统计学原理 第十章 统计指数
《统计学概论》统计指数
《统计学概论》统计指数
在《统计学概论》中,统计指数是一种用于衡量和描述数据集中位置、离散程度和变异性的统计量。
下面是几个常见的统计指数:
1.平均数(Mean):平均数是一组数据的总和除以数据的数
量,用于表示数据的中心位置。
它是最常用的统计指数之
一。
2.中位数(Median):中位数是将一组数据按照大小排序后,
位于中间位置的数值。
中位数对于受极端值或异常值影响
较大的数据集更具鲁棒性。
3.众数(Mode):众数是一组数据中出现频率最高的数值。
当数据集存在明显的峰值或集中趋势时,众数是衡量数据
集的有效指标。
4.标准差(Standard Deviation):标准差是衡量数据集离散程
度的指标,表示数据偏离平均数的程度。
标准差越大,表
示数据的离散程度越大。
5.方差(Variance):方差是标准差的平方,用于度量数据集
的离散程度。
方差大致表示数据偏离平均值的平均平方差。
6.四分位数(Quartile):四分位数将有序数据集划分为四个
部分,其中第一个四分位数(Q1)是位于数据集中25%位
置的数值,第三个四分位数(Q3)位于75%位置。
7.极差(Range):极差是一组数据中最大值和最小值之间的
差值。
该指数用于描述数据集的全距。
这些统计指数在“统计学概论”中经常用于描述和分析数据集的特征。
通过计算和比较这些指数,可以更好地理解数据的分布、集中程度和变异性。
此外,还可以使用其他统计指数如偏度和峰度等,用于更详细地描述数据集的特征。
统计学指数
统计学指数(统计指标):反映实际存在的社会经济现象总体某一综合数量特征的社会经济范畴,是指反映实际存在的一定社会总体现象的数量概念和具体数值。
指数(统计指数):有广义和狭义之分。
广义讲:统计指数是指同类事物变动程度的相对数。
包括动态相对数、比较相对数和计划完成相对数等。
即所有的动态比较指标。
狭义讲:统计指数是综合反映多种不同事物在不同时间上的总变动的特殊的相对数。
即专门用来综合说明那些不能直接相加和对比的复杂社会经济现象的变动情况。
指数的特征:
①相对性
②综合性
③平均性
④动态性和静态性
指数的作用:指数能综合反映现象总体的变动方向和程度,这是指数的主要作用。
指数和一般的相对数的区别在于:一般的相对数是两个有联系的现象数值之比,而指数却是说明复杂社会现象经济的发展情况,并可分析各种构成因素的影响程度。
统计指数PPT课件
反映股票市场价格水平变化的指数。
详细描述
股票价格指数是用于衡量股票市场总体价格水平变化的指数,通常由证券交易所或金融服务机构编制 。通过股票价格指数,投资者可以了解市场整体走势和投资机会,从而做出相应的投资决策。
03
统计指数的编制方法
拉式指数编制法
拉式指数,也称为综合指数,是通过 将报告期的数量指标和质量指标相乘, 然后除以基期的数量指标和质量指标 来编制的。
统计指数ppt课件
目录
• 引言 • 统计指数的种类 • 统计指数的编制方法 • 统计指数的应用 • 统计指数的局限性 • 未来展望
01
引言
主题简介
统计指数
用于衡量一组数据相对于另一组 数据的变化程度。
统计指数的用途
比较不同时间、不同地点的经济 、社会和人口现象的变化。
统计指数的定义
01
统计指数是一种数学工具,用于 量化一组数据相对于另一组数据 的变化程度。
04
统计指数的应用
经济分析
010203 Nhomakorabea经济增长
通过统计指数分析,可以 评估一个国家或地区的经 济增长速度和趋势,了解 经济周期和波动情况。
