn+1 则有相应的 pn+1 ,cn+1发生变化。 那么计算出B-1pn+1 , σn+1=cn+1-∑cri ari n+1 填入最优单纯形表, 若 σn+1 ≤ 0 则最优解不变; 否则,进一步用单纯形法求解即可。
例子从略54分析参数aij的变化2707202024参数aij的变化若变量x在最终单纯形表中为基变量则aij的变化将使相应的b和b1发生变化因此有可能出现原问题和对偶问题均为非可行解的情况这时需要引进人工变量将原问题的解转化为可行解再用单纯形法求解例见课本例112707202025增加一个约束之后应把最优解代入新的约束若满足则最优解不变否则填入最优单纯形表作为新的一行引入一个新的非负变量原约束若是小于等于形式可引入非负松弛变量否则引入非负人工变量并通过矩阵行变换把对应基变量的元素变为0进一步用单纯形法或对偶单纯形法求解
b 2/5 11/5
从表中看到σ3= c3+Δc3-(c2×a13+c1×a23 ) 可得到Δc3 ≤ 9/5 时,原最优解不变。
华南理工大学-运筹学-第3章-线性规划的对偶理论(简)-工商管理学院
5-最优生产计划中某种资源未充分利用时,其影子价格必
然为0。这意味着增加该资源的供应量不会为企业带来利
润或产出的增加。
17
对偶单纯形法
对偶单纯形法并不是求解原问题的(线性规划问题的)对
偶问题的单纯形法,而是应用对偶原理和单纯形法来求解
原问题的一种方法。
18
【注】企业卖出相同数量关系的原材料,收益应不低于用
其生产出最终产品而获得的利润。
4
引例
5
引例
6
基本概念
1-原问题的目标函数系数(行)向量对应于对偶问题约束条
件的右端常数(列)向量。
同理,原问题约束条件的右端常数(列)向量对应于对偶问
题的目标函数系数(行)向量。
7
基本概念
2-原问题与对偶问题约束不等式的不等号方向相反。
素从而影响原最优基的可行性,进而使最优解发生变化。
因为b的变化不会直接影响非基变量的检验数,那么只要b
的变化没有造成最优基的变化,则资源的影子价格保持不
变,此时可直接用影子价格乘以新增/减少的资源数量得
出最优利润的变化。
49
灵敏度分析示例1
在本例中,只要1落在[200, 400]内,最优基维持不变,
千克,最优解有什么变化?
1的周供应量1在什么范围内变化时,原生产组合(仅生产A和
B)仍为最优组合?
1增加至500时,最优解是什么?
44
灵敏度分析示例1
45
灵敏度分析示例1
46
灵敏度分析示例1
47
灵敏度分析示例1
48
灵敏度分析示例1
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。
答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。
答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。
答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。
()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。
()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。
答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。
工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。
线性规划模型的应用与灵敏度分析(DOC)
摘要线性规划是解决稀缺资源最优分配的有效方法,使付出的费用最少或获得的利益最大。
它的研究对象是有一定的人力、财力、资源条件下,如何合理安排使用,效益最高;某项任务确定后,如何安排人、财、物,使之最省。
它要解决的问题的目标可以用数值指标反映,对于要实现的目标有多种方案可以选择,有影响决策的若干约束条件。
本文主要介绍了线性规划模型在实际生活中的应用,其中包括解线性方程组的各种方法,如图解法、单纯形法、以及对偶单纯形法等等,以及简单介绍了有关灵敏度分析的方法。
由于许多问题仅仅利用线性规划的方法还不足以解决,因此用到了对偶理论,也因此引出了对偶单纯形法。
对偶规划是线性规划问题从另一个角度进行研究,是线性规划理论的进一步深化,也是线性规划理论整体的一个不可分割的组成部分。
灵敏度分析是对线性规划结果的再发掘,是对线性规划理论的充要应用,本文以实例验证灵敏度分析的实际应用。
关键词:线性规划;单纯形法;对偶单纯形法ABSTRCTLinear programming is an effective method to solve the optimal allocation of scarce resources, make the cost of pay or receive at least the interests of the largest. Its object of study is the human and financial resources, resource conditions, how to reasonably arrange to use, benefit is supreme; A task is determined, how to