(完整版)CIC滤波器的原理与设计

合集下载

CIC滤波器的原理与设计

CIC滤波器的原理与设计

CIC 的冲击响应{1,010,()n D h n ≤≤-=其他,D 为CIC 滤波器的阶数(即抽取因子),Z 变换后11()1Dz H z z ---=-,当积分梳状滤波器的阶数不等于抽取器的抽取倍数时,令N=DM(N 为滤波器的 阶数,D 为抽取倍数)则积分梳状滤波器的传递函数为:)1(11)(1DM z zz H ----=M 是梳状滤波器中的延时因子,故称M 为差分延时因子;其频率总响应为12()()()jw jw jwH e H e H e ==sin(/2)sin(/2)wDM w =1()()22wDM wDM Sa Sa -⋅⋅x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值为N ,即:DM e H j =)(0; 一般数字滤波器的指标:()20lg()()20lg ()a pa p a s a s H j H j H j H j ααΩ=ΩΩ=Ω通带最大衰减阻带最小衰减即:CIC 幅频特性响应曲线图由其频率响应函数可以看出其主瓣电平最大为D ,旁瓣电平为21.51()sin(3/2)/sin(3/2)sin(3/2)j DMH e DM DM ωπωπππ=⋅==,旁瓣与主瓣的差值 (用dB 数表示)为: dB A DM s 46.1323lg 20lg201===πα 可计算出旁瓣与主瓣的差值约为13.46,意味着阻带衰减很差,单级级联时旁瓣电平很大,为降低旁瓣电平,增加阻带衰减采用级联的方式,N 级频率响应为:)2()2()()2/sin()2/sin()(ωωωωωQ Q Q Qj Q Sa DM Sa DM DM e H -⋅⋅=⎥⎦⎤⎢⎣⎡=, 可得到N 级CIC 的旁瓣抑制 dB Q Q A DM Q Qs )46.13(23lg 20)lg(201⨯=⋅==πα 分析一下发现在Q 级联时多出了Q DM 这个处理增益,因此分析一下尽量减少带容差(通带衰减),即,在通带,幅度应尽量平缓;下面就它的幅平响应曲线来分析:00()20lg ()()20lg()ps j a p jw a j a s jw a H e H eH e H e αα==1、设在红线w1处抽取的信号带宽很窄,为无混叠信号的带宽,能很好的对窄带信号进行滤波,去除掉高频信号噪声;且在绿线w2=2pi/DM-w1处衰减值足够大,则在其信号带宽,红线到绿线,信号给CIC 滤 波器带来的混叠就可以忽略,计算此时阻带衰减:)2/sin()2/sin(lg 20()(lg 2022012w DM w DM e H e H A jw j ==·引入带宽比例因子b=B/(fs/DM ), B 为抽取信号的带宽,D 为抽取因子,M 为延时因子;fs 为输入端采样率,则w1=b*2pi/DM ;带入可化简得:b A lg 201-≈; (假设b=0.01;即fs=100MHz ,D=20,信号带宽为50khz,此时衰减为40dB);可见单级的CIC 滤波器的无混叠信号带宽的阻带衰减能达到40dB;;并不怎么大,适用于较粗略的滤波,适合放在第一级抽取;如果采用级联的方式可以加大无混叠信号带宽;但是满足的通带不够窄;2、在红线w1处幅度不能下降太多,通带幅值容差不能太大,否则会引起高频失真;设该带容差为s δ,则,)()(lg 2010jw j s e H e H =δ将w1带入可简化得)sin(lg 20b bs ππδ≈,当N 级时,其带容差也会增大;由上面分析可知,阻带衰减和带容差,只与带宽比例因子b 有关,Df Bb s /=,分析可知,在信号带宽一定的前提下,应尽可能采用小的抽取因子,或增大输入采样率;故一般把它放在抽取系统的第一级,所以在配置CIC 时,信号带宽,采样率,抽取因子,综合考虑,下面是阻带衰减和通带衰减的一个表:表1:大抽取因子下的通带衰减由CIC频幅响应图可以发现,幅频特性的零点位于1/M处(M取值为整数),这说明差分因子M决定了零点的位置;抽取因子D狭定了抽取后信号的采样频率,它同差分延时因子M一起还决定了主瓣和旁瓣的宽度;级数Q可以用来控制阻带衰减,Q越大阻带衰减越大,通带的混叠就越小,但Q越大,通带主瓣衰减也越大,所以Q不可太大,不宜超过5级。