物价水平
统计指数可以反映物价水 平的变化,帮助分析通货 膨胀或通货紧缩的情况, 预测未来价格走势。
贸易与国际收支
利用统计指数分析进出口 贸易、国际收支等数据, 有助于了解国际贸易动态 和国际经济关系。
投资决策
股票市场
通过比较不同股票指数的 涨跌情况,投资者可以判 断市场整体走势,做出买 入或卖出的决策。
债券投资
统计指数可以反映债券市 场的整体风险和收益水平, 帮助投资者评估投资机会 和风险。
商品期货
统计学原理第10章统计预测与决策
这种模型适用于预测对象处于稳定 状态或没有明显的增减变动趋势的 情形。显然,该模型虽然简单,但 是它只能给出粗略的估计值。
返回
固定平均数预测模型
这种模型是把研究时期的各期观测值的
简单平均数,作为下一期的预测值。其 Nhomakorabea公式是:
y t1y1y2 tyt
yt t
该模型只适用于预测对象无明显增减变
主观概率法的操作步骤 (1)准备相关资料; (2)编制主观概率调查表; (3)汇总整理; (4)判断预测。
领先指标法
领先指标法就是通过将经济指标分为领 先指标,同步指标和滞后指标,并根据 这三类指标之间的关系进行分析预测。 领先指标法不仅可以预测经济的发展趋 势,而且可以预测其转折点。
二、领先指标法
三、常用的定性预测方法
(一)德尔菲法 (二)主观概率法 (三)领先指标法 (四)厂长(经理)评判意见法 (五)推销人员估计法 (六)情景预测法
德尔菲法
(一)德尔菲法 德尔菲法又称为专家意见法(Delphi Technique),是根据 有专门知识的人的直接经验,对研究的问题进行判断、 预测的一种方法,是专家调查法的一种。德尔菲法是 一种采用规定程序向一组专家进行调查,专家把对过 去历史资料的解释和对未来的分析判断有组织地集中 起来,取得尽量可靠的统一意见,对未来趋势进行预 测的方法。 这种方法是美国“思想库”兰德公司在本世纪四十年 代末期发展起来的。它具有比较系统的程序,适用于 长期趋势预测,特别适用于其它调研预测法做不到的 定量估算和概率估算的场合。
(2)加权移动平均数模型:
式中,
y t 1f1yt f1 f2 ytf 2 1 ffN N yt N 1
f1f2fN
统计学原理 第一到七章 统计指数 幻灯片
q1
100 1000 1200 —
p0
2.00 0.40 15.00 —
p1
4.00 0.60 15.00 —
p 0q0
240 320 15000 15560
p1q1
400 600 18000 19000
p0q1
200 400 18000 18600
件 120 支 800 个 1000 —
合计 —
要求:(一)计算各种商品销售量指数和各种商品价格指数,计算各 种商品销售额指数; (二)计算全部商品销售量指数和全部商品价格指数。
.
一、综合指数的概念和特点
.
1.综合指数的概念。 凡是一个总量指标(价值指标)可以分解为两 个或两个以上的因素指标时,将其中的一个或一个以上的因素指标 (即同度量因素)固定下来,仅观察其中一个因素指标(指数化指 标)的变动程度,这样所编制的总指数称为综合指数。 2.综合指数的特点:(第226页) 即先综合,后对比。 表7-1 商品 单 商品销售量 商品价格 商品销售额(万元)
q0
120 800 1000
p0
2 0.4 15
.
举例说明数量指标和质量指标综合指数的编制方法。见表7-1 商品 单 商品销售量 商品价格 商品销售额(万元)
基期 报告期 基期 名称 位 报告期 基期 报告期 假定
.