arrange people, goods, and make it the most provinces. It to the target can be used to solve the problem of the numerical indicators, to achieve a variety of solutions to choose from, have an impact on the decision of some constraint conditions. Through the subject design, can deepen the operations research, optimization method, linear programming, nonlinear programming, to improve the integrated use of knowledge, improve the ability of using the sensitivity analysis to solve various practical problems. This article mainly introduces the application of linear programming model in real life, including the various methods of solving linear equations, as shown in figure method, simplex method and dual simplex method, etc., and simply introduces the method of sensitivity analysis. Due to many problems just by using the method of linear programming is not enough to solve, so use the duality theory, thus raises the dual simplex method. The dual programming is linear programming problem from another Angle, is the further deepening of linear programming theory, linear planning theory as a whole is also an integral part of. Sensitivity analysis is to discover, the result of the linear programming is the charge to application of linear programming theory. Keywords: linear programming;Simplex method;The dual simplex method目录前言线性规划模型的应用与灵敏度分析 (1)第一章线性规划问题 (1)1. 线性规划及灵敏度分析简介 (1)2. 线性规划模型应用的发展 (1)3. 线性规划模型研究的问题 (2)4. 线性规划模型的应用 (2)4.1问题 (2)4.2线性规划方法的特点及局限性 (2)4.3线性规划模型的基本结构 (3)4.4线性规划模型的一般形式 (3)4.4线性规划的性质…………………………………………………………………………………5第二章求解线性规划的方法 (6)1. 图解法 (6)2. 单纯行法 (7)2.1 单纯行法的基本思路 (7)2.2 单纯形法的求解步骤 (11)2.3 单纯形法的求解过程小结 (12)2.3.1人造基、初始基本可行解 (12)2.3.2最优解判别定理: (14)2.3.3单纯行过程的两种方法 (14)3. 单纯行法 (14)3.1对偶问题的提出 (14)3.2线性规划的对偶理论 (15)3.3对偶单纯形法的步骤 (15)4. 单纯行表......................................................................................................错误!未定义书签。
线性规划的灵敏度分析与最优解的解释
只要右端值在这些范围之内,系统分析结果中的那些对 偶价格就不会改变。右端值如果超过了这些范围,对偶价 格信息会随之改变。
3.3 灵敏度分析:计算机求解
假设Par公司的会计部门指出原先的标准袋和高级袋利 润计算有误,应该是11.5美元和8.25美元。为了确定这样 的变化是否会对最优解产生影响,我们先要定义两个术语 “允许增加量”和“允许减少量”。对于目标函数的系数, 允许增加量是在不超过最优范围的情况下,系数尽可能增 加的最大量;而允许减少量是在不低于最优范围下限的情 况下,系数可能减少的最大量。
第三章 线性规划的灵敏度分析与最优解 的解释
引言
灵敏度分析是研究当一个线性规划问题中的系 数发生变化时,其对函数最优解的影响程度。运 用灵敏度分析,我们可以回答以下问题: 1.如果目标函数的系数发生了变化,对最优解会产 生什么影响? 2.如果改变约束条件的右端值,对最优解会产生什 么影响?
