浅谈数值分析在数学建模中模型求解的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数值分析在数学建模模型求解中的应用

姓名:孙亚丽 学号:2013G0602015 专业:计算机技术

1. 引言

数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。

2.数值分析在模型求解中的应用

2.1.插值法和拟合法在模型求解中的应用

2.1.1.拟合法求解

在数学建模中,我们常常建立了模型,也测量了(或收集了)一些已知数据,但是模型中的某些参数是未知的,此时需要利用已知数据去确定有关参数,这个过程通常通过数据拟合来完成。最小二乘法是数据拟合的基本方法。其基本思想就是:寻找最适合的模型参数,使得由模型给出的计算数据与已知数据的整体误差最小。

假设已建立了数学模型),(c x f y =,其中,T m c c c c ),,,(21 =是模型参数。已有一组已知数据),(1,1y x ,),(22y x ,…,),(,k k y x ,用最小二乘确定参数c ,使

∑=-=k

i i i c x f y c e 12)),(()(最小。

函数),(c x f 称为数据),,2,1)(,(,k i y x i i =的最小二乘拟合函数。如果模型函数),(c x f y =具有足够的可微性,则可用微分方程法解出c 。最合适的c

应满足必要条件m j c c x f c x f y c c e k i j i i i j ,,2,1,0),()),((2)(1

==∂∂--=∂∂∑=。 2.1.2.插值法求解

在实际问题中,我们经常会遇到求经验公式的问题,即不知道某函数)(x f y =的具体表达式,只能通过实验测量得到该函数在一些点的函数值,即已知一部分精确的函数值数据),(1,1y x ,),(22y x ,…,),(,k k y x 。要求一个函数

)(i i x y ϕ=,k i ,,1,0 =,

(2)

这就是插值问题。函数)(i i x y ϕ=称为)(x f 的插值函数。),,1,0(k i x i =称为插值节点,式(2)称为插值条件[2]。多项式插值是最常用的插值方法,在工程计算中样条插值是非常重要的方法。

2.2.模型求解中的解线性方程组问题

在线性规划模型的求解过程中,常遇到线性方程组求解问题。线性方程组求解是科学计算中用的最多的,很多计算问题都归结为解线性方程组,利用计算机求解线性方程组的方法是直接法和迭代法。直接法基本思想是将线性方程组转化为便于求解的三角线性方程组,再求三角线性方程组,理论上直接在有限步内求

得方程的精确解,但由于数值运算有舍入误差,因此实际计算求出的解仍然是近似解,仍需对解进行误差分析。直接法不适用求解4≥n 的线性方程组,因此当4≥n 时,可以采用迭代法进行求解。

迭代法先要构造迭代公式,它与方程求根迭代法相似,可将线性方程组改写成便于迭代的形式。迭代计算公式简单,易于编制计算程序,通常都用于解大型稀疏线性方程组。求解线性方程组的一般设计思想如下,假设建立一个线性规划模型

b Ax =

其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n a a a a a a a a a A 121

2221211211,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x x 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21,即n n R A ⨯∈,可将A 改写为迭代的形式

f Bx x +=

并由此构造迭代法

()(),,2,1,0,1 =+=+k f Bx x k k

其中n n R B ⨯∈,称为迭代矩阵。将A 按不同方式分解,就得到不同的迭代矩阵B ,也就的带不同的迭代法,例如Jacobi 迭代法 [5]、高斯-赛德尔迭代法[5]、超松弛迭代法等。

由于计算过程中有舍入误差,为防止误差增大,就要求所使用的迭代法具有稳定性,即迭代收敛,收敛速度越快,误差越小。若f Bx x +=中,()B ρ<1,则认为此迭代法收敛。超松弛迭代法是利用松弛技术加快收敛的典型,它有重要的实际价值,但必须选择较佳的松弛因子,虽有求最佳松弛因子的理论公式,但通常还要依赖于实际经验。

相关文档
最新文档