q0
q1
p0
p1
p0q0
p1q1
p0q1
件 120 100 2.00 4.00 240 400 200 支 800 1000 0.40 0.60 320 600 400 个 1000 1200 15.00 15.00 15000 18000 18000 — — — 合计 — — 15560 19000 18600 1.计算商品销售量综合指数和商品价格综合指数。 (综合指数) 19000 商品销售量 q1 p0 18600 119.54 % p1 q1 122.11% 综合指数 q p 15560 15560 p q 0 0
统计学原理——统计指数
统计学原理——统计指数统计指数是一项重要的统计学原理,它用于评估和比较不同群体或变量之间的相对差异。
通过统计指数,我们可以对数据进行更深入的分析,了解不同群体的差异以及其对总体的贡献。
在统计学中,常用的统计指数有多种,其中包括平均数、标准差、相关系数、协方差等。
这些指数可以帮助我们从不同角度对数据进行分析和解释。
首先,平均数是最常见的统计指数之一、它用于衡量一组数据的集中趋势和中心位置。
平均数可以通过将所有数据值相加并除以数据的个数来计算得到。
通过计算平均数,我们可以了解数据的总体特征和整体水平。
其次,标准差是用于衡量数据的离散程度和波动性的指数。
它衡量数据的每个数据点与平均数之间的距离,并计算这些距离的平均值。
标准差越大,表示数据的分布越分散;标准差越小,表示数据的分布越集中。
另外,相关系数是用于衡量两个变量之间相关性的指数。
它可以告诉我们两个变量之间的线性相关程度,取值范围从-1到1、当相关系数为正时,表示两个变量之间存在正相关关系;当相关系数为负时,表示两个变量之间存在负相关关系;当相关系数接近于0时,表示两个变量之间几乎没有相关性。
此外,协方差是用于衡量两个变量之间总体变化趋势的指数。
它可以告诉我们两个变量之间的总体变化方向和程度。
当协方差为正时,表示两个变量之间存在正相关关系;当协方差为负时,表示两个变量之间存在负相关关系;当协方差接近于0时,表示两个变量之间几乎没有线性关系。
这些统计指数对于统计学原理的应用非常重要。
通过计算和分析这些指数,我们可以从不同的角度深入了解数据的特征和关系,从而更好地进行数据的解释和应用。
在实际应用中,统计指数可以帮助我们研究不同群体之间的差异,并为决策提供依据。
例如,我们可以使用平均数和标准差来比较两个地区的人均收入水平和收入分布情况;我们可以使用相关系数和协方差来研究两个变量之间的相关性,如广告投资和销售额之间的关系。
总之,统计指数是统计学原理中重要的一部分,它可以帮助我们对数据进行更深入的分析和解释。
统计学—统计指数
统计学—统计指数引言统计学是一门关于数据收集、分析和解释的学科。
通过统计方法,人们可以从各种数据中提取有用的信息,并进行合理的推论和决策。
统计指数是统计学中的一种重要概念,是用来衡量不同数据集中的数据分布、趋势和变化的工具。
本文将介绍统计学中常见的统计指数以及它们的应用。
常见的统计指数均值(Mean)均值是最常见的统计指数之一,用来衡量一组数据的集中趋势。
均值可以简单地用所有数据的算术平均值表示,计算公式为:\[ \text{均值} = \frac{{\sum\limits_{i=1}^n x_i}}{{n}} \] 其中,x i是数据集中的第i 个观测值,n是观测值的总数。
均值对异常值敏感,因为异常值会显著影响整个数据集的平均值。
中位数(Median)中位数是用来衡量一组数据的中间值的统计指数。
对于有序数据集,中位数是中间的观测值。
对于未排序数据集,可以按以下步骤计算中位数: 1. 将数据集按大小进行排序; 2. 如果数据集观测值的数量为奇数,则中位数是中间的值; 3. 如果数据集观测值的数量为偶数,则中位数是中间两个值的平均值。
众数(Mode)众数是数据集中出现最频繁的观测值。
一个数据集可以有一个或多个众数,也可以没有众数。
众数可以帮助我们确定数据中的典型值。
方差(Variance)方差是用来衡量一组数据的离散程度的统计指数。
方差可以用来判断数据分布的散布情况。