累积梳状(CIC)滤波器分析与设计

累积梳状(CIC)滤波器分析与设计

累积梳状(CIC )滤波器分析与设计1、累积梳状(CIC )滤波器的分析所谓累积梳状滤波器,是指该滤波器的冲激响应具有如下形式: ⎩⎨⎧-≤≤=其它,010,1)(N n n h (1)式中N 为梳状滤波器的系数长度(后面将会看到这里的N 也就是抽取因子)。

根据Z 变换的定义,滤波器的Z 变换为:∑-=-⋅=10)()(N n n z n h z H111----=z z N)1(111Nz z---⋅-=)()(21z H z H ⋅= (2) 式中,1111)(--=zz H (3) N z z H --=1)(2 (4) 其实现框图如图1所示:可见,CIC 滤波器是由两部分组成:累积器)(1z H 和梳状滤波器)(2z H 的级联,这就是为什么称之为累积梳状滤波器的原因。

下面分析一下梳状滤波器的幅频特性.把ωj e z =代入可得)(2z H 的频率响应为: N j j e e H ωω--=1)(2 ]2[22/2/2/N j N j N j e e eωωω-⋅⋅--⋅=)2/sin(22/N e N j ωω⋅=⋅- (5) 其幅频特性为:)2/sin(2)(2N e H j ωω⋅= (6) 若设N =7,就可以得到如图2所示的相应的频谱特性曲线:)(2z H)(1z H图1、累积梳状滤波器的实现框图由图2可以清楚地看到:)(2ωj e H 的形状犹如一把梳子,故把其形象地称之为梳状滤波器。

同样可以求得累积器)(1z H的频率响应为:ωj e z H --=11)(112/2/2/]2[2---=ωωωj j j e e e 12/)2(sin 2-⋅=ωωj e (7) 故CIC 滤波器的总频率响应为:)()()(21ωωωj j j e H e H e H ⋅= )2/sin(/)2/sin(ωωN = )2()2(1ωω-⋅⋅=Sa NSa N (8)式中,x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值为N ,即:N e H j =)(0 (9)CIC 滤波器的幅频特性如图3所示:在)~0(π区间上称)/2~0(N π的区间为CIC 滤波器的主瓣,而其它区间称为旁瓣。

cic滤波器原理详解

cic滤波器原理详解

级联积分梳状(Cascade Integrator Comb,CIC)[1]滤波器结构简单、标准化,是高速抽取器中十分简单有效的抗混叠滤波单元,已被广泛使用于多抽样率信号处理系统中。

其组成只有积分器、加法器、寄存器,没有乘法器,使得CIC滤波器非常适合在具有较强实时性和并行处理能力的FPGA 上实现。

但是其阻带衰减和通带波纹的相互抑制限制了其滤波性能。

锐化级联积分梳状滤波器[2]、CIC 滤波器的部分锐化[3]、在CIC 滤波器级联分解的基础上级联一级余弦滤波器[4]、二级补偿CIC 滤波器( TSC -CIC)[5]、内插二阶多项式级联积分梳状滤波器(ISOP-CIC)[6]都是用来进行CIC滤波器改进的技术。