首先我们将介绍如何使用图解法进行双变量 线性规划问题的灵敏度分析,然后介绍如何使用 管理科学家软件得到灵敏度分析报告。
3.3 灵敏度分析:计算机求解
3.3.2 多系数同时变化
系统灵敏度分析的输出是基于单函数系数变化的。它假 设所有其他系数都保持不变。因此目标函数系数和约束右 端值的变化范围只能适用于单个系数发生变化的情况。然 而很多情况下,我们可能更关注两个或两个以上系数同时 变化时,目标函数将怎样变化。有些多系数同时变化的分 析可能会用到100%法则。下面分析如何应用100%法则。
3.2 图解法灵敏度分析
灵敏度分析
2、基变量的目标系数 c j 的灵敏度分析
例2.1
已知线性规划问题
max η = 30x 1 + 25x 2 + 35x 3 x 1 + 2x 2 + x 3 ≤ 800 x + x + 2x ≤ 1000 1 2 3 s.t. 2x 1 + x 2 + x 3 ≤ 2000 x 1, x 2 , x 3 ≥ 0
25 X2 3 -1 -4 1 3 -1 -4 -6
35 X3 0 1 0 2 0 1 0 0
0 X4 2 -1 -3 0 2 -1 -3 -4
0 X5 -1 1 1 0 -1 1 1 3
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 600 200 600 -600 600 200 600 1600
课堂练习
1 已知线性规划问题:
P153(4)
max Z = 3x 1 + 2x 2 x 1 + 2x 2 ≤ 40 s.t. 2x 1 + x 2 ≤ 50 x , x ≥ 0 1 2
求(1)为使最优解不发生变化时目标函数系数 c j 允许 变化的范围。 (2)每个约束条件的影子价格
X6 X7 b
-30 0
-25 -5
-30 0
-25 -5
30 25 30 X1 35 X3 0 0 X6 X7 1 0 0 0 0 30 X1 35 X3 0 0 X6 X7 1 0 0 0 0 3 -1 -4 -6 0 0 0 1 0
35 0 0 1 0 0 0 1 0 0 0 2 -1 -3 -4 -25 0
XB
-1
[管理学]5、敏感性分析
P3 P4 P5 1 0 0 0 1 0 -1 -1 1/2
B B
31
-1
1
3 0
2
2 2
1
0 0
0
1 0
0
0 1
P1 P2 1 3 0 0 0 1
P3 P4 P5 1 0 0 0 1 0 -1 -1 1/2
32 返回
B
-1
原问题变量
原问题松弛变量
XB
x1 x4 x2
b 3 4 3
x1
1 0 0 0
2 1
11 返回
二、分析 bi的变化
bi 的变化影响单纯形表中基变量列数字的变化
b B b 1 1 1 b B (b b) B b B b
1
b变化
∴ bi 的变化反映到最终单纯形表中,只会出 现表1中的第一和第三种情况。
12
1.若设备A和设备C的生产能力不变,而设备B 的生产能力增加到20小时,分析该工厂最优计 划的变化。 1/2 B-1 (b+△b)= -2 0 0 –1/5 1 0 4/5 1/5 12 20 = 15 3 8 3
0 x5 -1/5 4/5 1/5
1 1 -1/5 5 5
θ
Z=15
1 1 即: 0 1 5 5
10
2.若产品Ⅱ的利润不变,而产品Ⅰ的利润变为2 , 则 在什么范围内变化时则该工厂的最优生产计划 将不发生变化? 2 2 3 0 0 0
CB 0 3
7
max Z= 2x1 +3x2
2x1 + 2x2 12 4x1 16
5x2 15
x1,x2 0
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 图解法灵敏度分析
逆时针转动目标函数直线,使其斜率变成一个绝对值更 小的负数,从而斜率变大了。直到与A重合,我们就获得 了多重最优解——在极点3和极点4之间的点都是最优点。 因此A的斜率是目标函数直线的上限。
以及
CDD=-CSS+P
D=-S(CS/CD)+P/CD
因此我们看到只要满足下列条件,极点3就仍然为最优解 点:
-3/2 ≤-CS/CD ≤-7/10
3.2 图解法灵敏度分析
为了计算标准袋利润最优的范围,我们假设高级袋的利 润CD=9,代入上式得
-3/2≤-CS/9≤-7/10 从左边的不等式得到
则直线A和直线B的斜率都已经计算出来了,我们来看 保持极点3仍然为最优解点,应满足条件:
-3/2≤目标函数的斜率≤-7/10
3.2 图解法灵敏度分析
现在让我们考虑目标直线斜率的一般形式。用CS表示标