方差的计算公式为: \[ \text{方差} = \frac{{\sum\limits_{i=1}^n (x_i - \text{均值})^2}}{{n}} \] 方差越大,数据的分布越分散。
标准差(Standard Deviation)标准差是方差的平方根,也是衡量一组数据的离散程度的指标。
和方差一样,标准差越大,数据的分布越分散。
统计指数的应用统计指数在各个领域都有广泛的应用,包括但不限于经济学、生物学、社会学、工程学等。
以下是一些常见的应用场景:经济学在经济学中,各种统计指数被广泛用于经济数据的分析和预测。
统计指数分析 习题及答案
第五章 统计指数分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 统计指数: 是社会经济现象数量变化的相对数,说明不能直接相加的社会经济现象数量综合变化程度特殊相对数。
2. 总指数: 反映复杂现象总体变化方向和程度的相对数。
3. 综合指数:通过综合两个总量指标对比计算的相对数,它是总指数的基本形式。
4. 同度量因素:计算总指数时起媒介作用和权数作用的因素。
5. 平均指数:由个体指数加权平均计算的总指数。
6. 指数体系:指经济上具有一定联系、数量上具有对等关系的三个或三个以上的指数组成的整体。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 计划完成相对数是广义指数。
( √ )2. 总指数的平均性是以综合性为基础的,没有综合性就没有平均性。
( √ )3. 01q q K q =是总指数。
( × ) 个体指数4. 影响因素指数是有两个因素同时变动,并从属于某一现象总体指数的相对数,属于广义指数。
( ×)两个因素中只有一个因素变动,狭义指数 5. 编制总指数的基本形式是平均指数。
( × ) 综合指数6. 产品成本指数、劳动生产率指数、粮食作物单产水平指数是质量指标指数。
(√ )7. 平均指数与综合指数虽然形式不同,但计算结果相同。
(√ ) 8. 在单位成本指数∑∑1011qz qz 中,1011q z q z ∑∑-表示单位成本增减的绝对额。
( × ) 表示由于单位成本的变动使总成本增减的绝对额9.平均指数也是编制总指数的一种重要形式,它有独立的应用意义。
(√)10.加权平均总指数的编制,实质就是计算个体指数(或类指数)的平均数。
(√)11. 算术平均指数是通过数量指标个体指数,以基期的价值量指标为权数,进行加权平均得到的。
(√)12. 在建立指数体系时,首先要分析研究对象与其影响因素之间的内在经济联系。
统计学基础(统计指数)
q 0 0 0
Kq
0
q1 (其中,kq ) q0
第三节 平均指数
三、作为综合指数变形的加权调和平均指数。 • q1 p1
质量指标综合指数 K p
q p
1
0
p1 p1 若有质量指标个体指数kp p0 p0 kp p1 将p0 代入原综合指数公式中得到: kp Kp qp 1 k q p
p1 q1 1.计算每一个项目的个体指数k p p 或kq 。 0 q
2.选定权数,计算个体指数的加权算术平均数 或加权调和平均数或加权几何平均数。
0
另外,有时用“相对数固定权数w”加权
第三节 平均指数
一、平均指数的编制原理:先对比,后平均。
• 编制平均指数有两大问题:采用哪种平均方法;权数 如何确定。 • (一)采用哪种平均方法。 • 从实用的角度看,一般采用算术平均法。其计算简单, 也比较直观。 • 但是,根据所掌握的资料和特定研究目的,有时也采 用调和平均法或几何平均法。
q p q p qp q p q p q p q p q p q p q p
1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1
(一种商品时)
1 0
(多种商品时)
第四节 指数体系与因素分析
• 一、指数体系的概念与作用 • (二)指数体系的作用 1、利用指数之间的联系进行指数推算。 2、因素分析。即分析各因素变动对总变动影 响的方向与程度。
二、统计指数的种类