但上述CIC 滤波器的改进或只是降低了通带衰减,或只是提高了阻带衰减,或同时降低通带衰减、提高阻带衰减,但是占用硬件逻辑资源较多。

cic滤波器原理

cic滤波器原理

cic滤波器原理
CIC滤波器是一种数字滤波器,其原理基于累加器和差分器组成的级联结构。

CIC滤波器的工作原理如下:
1. 累加器阶段:输入信号经过累加器,累加器将输入信号进行递增操作,得到一个累加的输出。

2. 差分器阶段:累加器的输出信号经过差分器,差分器进行减法运算,得到相邻两个时间点上的差分输出。

3. 重采样阶段:差分器的输出信号经过重采样,根据重采样比率进行下采样操作,得到最终的输出信号。

CIC滤波器的特点:
1. CIC滤波器具有很高的差分非线性,可以有效抑制高频分量。

2. CIC滤波器在频率域上具有矩形频率响应,可以实现理想的低通滤波器功能。

3. CIC滤波器的实现简单,运算量少,适用于实时处理和硬件实现。

4. CIC滤波器具有固定频率响应,不需要频率域上的运算,适用于离散时间系统。

CIC滤波器的应用:
1. 信号预处理:用于消除高频噪声和干扰,提高信号的质量。

2. 降采样:用于降低采样率,减少数据存储和处理的开销。

3. 高通滤波:用于提取输入信号中的高频部分。

4. 低通滤波:用于去除输入信号中的高频部分。

总之,CIC滤波器通过累加器和差分器的级联结构,实现了一种简单有效的数字滤波器,其原理基于累加和差分操作,适用于信号预处理、降采样和频率域滤波等应用。

(完整版)CIC滤波器的原理与设计

(完整版)CIC滤波器的原理与设计

CIC 的冲击响应{1,010,()n D h n ≤≤-=其他,D 为CIC 滤波器的阶数(即抽取因子),Z 变换后11()1Dz H z z ---=-,当积分梳状滤波器的阶数不等于抽取器的抽取倍数时,令N=DM(N 为滤波器的 阶数,D 为抽取倍数)则积分梳状滤波器的传递函数为:)1(11)(1DM z zz H ----=M 是梳状滤波器中的延时因子,故称M 为差分延时因子;其频率总响应为12()()()jw jw jwH e H e H e ==sin(/2)sin(/2)wDM w =1()()22wDM wDM Sa Sa -⋅⋅x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值为N ,即:DM e H j =)(0; 一般数字滤波器的指标:()20lg()()20lg ()a pa p a s a s H j H j H j H j ααΩ=ΩΩ=Ω通带最大衰减阻带最小衰减即:CIC 幅频特性响应曲线图由其频率响应函数可以看出其主瓣电平最大为D ,旁瓣电平为21.51()sin(3/2)/sin(3/2)sin(3/2)j DMH e DM DM ωπωπππ=⋅==,旁瓣与主瓣的差值 (用dB 数表示)为: dB A DM s 46.1323lg 20lg201===πα 可计算出旁瓣与主瓣的差值约为13.46,意味着阻带衰减很差,单级级联时旁瓣电平很大,为降低旁瓣电平,增加阻带衰减采用级联的方式,N 级频率响应为:)2()2()()2/sin()2/sin()(ωωωωωQ Q Q Qj Q Sa DM Sa DM DM e H -⋅⋅=⎥⎦⎤⎢⎣⎡=, 可得到N 级CIC 的旁瓣抑制 dB Q Q A DM Q Qs )46.13(23lg 20)lg(201⨯=⋅==πα 分析一下发现在Q 级联时多出了Q DM 这个处理增益,因此分析一下尽量减少带内容差(通带衰减),即,在通带内,幅度应尽量平缓;下面就它的幅平响应曲线来分析:00()20lg ()()20lg()ps j a p jw a j a s jw a H e H eH e H e αα==1、设在红线w1处抽取的信号带宽很窄,为无混叠信号的带宽,能很好的对窄带信号进行滤波,去除掉高频信号噪声;且在绿线w2=2pi/DM-w1处衰减值足够大,则在其信号带宽内,红线到绿线,信号给CIC 滤波器带来的混叠就可以忽略,计算此时阻带衰减:)2/sin()2/sin(lg 20()(lg 2022012w DM w DM e H e H A jw j ==·引入带宽比例因子b=B/(fs/DM ), B 为抽取信号的带宽,D 为抽取因子,M 为延时因子;fs 为输入端采样率,则w1=b*2pi/DM ;带入可化简得:b A lg 201-≈; (假设b=0.01;即fs=100MHz ,D=20,信号带宽为50khz,此时衰减为40dB);可见单级的CIC 滤波器的无混叠信号带宽内的阻带衰减能达到40dB;;并不怎么大,适用于较粗略的滤波,适合放在第一级抽取;如果采用级联的方式可以加大无混叠信号带宽;但是满足的通带不够窄;2、在红线w1处幅度不能下降太多,通带内幅值容差不能太大,否则会引起高频失真;设该带内容差为s δ,则,)()(lg 2010jw j s e H e H =δ将w1带入可简化得)sin(lg 20b bs ππδ≈,当N 级时,其带内容差也会增大;由上面分析可知,阻带衰减和带内容差,只与带宽比例因子b 有关,Df Bb s /=,分析可知,在信号带宽一定的前提下,应尽可能采用小的抽取因子,或增大输入采样率;故一般把它放在抽取系统的第一级,所以在配置CIC 时,信号带宽,采样率,抽取因子,综合考虑,下面是阻带衰减和通带衰减的一个表:表1:大抽取因子下的通带衰减由CIC频幅响应图可以发现,幅频特性的零点位于1/M处(M取值为整数),这说明差分因子M决定了零点的位置;抽取因子D狭定了抽取后信号的采样频率,它同差分延时因子M一起还决定了主瓣和旁瓣的宽度;级数Q可以用来控制阻带衰减,Q越大阻带衰减越大,通带内的混叠就越小,但Q越大,通带内主瓣衰减也越大,所以Q不可太大,不宜超过5级。