准袋的利成:
P=CSS+CDD 把上面方程写成斜截式,得到
只要右端值在这些范围之内,系统分析结果中的那些对偶价格就不 会改变。右端值如果超过了这些范围,对偶价格信息会随之改变。
3.3 灵敏度分析:计算机求解
3.3.2 多系数同时变化 系统灵敏度分析的输出是基于单函数系数变化的。它假设 所有其他系数都保持不变。因此目标函数系数和约束右端 值的变化范围只能适用于单个系数发生变化的情况。然而 很多情况下,我们可能更关注两个或两个以上系数同时变 化时,目标函数将怎样变化。有些多系数同时变化的分析 可能会用到100%法则。下面分析如何应用100%法则。
顺时针转动目标函数直线,使其斜率变成一个绝对值更 大的负数,从而斜率变小了。直到与B重合,我们又获得 了多重最优解——极点3和极点2之间都是最优点。因此B 的斜率是目标函数直线斜率的下限。
因此,极点3总是最优解点,只要直线B的斜率≤目标函 数直线的斜率≤直线A的斜率
3.2 图解法灵敏度分析
根据直线A和直线B的表达式,可以算出A的斜率是 -7/10,截距是630。B的斜率是-3/2,截距是1062。
3.2 图解法灵敏度分析
观察最优范围,我们得出结论,无论是CS升高到13美 元还是使CD降低到8美元(但不是同时改变),都不会带 来最优解的变化。但当CS与CD同时改变时,目标函数斜率 的变化导致了最优解的变化。这个结论强调了这样一个事 实:仅仅是通过最优范围,只能用于判断在一次改变一个 目标函数系数的情况下最优解的变化。
从上述数据中,我们可以看到束缚性约束条件(切割与印染和成型) 在目标函数的最优下,松弛为0。缝合部门有120小时的松弛或未使用 的缝合能力,检查与包装部门有18小时的松弛。
3.3 灵敏度分析:计算机求解
3.3 灵敏度分析:计算机求解
这里,约束条件1(切割与印染)和约束条件3(成型) 的非零对偶价格分别为4.37和6.94。这告诉我们,每额外 增加1小时的切割与印染时间会使最优解增加4.37美元, 每增加1小时成型时间会使最优解增加6.94美元。
灵敏度分析还可以用来分析模型中的系数哪个更能左右 最优解。
比如,管理层认为高级袋的利润9美元只是一个估计量, 如果通过灵敏度分析得到高级袋的利润在6.67和14.29美 元之间变化时,模型的最优解都是540个标准袋和252个高 级袋,那么管理层就对9美元这个估计量和模型所得出的 最优产量比较满意。但是,如果灵敏度分析告诉我们只有 当高级袋的利润在8.9和9.25美元之间,模型的最优解才是 540个标准袋和252个高级袋,那么管理层就必须思考9美 元这个估计量的可信程度有多大了。
3.3 灵敏度分析:计算机求解
假设Par公司的会计部门指出原先的标准袋和高级袋利润 计算有误,应该是11.5美元和8.25美元。为了确定这样的 变化是否会对最优解产生影响,我们先要定义两个术语 “允许增加量”和“允许减少量”。对于目标函数的系数, 允许增加量是在不超过最优范围的情况下,系数尽可能增 加的最大量;而允许减少量是在不低于最优范围下限的情 况下,系数可能减少的最大量。
看上图结果,我们看到管理科学家软件除了提供松弛/ 剩余变量和对偶价格的约束信息之外,还给出了目标函数 系数和约束条件右端值的变化范围。 变量S的最优化范围是:
6.3≤CS≤13.5 变量D的最优化范围是:
6.67≤CD≤14.29 这个最优化范围与图解法得出的结论是一致的。
3.3 灵敏度分析:计算机求解
本章主要内容
3.1 灵敏度分析简介 3.2 图解法灵敏度分析 3.3 灵敏度分析:计算机求解 3.4 多于两个决策变量的情况 3.5 电子通信公司问题
3.1 灵敏度分析简介
灵敏度分析对于决策者的重要性不言而喻。 在真实世界里,周围的环境,条件是在不断变化的。原 材料的成本在变,产品的需求在变,公司购买新设备、股 票价格的波动,员工流动等等这些都在不断发生。如果我 们要用线性规划模型去解决实际问题,那模型中的系数就 不可能是一成不变的。 这些系数的变化会对模型的最优解产生什么样的影响呢? 运用灵敏度分析,我们只需要改变相应的系数就可以得到 答案,而不需要建立新的模型。
3.1 灵敏度分析简介
灵敏度分析的另一个用途是分析约束条件的右端值变化对 最优解的影响。还是以Par公司为例,在最优产量的情况下, 切割与印染部门和成型部门的工作时间已经完全被占用了。 如果现在公司增加了这两个部门的生产能力,那么最优解 以及总利润的值会发生什么样的变化呢?灵敏度分析可以 帮助确定每一个工时的边际价值,以及在利润下降之前部 门工时的最大增加量。
Max 10S+9D s.t.