(二)按指数反映的时间状态的不同, 分为动态指数和静态指数。 –动态指数:时间上对比形成的指数。 –静态指数:如比较相对数、计划完 成相对数。
二、统计指数的种类
应用统计学教案统计指数
应用统计学教案-统计指数第一章:统计指数概述1.1 指数的概念与分类1.1.1 复习指数的概念1.1.2 区分算术指数与几何指数1.1.3 引出统计指数的概念1.2 统计指数的性质与作用1.2.1 阐述统计指数的基本性质1.2.2 解释统计指数在经济学、社会学科等领域的应用1.2.3 强调统计指数在数据分析与决策中的重要性1.3 统计指数的编制方法1.3.1 介绍拉氏指数与帕氏指数的编制方法1.3.2 分析两种指数的优缺点及其适用场景1.3.3 演示编制简单统计指数的实例第二章:个体指数与综合指数2.1 个体指数的概念与计算2.1.1 引出个体指数的概念2.1.2 讲解个体指数的计算方法2.1.3 举例说明个体指数在实际应用中的作用2.2 综合指数的概念与计算2.2.1 介绍综合指数的概念2.2.2 阐述综合指数的计算方法2.2.3 分析综合指数在分析现象总体变动中的作用2.3 指数体系与同度量因素2.3.1 讲解指数体系的概念与构成2.3.2 阐释同度量因素的作用与选择原则2.3.3 举例说明同度量因素在实际应用中的重要性第三章:统计指数的计算与应用3.1 平均数指数的计算3.1.1 引出平均数指数的概念3.1.2 讲解平均数指数的计算方法3.1.3 演示计算平均数指数的实例3.2 链式指数的计算与应用3.2.1 介绍链式指数的概念与计算方法3.2.2 阐述链式指数在分析现象长期变动中的作用3.2.3 举例说明链式指数在实际应用中的重要性3.3 统计指数在实际应用中的案例分析3.3.1 分析消费者价格指数(CPI)的计算与作用3.3.2 讲解生产者价格指数(PPI)的计算与作用3.3.3 探讨统计指数在其他领域的应用实例第四章:统计指数的分析与评价4.1 统计指数分析的方法与技巧4.1.1 引出统计指数分析的方法与技巧4.1.2 讲解比较分析、因素分析等方法在统计指数分析中的应用4.1.3 演示统计指数分析的实例4.2 统计指数评价的标准与原则4.2.1 阐述统计指数评价的标准与原则4.2.2 分析评价标准与原则在实际应用中的重要性4.2.3 讨论评价标准与原则的局限性与改进方向4.3 统计指数在政策制定与决策中的应用4.3.1 讲解统计指数在政策制定与决策中的作用4.3.2 分析统计指数在国民经济核算、价格调控等领域的应用实例4.3.3 探讨统计指数在决策过程中的优化与改进第五章:统计指数的拓展与应用5.1 统计指数与经济预测5.1.1 引出统计指数在经济预测中的应用5.1.2 讲解经济预测方法与统计指数的结合5.1.3 演示统计指数在经济预测中的实例5.2 统计指数与大数据分析5.2.1 介绍大数据时代统计指数的新发展5.2.2 阐述大数据分析技术与统计指数的结合5.2.3 探讨大数据时代统计指数在决策支持中的作用与挑战5.3 统计指数在其他领域的应用5.3.1 分析统计指数在社会科学、环境科学等领域的应用实例5.3.2 讲解统计指数在其他领域的拓展与应用5.3.3 展望统计指数在未来发展中的前景与挑战第六章:指数平滑法在统计指数中的应用6.1 指数平滑法的基本原理6.1.1 引出指数平滑法6.1.2 讲解指数平滑法的基本原理6.1.3 演示计算指数平滑法的实例6.2 指数平滑法在统计指数中的应用6.2.1 介绍指数平滑法在统计指数中的应用6.2.2 阐述指数平滑法在时间序列预测中的优势6.2.3 举例说明指数平滑法在实际应用中的重要性6.3 指数平滑法的拓展与改进6.3.1 讲解指数平滑法的拓展与改进6.3.2 分析拓展与改进在提高预测精度中的作用6.3.3 探讨指数平滑法在实际应用中的局限性与改进方向第七章:多元统计指数分析7.1 多元统计指数的概念与分类7.1.1 引出多元统计指数的概念7.1.2 区分不同类型的多元统计指数7.1.3 阐述多元统计指数在分析多因素变动中的作用7.2 多元统计指数的计算方法7.2.1 讲解多元统计指数的计算方法7.2.2 