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计1.原理概述CIC滤波器由差分器、积分器和组合器三部分组成,可有效实现信号的重采样和滤波功能。

其基本原理是将输入信号通过差分器进行差分运算,然后经过积分器进行累积运算,最后通过组合器实现滤波和重采样。

CIC滤波器的特点是具有高的通带增益和截止频率,且不需要乘法器和存储器,适合在FPGA中实现。

2.设计步骤(1)确定CIC滤波器的设计参数,包括增益因子、积分阶数、截止频率等。

(2)根据设计参数计算滤波器的结构参数,包括输入和输出数据宽度、积分器的阶数和阶间差值等。

(3)根据计算结果,设计CIC滤波器的硬件结构,包括差分器、积分器和组合器的实现方法。

(4) 使用HDL语言(如Verilog或VHDL)编写FPGA的CIC滤波器的代码,同时进行功能仿真和波形仿真。

(5)在FPGA开发板上进行综合、布局布线和验证,实现CIC滤波器的硬件设计。

3.设计关键技术(1)差分器设计:差分器实现差分运算,可以简单采用异或门或加减器实现。

需要注意输入信号的幅度范围和差分器的输出范围。

(2)积分器设计:积分器实现累积运算,需要考虑积分阶数、数据宽度和溢出等问题。

可以采用寄存器与加法器的串行或并行结构实现。

(3)组合器设计:组合器实现滤波和重采样功能,需要根据设计参数确定组合器的截止频率和增益系数。

可以采用多级组合器结构实现。

(4)输入输出接口设计:FPGA的CIC滤波器需要与外部系统进行数据交换,因此需要设计合适的输入输出接口,包括数据接口、时钟接口和控制接口等。

4.实现优化技术(1)折叠积分器:为了减少资源占用和延迟,可以采用折叠积分器结构,将多级积分器合并为一个积分器实现。

(2)级联结构:为了增加滤波器的阶数和降低截止频率,可以采用级联结构,将多个CIC滤波器级联实现。

(3)变系数设计:为了实现可调节的滤波参数,可以设计可变系数的CIC滤波器,在运行时动态调整增益因子和积分阶数。

综上所述,FPGA的CIC滤波器设计是一项复杂的数字信号处理任务,需要深入理解CIC滤波器的原理和设计方法,结合FPGA的硬件实现技术进行设计和优化。

c语言实现cic梳状滤波__理论说明

c语言实现cic梳状滤波__理论说明

c语言实现cic梳状滤波理论说明1. 引言1.1 概述CIC(Cascade Integrator-Combinator)梳状滤波器是一种常见的数字滤波器,广泛应用于信号处理领域。

它具有简单的结构和高效的运行特性,在数字信号处理中发挥着重要作用。

本文将介绍CIC梳状滤波器的原理和C语言实现原理,并讨论其在不同领域中的应用。

1.2 文章结构本文分为五个部分。

引言部分介绍了文章的背景和结构安排。

第二部分讲解了CIC梳状滤波器的原理以及C语言实现原理,并对相关算法进行了介绍。

第三部分探讨了CIC梳状滤波器在不同领域中的应用场景,包括数字信号处理、实时数据处理和音频信号处理等方面。

第四部分详细解释了如何使用C语言来实现CIC梳状滤波器,包括硬件平台准备、基本组件搭建与初始化配置以及数据输入与处理流程设计等方面内容。

最后,第五部分将对实验结果进行分析并展示其效果,并对整篇文章进行总结与展望。

1.3 目的本文的目的是介绍CIC梳状滤波器的原理和C语言实现原理,并探讨其在不同领域中的应用场景。

通过详细解释C语言实现CIC梳状滤波器的步骤,读者可以加深对该滤波器的理解,并了解如何将其应用于具体项目中。

最后,通过对实验结果进行分析与总结,读者可以评估CIC梳状滤波器在不同场景下的性能表现,并对其未来发展进行展望。

2. 理论基础:2.1 CIC梳状滤波器原理CIC(Cascade Integrator-Comb)梳状滤波器是一种常用的数字信号处理滤波器,用于对离散时间序列进行低通滤波。