0.7S+D≤630 切割与缝合 0.5S+0.83333D≤600 缝合 1.0S+0.66667D≤708 成型 0.1S+0.25D≤135 检查与包装 S,D≥0
3.3 灵敏度分析:计算机求解
3.3.1 计算机输出的解释——第一个例子 回忆Par公司的例子,其中有4个小于或等于约束条件的, 都是关于各个生产部门的生产时间。在松弛/剩余变量一栏 中,可以看到每个部门的松弛变量值。信息归总如下:
3.2 图解法灵敏度分析
对于双变量的线性规划问题,当目标函数的系数或约束 条件的右端值变化时,用图解法对其进行灵敏度分析。
我们先思考目标函数的系数变化会对Par公司的最优产 量产生什么样的影响。选择每个标准袋的利润是10美元, 每个高级袋的利润是9美元,如果其中一种袋子利润下降, 公司就会削减其产量,如果利润上升,公司就会增加其产 量。究竟利润变化多少,管理者才应该改变产量呢?
第三章 线性规划的灵敏度分析
与最优解的解释
引言
灵敏度分析是研究当一个线性规划问题中的系数发生变化 时,其对函数最优解的影响程度。运用灵敏度分析,我们 可以回答以下问题: 1.如果目标函数的系数发生了变化,对最优解会产生什么影 响? 2.如果改变约束条件的右端值,对最优解会产生什么影响? 首先我们将介绍如何使用图解法进行双变量线性规划问题 的灵敏度分析,然后介绍如何使用管理科学家软件得到灵 敏度分析报告。
现在,模型的最优解540个标准袋和252个高级袋。每 个目标函数系数都有一个最优范围,即目标函数系数在什 么范围内变化,模型的最优解保持不变。
3.2 图解法灵敏度分析
3.2.1 目标函数系数 认真观察图发现,只要目
标函数直线的斜率处于直线 A(和切割与印染约束线重 合)的斜率与直线B(与成 型约束线重合)的斜率之间, 极点3(S=540,D=252) 就是最优解的点。
3.2 图解法灵敏度分析
3.2.2 约束条件右端值的变化 现在让我们来考虑约束条件 右端值的变化对可行域带来 的影响,及其可能对最优解 带来的变化。为了阐明敏感 度分析的这方面内容,我们 假设Par公司的切割与印染部 门增加了10个小时的生产时 间,然后来考虑将会有什么 发生。切割与印染约束条件 的右端值由630变为640,约 束条件可写作 7/10S+D≤640
3.1 灵敏度分析简介
回忆Par公司的问题:
我们已经知道这个问题的最优解是标准袋生产540个,高级袋生产252个, 这个最优解的前提是每个标准袋的利润是10美元,每个高级袋的利润是9 美元。
3.1 灵敏度分析简介
假设,我们得知由于价格的下降,标准袋的利润由10 美元下降到8.5美元。这时我们可以用灵敏度分析来确定标 准袋生产540个,高级袋生产252个是否还是最优解。如果 还是,则不必建立新的模型求解了。
计算机输出结果的最后一部分右端值范围给出了对偶价 格适用范围的限制条件。只要约束条件右端值处于系统所 给出的下限和上限之间,对偶价格就会给出当右端值增加 1时,最优解的增加量。
右端值范围给出了一个对偶价格的适用范围。如果右端 值的变化超出了这个范围,就需要重解原问题并找出新的 对偶价格。我们把这个对偶价格适用的范围称作可行域。 Par公司问题的可行域汇总如下。
3.2 图解法灵敏度分析
在这里,我们要注意的是,对偶价格可能只适用于在右 端值仅发生了很小的变动时的情况。随着所获得的资源越 来越多,从而右端值越来越大,其他的约束条件也可能会 约束和限制目标函数值的变化。
3.3 灵敏度分析:计算机求解
为了使用管理科学家软件,我们使用小数代替分数。Par 公司的问题用小数形式的系数表示如下:
3.2 图解法灵敏度分析
当目标函数绕最优点旋转,使之与坐标轴垂直时,像式 中出现的那种斜率的上限或下限就不存在了。为了说明这 种特殊情况,我们设Par公司的目标函数为18CS+9CD;这 样,图中,极点2是最优解点,绕着极点2逆时针旋转目标 函数,当目标函数与直线B重合时,就得到了斜率的上限3/2。所以目标函数斜率上限一定是-3/2。最后当目标函 数垂直于坐标轴时,其斜率接近负无穷大,在这种情况下, 目标函数的斜率没有下限,只有上限-3/2。-CS/CD≤-3/2