分析各种计算方法的优缺点及其适用场景7.2.3 演示计算多元统计指数的实例7.3 多元统计指数在实际应用中的案例分析7.3.1 分析多元统计指数在市场分析、产品质量评价等领域的应用实例7.3.2 讲解多元统计指数在实际应用中的重要性7.3.3 探讨多元统计指数在解决实际问题中的局限性与改进方向第八章:统计指数与国民经济核算8.1 国民经济核算体系与统计指数8.1.1 引出国民经济核算体系与统计指数的关系8.1.2 讲解国民经济核算体系的基本概念与方法8.1.3 阐述统计指数在国民经济核算中的应用8.2 国内生产总值(GDP)的统计指数分析8.2.1 介绍国内生产总值(GDP)的概念与计算方法8.2.2 分析统计指数在GDP计算与分析中的应用8.2.3 举例说明统计指数在GDP分析中的重要性8.3 国民经济其他指标的统计指数分析8.3.1 分析消费价格指数(CPI)、生产价格指数(PPI)等指标的统计指数应用8.3.2 讲解统计指数在其他国民经济指标分析中的应用实例8.3.3 探讨统计指数在国民经济分析中的局限性与改进方向第九章:统计指数在金融领域的应用9.1 统计指数在金融市场分析中的应用9.1.1 引出统计指数在金融市场分析中的应用9.1.2 讲解金融市场指数的编制与分析方法9.1.3 阐述统计指数在金融市场分析中的重要性9.2 统计指数在金融风险管理中的应用9.2.1 介绍统计指数在金融风险管理中的应用9.2.2 分析统计指数在风险评估、预警等方面的作用9.2.3 举例说明统计指数在金融风险管理中的重要性9.3 统计指数在其他金融领域的应用9.3.1 分析统计指数在信用评级、资产定价等领域的应用实例9.3.2 讲解统计指数在其他金融领域的应用与价值9.3.3 探讨统计指数在金融领域发展的局限性与改进方向第十章:统计指数在未来发展趋势与挑战10.1 统计指数发展的新趋势10.1.1 引出统计指数发展的新趋势10.1.2 讲解大数据、等技术对统计指数发展的影响10.1.3 分析新趋势下统计指数的发展机遇与挑战10.2 统计指数在应对现实挑战中的应用10.2.1 介绍统计指数在应对现实挑战中的应用10.2.2 分析统计指数在解决社会经济问题中的作用10.2.3 举例说明统计指数在应对现实挑战中的重要性10.3 统计指数在未来发展的思考与展望10.3.1 讲解统计指数在未来发展中的机遇与挑战10.3.2 探讨统计指数在理论与实践创新中的方向10.3.3 展望统计指数在未来发展中的前景重点解析本文教案主要介绍了统计指数的基本概念、分类、计算方法以及在各个领域的应用。
统计学统计指数分析法
统计学统计指数分析法统计学是一项重要的科学方法,它可以帮助我们收集、整理、分析和解释数据。
统计指数分析法是统计学中的一种应用方法,可以帮助我们分析和解释多个指标之间的关系和趋势。
本文将介绍统计指数分析法的定义、原理和应用,并提供几个具体的实例。
统计指数分析法是一种将数据指标转化为相对数的方法。
它通过计算各个指标相对于其中一基准指标的比率或相对变化量,来反映多个指标之间的相对关系和变化趋势。
这种相对数常常被称为“指数”,用来比较不同指标的大小和变化。
统计指数分析法的原理是基于以下两个核心概念:权重和基期。
权重是指不同指标在整体中的重要性或权重,它可以通过主观判断或客观评估来确定。
基期是指参照的时间点或时间段,用来对比各个指标的变化情况。
在应用统计指数分析法时,首先需要选择一项基准指标。
基准指标可以是任何一个被认为比较合适的指标,比如一个最主要或最关键的指标。
然后,需要确定各个指标与基准指标的相关性和变化趋势。
这可以通过计算各个指标与基准指标的比率或相对变化量来实现。
最后,将这些相对数进行加权求和,得到一个综合指数,反映各个指标的整体变化趋势。
统计指数分析法在实际应用中具有广泛的用途。
一方面,它可以帮助我们分析和解释多个指标之间的关系。
比如,在金融领域,我们可以使用统计指数分析法来分析股票市场中各个指数的涨跌情况。
另一方面,它也可以帮助我们分析和解释一个指标的变化趋势。
比如,在经济领域,我们可以使用统计指数分析法来分析国内生产总值(GDP)的变化情况。