它由级联部分积分器和组合部分组成。

CIC梳状滤波器的输入信号首先经过M个阶数为R的积分级,在每一级中累加了M个输入样本,然后被一个差分延时线延时M/R个采样周期。

延时后的信号经过一个减法运算,乘以一个增益因子D,并通过R级组合部分,其中每一级包含一个差分延时线和一个减法运算单元。

最终输出结果是经过R级积分之后的信号。

2.2 C语言实现原理在C语言中实现CIC梳状滤波器需要定义相应的数据结构和函数来实现不同模块之间的连接和数据处理。

一种短波数字化电台CIC抽取滤波器的设计

一种短波数字化电台CIC抽取滤波器的设计
台接收机数字 化信道必需 的重 要组成部分, 而级联 积分一 状 梳 (a c d d n e r t r C m , I) C sa e It g ao — o b C C滤波器作为一种高效的数

0 罄 害 罄 咨 t 2 罄 ^ ,
图1 00 波 器 幅频 特 性 1滤

图1 区间 f 丌 中, D 称为CC I滤波器 的主瓣 , 其余区间称 为旁瓣。由图可见 , 随着频率 的增大 , 旁瓣 电平不 断减 小。 阻 但 带抑制 比较小, 一般采 用多级 CC I 滤波器级联 的方 法来增大 阻 带抑制。
字滤波器 , 广泛 应用于数字下变频器前级处理 中, 是数 字下变
根据式 () 4可得单级带内容差:
t { r
≈ 2 5X1 . 0




= := : :
根据式 () 6 可计算无用边带的抑制为:
a 11


3 .d 35 B
8 h .

I矗 . 妻 .
采 用单 级C C I抽取滤 波器 时, 其无 用边带抑制为3 .d , 35 B 无 法满足 系统 9 d 的要求 。 0B 所以, 需求采用3 I抽取滤波器进 级CC
数。 ( z 专是积 分器 , (=— 是梳妆滤波器, ) = z I ) z 所以,
命名为级联积分一 梳状 滤波器。 CC I抽取滤波器 的幅频公式 为:
带内容差。 以, I 滤波器 的级数不宜太长。 所 CC
4 CI C抽取 滤 波器 的设 计
根 据此短 波 电台项 目要求 ,电台数字 化在 中频5 0 H 上 0K z 进行。 收时, 接 首先对 5 0 H 中频信号进 行采样 , 0K z 采样 速率为