下面是几个具体的实例,以帮助理解统计指数分析法的应用。
1.指数股票市场分析:假设我们希望比较两个股票指数A和B的涨跌情况。
首先,我们选择其中一个指数作为基准指标,比如指数A。
然后,计算指数B相对于指数A的比率或相对变化量,并进行加权求和,得到一个综合指数。
通过分析这个综合指数的大小和趋势,我们可以得出指数B 相对于指数A的涨跌情况,以及它们之间的关系。
统计学原理第十章统计指数
例题分析
设某粮油零售市场2003年和2004年三种商品的零售 价格和销售量资料如下表。试分别以基期销售量和 零售价格为权数,计算三种商品的价格综合指数和 销售量综合指数 。
某粮油零售市场三种商品的价格和销售量
商品名称
计量 单位
销售量
2003
2004
单价(元)
货币购买力指数
例题分析
某地2000年职工平均工资为1500元,比上 年增长9.1%,同期居民消费价格指数为 102.5%,则职工实际工资指数为
109.1%/102.5%=106.4%
或
109.1%*(1/102.5%)=106.4%
即,扣除价格上涨因素,职工的实际工资 比上期增长6.4%,而不是9.1%。
2.测定货币购买力的变动
所谓货币购买力是指单位货币所能买到的消费品和服务。 货币购买力与价格呈反向的变动,即价格上涨,货币购买 力降低;价格下降,货币购买力上升。货币购买力以货币 购买力指数反映,其计算公式是:
货币购买力指居数民消1费价格指数
若某地的居民消费价格指数是102.5%,则同期的货币购买 力指数是97.56%,表明该市当期人民币的币值相当于上年 的97.56%。
100000 80000 60000 40000 20000
0
缩减后的图形
GDP 缩减后的GDP
年份
国内生产总值及其缩减序列
12.4.2 生产价格指数(PPI)
n 测量在初级市场上出售的货物(即在非零售市 场上首次购买某种商品时) 的价格变动的一种 价格指数
n 反映生产者价格的变动;通常也用于反映消 费价格和生活费用的未来趋势
2003
2004
粳米
吨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学原理
第十章 统计指数
本章目录
第一节 统计指数的概念和种类 第二节 综合指数法 第三节 平均指数法 第四节 指数体系 第五节 指数数列
统计学原理
学习目标
统计学原理
通过本章学习要求了解: 掌握统计指数的基本概念、统计指数的两大类编制原理和方法 熟练运用综合指数方法和平均数指数方法 熟练掌握指数体系在因素分析中的应用 掌握测定平均指标相对变动的平均数指数方法 了解统计指数方法的各种应用和常见的各种指数的编制方法
统计学原理
第四节 指数体系
一、指数体系的分析方法
统计学原理
(一)指数体系的概念 社会经济现象之间存在着错综复杂的联系,一种现象的变动可 能受多种因素的影响和制约。它们之间的关系通常表现为相乘的关 系。 (二)指数体系的作用 通过指数体系,可以对复杂社会经济现象总变动进行全面分析,说 明各构成因素对社会经济现象总变动的影响方向和影响程度 概括指数体系中各指标之间的数量关系,可以进行互相推算
统计学原理
(四)按总指数的计算方法不同分为综合指数法和平均指数法 综合指数法是通过两个有联系的综合总量指标的对比计算总指 数;平均指数法是用加权平均的方法计算指数,分算术平均指数和调 和平均指数。
统计学原理
(五)按指数的时间属性不同分为动态指数和静态指数 指数本来的含义是指动态指数,即反映事物在不同时间上的变 化。 随着指数应用的日益广泛,其反映的内容也发生了变化,即由单 纯反映同一现象在不同时间条件下的动态变化,推广到反映同一现 象在同一时间条件下不同的地区、部门和国家的对比,或反映同一 单位、同一地区的实际指标和计划指标的对比情况。
一、算术平均指数
统计学原理
算术平均指数是将各个个体指数进行加权算术平均而计算的指 数,通常用于计算物量指数。
二、调和平均指数
统计学原理
调和平均指数是将各个个体指数进行加权调和平均计算的指数, 通 常用于计算质量指数。
统计学原理
三、综合指数法与平均指数法的关系
综合指数法与平均指数法的关系可从以下角度来理解: (一)平均指数法是综合指数法的变形 从两者的表现形式来看,平均指数法的形式和权数都要以选定 的综合指数法作为判断的标准。 (二)平均指数法是计算总指数的一种独立形式从这个角度看, 平均指数法的计算就要寻找另外的标准来选择其权数和形式。
统计学原理
(一)以基期数量指标作为同度量因素计算的质量指标指数
统计学原理
(二)以报告期销售量指标作为同度量因素计算的质量指标指数
统计学原理
第三节 平均指数法
统计学原理
综合指数法是编制总指数的基本形式,它正确地反映了被研究 现象总体动态变化的客观实际内容。
平均指数法是总指数的另一种重要形式,它是从个体指数出发 计算的总指数。平均指数法有算术平均指数和调和平均指数两种基 本形式。
统计学原理
第二节 综合指数法
统计学原理
总指数的计算方法有综合指数法和平均指数法两种。 其中,综合指数法是总指数的基本形式,它是由两个总量指标对 比形成的。 综合指数计算的总指数又可分为数量指标指数和质量指标指数。 数 量指标指数和质量指标指数的编制方法基本相同,但要求不完全一 样。
一、数量指标指数
统计学原理
编制统计指数对统计分析的重要作用具体表现在以下两方面: 可以综合反映复杂社会经济现象总体的综合变动方向和变动的程度 分析现象总体的总变动中各个因素的影响方向和影响程度
二、统计指数的种类
统计学原理
根据不同的分类标志可将指数划分为各种不同的种类。 (一)按指数所研究对象的范围不同可分为个体指数和总指数 个体指数是说明个别现象变动的相对数。 如某种产品报告期产量与基期产量之比就是产量个体指数;某 种商品价格报告期与基期之比就是个体价格指数。
我们知道商品销售量、商品价格和商品销售额三者之间的关系 式为:
商品销售额=商品销售量×商品销售单价
统计学原理
商品单价就是这样的媒介因素,统计上称为同度量因素。同度 量因素有两个作用: 将不能直接相加的现象的数量转化为可以相加的价值形态 权数的作用。同度量因素同时也起着权衡各个不同变量的轻重作
用,所以从同度量因素又可以看出,商品销售额的变动受商品销售 量和商品单价这两个因素的影响
二、质量指标指数
统计学原理
现以商品价格指数为例来说明质量指标指数的编制原理,仍用 表10-1中所示资料。根据表10-1中的资料可以计算各种商品价格 个体指数。
从计算的个体指数可以看出,3种商品价格有的上涨,有的下降, 但价格个体指数只能反映每一种商品价格的变动情况,若要反映3种 商品价格总的变动情况,也要计算3种商品价格综合指数。
统计学原理
现以商品销售量指数为例说明数量指标指数的编制原理。假设 3种商品的销售量和价格资料如表10-1所示。
统计学原理
由于各种商品的使用价值不同、计量单位各异,销售量不能直 接相加,也就无法对两个时期的商品销售量直接进行对比。这就必 须找到一个媒介因素,使不能直接相加总的不同使用价值的各种商 品的总体,过渡到能够进行对比分析的两个时期的现象总量。这个 媒介因素必须根据现象之间的内在经济联系去找。
统计学原理
(二)按指数所说明的统计指标的性质不同可分为数量指标指数 和质量指标指数
用指数分析经济现象因素的变动时,通常把现象因素总体分解 为数量指标和质量指标两类,要分析各因素变动对现象总变动的影 响,就需要编制数量指标指数和质量指标指数。
统计学原理
(三)按指数所采用的基期不同可分为定基指数和环比指数 指数经常是连续编制的,用以反映事物发展的动态,这就形成了 在时间上前后衔接的指数数列。 在指数数列中,如果各个指数的基期都以某一固定时期为基期, 由此计算的指数称为定基指数。如果数列中各个指数的基期都以前 一期为基期,由此计算的指数称为环比指数。Fra bibliotek统计学原理
第一节 统计指数的概念和种类
一、统计指数的概念
统计学原理
统计指数,简称为指数。 在统计学中,统计指数的概念有广义和狭义之分。广义的指数 是指一切反映社会经济现象数量变动的相对数,如我们前面讨论过 的发展速度、比较相对数、计划完成程度等指标都可称为指数。 狭义的指数是指说明那些不能直接相加的复杂社会经济现象 总体的综合变动的一种特殊相对数。