数字cic滤波器工作原理

数字cic滤波器工作原理

数字cic滤波器工作原理数字CIC滤波器是一种常用的数字滤波器,其主要作用是对输入信号进行降采样和滤波处理。

CIC滤波器具有简单的结构和高效的性能,因此在数字信号处理中得到了广泛的应用。

CIC滤波器的工作原理可以简单地分为两个步骤:差分运算和累加运算。

首先,输入信号经过差分运算,得到差分输出。

差分运算可以通过延迟器和减法器实现,其目的是计算输入信号的差分值。

然后,差分输出经过累加运算,得到累加输出。

累加运算可以通过累加器实现,其目的是计算差分输出的累加值。

累加输出即为CIC滤波器的输出信号。

CIC滤波器的核心思想是通过差分和累加运算实现信号的低通滤波。

差分运算可以看作是对输入信号进行微分操作,相当于对高频分量进行了滤除。

累加运算可以看作是对差分输出进行积分操作,相当于对低频分量进行了保留。

因此,CIC滤波器可以有效地滤除高频噪声,保留低频信号。

CIC滤波器的滤波性能主要由两个参数决定:差分延迟和累加延迟。

差分延迟决定了滤波器的截止频率,即能够滤除的最高频率分量。

累加延迟决定了滤波器的抽取率,即能够保留的最低频率分量。

通过调整这两个参数,可以实现对不同频率范围的信号进行滤波。

CIC滤波器的优点是结构简单,计算量小。

由于其只包含了延迟器、减法器和累加器等基本运算单元,因此其硬件实现较为简单,适合于集成电路的设计和实现。

同时,CIC滤波器的计算量也较小,可以在实时系统中实现高效的信号处理。

然而,CIC滤波器也存在一些问题。

首先,由于其差分和累加运算的特性,CIC滤波器会引入一定的信号延迟。

这个延迟是由差分和累加的阶数决定的,可能导致滤波器的响应不够实时。

其次,CIC 滤波器对输入信号的动态范围较为敏感,对于幅度较大的信号可能会引入非线性失真。

为了解决这些问题,可以采取一些改进措施。

例如,可以通过增加CIC滤波器的阶数来降低滤波器的截止频率,以提高滤波器的响应速度。

同时,可以采用多级CIC滤波器的结构,以减小每级滤波器的动态范围,从而降低非线性失真。

cic滤波器原理

cic滤波器原理

cic滤波器原理CIC滤波器原理CIC滤波器(Cascaded Integrator-Comb Filter)是一种数字滤波器,常用于数字信号处理中的滤波和抽取等应用。

它的设计简单、计算量小、延迟低,因此在很多领域得到了广泛应用。

CIC滤波器的原理基于积分器和组合器的级联组合。

积分器可以对信号进行累加,而组合器则用于减小采样率。

通过级联多个积分器和组合器,可以实现对信号的滤波效果。

CIC滤波器的结构包括三个主要部分:差分积分器、组合器和延迟线。

差分积分器主要由差分器和积分器组成,用于对输入信号进行积分。

组合器则用于将多个积分器的输出进行组合,以减小采样率。

延迟线则用于延迟信号,使得输入和输出的采样率可以不一致。

CIC滤波器的工作原理可以分为两个阶段:累加阶段和抽取阶段。

在累加阶段,输入信号经过差分积分器进行累加,积分的次数由滤波器的阶数确定。

在抽取阶段,经过积分之后的信号经过组合器进行抽取,抽取的倍数由滤波器的阶数和组合器的结构确定。

通过这样的级联结构,CIC滤波器可以实现对信号的滤波和抽取。

CIC滤波器的优点之一是其简单的结构和计算量小。

由于CIC滤波器的核心是积分和差分运算,这些运算在数字信号处理中是非常常见和简单的。

因此,CIC滤波器的实现相对容易,计算量也较小,适合于嵌入式系统等资源有限的环境。

另一个优点是CIC滤波器的延迟较低。

由于CIC滤波器的结构简单,信号只需经过几个积分和差分运算,因此滤波器的延迟较小。

这使得CIC滤波器在实时应用中具有较大的优势,如音频处理、视频处理等。

然而,CIC滤波器也存在一些缺点。

由于积分的操作会引入带宽扩展,CIC滤波器在滤波过程中会引入一定的失真。

为了降低失真,可以增加滤波器的阶数,但这也会增加计算量和延迟。

因此,在设计CIC滤波器时,需要权衡滤波性能、计算量和延迟等因素。

总的来说,CIC滤波器是一种简单且有效的数字滤波器,具有计算量小、延迟低等优点。

CIC滤波器设计

CIC滤波器设计

课程设计(论文)说明书题目:CIC滤波器设计院(系):信息与通信学院专业:学生姓名:学号:年月日摘要在数字下变频(DDC)中,CIC ( 级联积分梳状)滤波器起着重要的作用。

它主要用于采样速率的抽取,同时具有低通滤波的作用。

CIC 滤波器的主要特点是,仅利用加法器、减法器和寄存器( 无需乘法器) ,因此占用资源少、实现简单且速度高。

关键词:数字下变频; CIC 抽取滤波器AbstactThe filter of cascaded integr at or comb is becoming more important in the application of digital down converter (DDC) . Firstly , it is used to decimate the sample frequency.Secondly, it can be used as a low pass filter. The CIC filter is a flexible, multiplier-free filter which includes adders,subtracters and registers , so it uses less resorces and can play well in higher frequency . Based on the theory of CIC filter,Key words: DDC; the decim at ion filt er of CIC前言在软件无线电中, 数字下变频器接收经过高速采样的中频数字信号, 将所需的频带下变到基带。

它一般位于信号处理链的前端, 靠近A/ D。

它主要由数字振荡器、数字乘法器、数字滤波器三部分组成。

DDC 中数字滤波器的主要作用是抽取、低通滤波, 一般由FIR 滤波器实现。

但FIR 滤波器需要大量的乘法器, 且一般DDC 中的采样速率很高, 因此FIR滤波器需要工作在很高的频率, 使用资源多、功耗大。

cic滤波器的原理和数学公式

cic滤波器的原理和数学公式

CIC(Cascaded Integrator-Comb)滤波器是一种数字滤波器,主要用于对离散时间信号进行滤波和降采样。

它通常用于数字信号处理中,特别是在通信系统中的数据处理和信号重构过程中。

CIC滤波器由级联的积分器和组合器构成,其原理简单但功能强大,能够在不引入相位失真的情况下对信号进行有效滤波。

CIC滤波器的原理主要基于积分器和组合器的级联作用,通过这种结构能够实现对信号的高效滤波和降采样。

CIC滤波器的工作流程可以简述如下:1. 输入信号经过第一级积分器进行积分处理,然后经过第一级组合器进行组合处理,从而实现信号的初步滤波和降采样。

2. 经过初步处理的信号再次进入下一级积分器进行积分处理,然后再经过下一级组合器进行组合处理,如此循环至最后一级组合器。

3. 最后经过最后一个组合器的处理后,得到最终的信号输出结果。

在CIC滤波器的工作过程中,积分器起到对输入信号进行积分的作用,从而实现对信号频谱的滤波;而组合器则主要起到对积分器输出进行组合和降采样的作用。

通过这种积分和组合的级联作用,CIC滤波器能够实现对信号的高效滤波和降采样,同时又能够避免引入相位失真。

CIC滤波器的数学公式主要包括积分器和组合器的数学模型以及整个CIC滤波器的传递函数。

在理论推导和实际应用中,这些数学公式对于分析和设计CIC滤波器起到了重要的作用。

积分器的数学公式可以表示为:\[ H(z) = \frac{1 - z^{-M}}{1 - z^{-1}} \]其中,\(H(z)\)为数字积分器的传递函数,\(M\)为积分器的积分比率。

组合器的数学公式可以表示为:\[ H(z) = (1 - z^{-D})^N \]其中,\(H(z)\)为数字组合器的传递函数,\(N\)为组合器的组合比率,\(D\)为组合器的延迟量。

CIC滤波器的整体传递函数可以表示为:\[ H(z) = H_1(z) \cdot H_2(z) \cdot \ldots \cdot H_n(z) \]其中,\(H(z)\)为CIC滤波器的整体传递函数,\(H_i(z)\)为第\(i\)级CIC滤波器的传递函数。

cic filter算法

cic filter算法

cic filter算法CIC滤波器算法CIC(Cascaded Integrator-Comb)滤波器是一种数字滤波器,常用于数字信号处理领域。

它具有简单的结构和高效的运算特性,因此在很多应用中被广泛采用。

本文将介绍CIC滤波器算法的原理、应用和优缺点。

一、CIC滤波器原理CIC滤波器由积分器和组合器组成。

积分器将输入信号进行累加,而组合器则对积分器的输出进行差分操作。

这种累加和差分的结构使得CIC滤波器能够实现高效的信号处理。

CIC滤波器的基本原理是对输入信号进行多次积分和差分操作,从而实现对信号的滤波。

首先,输入信号经过一个积分器进行累加,得到累加结果。

然后,将累加结果经过一个组合器进行差分操作,得到差分结果。

通过多次级联这样的积分器和组合器,可以实现对输入信号的多次积分和差分操作,从而实现对输入信号的滤波。

二、CIC滤波器应用CIC滤波器在数字信号处理中有广泛的应用。

其中,最常见的应用是对信号进行抽取和插值。

CIC滤波器可以实现高效的抽取和插值操作,能够在不增加额外的延迟和失真的情况下改变信号的采样率。

这种特性使得CIC滤波器在通信系统、音频处理和图像处理等领域中得到了广泛的应用。

三、CIC滤波器优缺点CIC滤波器具有以下优点:1. 简单的结构:CIC滤波器只包含积分器和组合器,没有乘法器等复杂的运算单元,因此具有简单的结构和低的硬件成本。

2. 高效的运算:CIC滤波器的运算是通过累加和差分实现的,没有乘法运算,因此具有高效的运算特性。

3. 无需存储器:CIC滤波器不需要存储器来存储历史数据,因此不需要额外的存储器资源。

然而,CIC滤波器也存在一些缺点:1. 线性相位响应:CIC滤波器的相位响应是线性的,不能实现对信号的相位补偿。

这在某些应用中可能会造成问题。

2. 高通滤波特性:CIC滤波器的传输函数在低频段衰减较强,相当于一个高通滤波器。

这意味着在使用CIC滤波器时需要额外的低通滤波器来补偿。

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计CIC滤波器是一种高效的滤波结构,主要用于在数字信号处理中降低采样率。

它的结构包括一个或多个级联的积分器和组合器。

积分器用于对输入信号进行累加,组合器用于将积分结果进行减法运算并输出。

设计FPGA上的CIC滤波器需要以下步骤:1.确定滤波器的规格:首先,你需要确定滤波器的采样率和通带、阻带的频率要求。

这将决定你需要设计多少级的CIC滤波器以及每级的系数。

2.确定滤波器的结构:根据滤波器的规格,你可以确定CIC滤波器的级数和输出信号的截止频率。

CIC滤波器的级数决定了降采样的比率,输出信号的截止频率将决定滤波器的性能。

3.设计CIC滤波器的系数:CIC滤波器的系数由积分器和组合器的阶数决定。

你可以使用公式来计算系数,也可以通过在FPGA上进行仿真来获得最佳的系数。

4. 实现CIC滤波器:一旦你确定了CIC滤波器的系数,你可以开始在FPGA上实现该滤波器。

你可以选择使用HDL (Hardware Description Language) 编写滤波器的代码,也可以使用可视化编程工具来设计滤波器。

5.测试和优化滤波器性能:一旦滤波器被实现,你可以使用测试向量对其进行性能测试。

你可以通过观察输出信号的频谱特性来评估滤波器的效果,并根据需要进行优化。

设计FPGA上的CIC滤波器需要一些基本的信号处理和FPGA编程知识。

你需要熟悉CIC滤波器的原理和性能特点,以及FPGA的编程语言和开发工具。

此外,你还需要掌握一些数字信号处理的基本概念,如离散时间系统、采样定理等。

总结起来,设计FPGA上的CIC滤波器需要先确定滤波器的规格和结构,然后设计滤波器的系数,最后在FPGA上实现并测试滤波器。

这个过程需要一些基本的信号处理和FPGA编程知识,但随着你的实践和学习,你将能够设计出高性能的CIC滤波器。

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计

基于FPGA的CIC数字滤波器的设计摘要:级联积分梳状(Cascade Integrator Comb,CIC)滤波器是数字系统中实现大采样率变化的多速率滤波器,已经证明是在高速抽取和插值系统中非常有效的单元,在数字下变频(DDC)和数字上变频(DUC)系统中有广泛的应用。

它不包含乘法器,只是由加法器,减法器和寄存器组成,而且需要的加法器的数目也减少了许多,因此CIC滤波器比FIR和IIR滤波器更节省资源,并且实现简单而高速。

本文主要讨论了CIC滤波器的基本原理和基于FPGA的仿真实现方法,具体是采用Verilog HDL语言编程,将滤波器分为积分器模块和梳状器模块2个部分,对每个模块进行具体的功能分析和设计实现,最后通过Modelsim 仿真对滤波器的性能进行分析,验证了设计的正确性。

关键词:CIC滤波器;抽取;FPGA;Verilog HDLthe Design of Cascade Integrator Comb Filter Based on FPGAAbstract:CIC (Cascade Integrator Comb, CIC) filter is a digital system to achieve large changes in multi-rate sampling rate filter, which has been proven to be a very effective unit in the high-speed extraction and interpolation system. It is widely used in the digital down conversion (DDC ) and digital up conversion (DUC) systems. It does not contain the multiplier, but just composes by adders, subtractors and registers, and the number of needing adders is reduced a lot. So it takes fewer resources than FIR filter and IIR filter. And the speed of CIC filter is very high and it is also very convenient to realize.This article discusses the basic principles of CIC filter and the simulation way based on FPGA. The modules were described with Verilog HDL. Firstly, the filter was divided into two parts which were integration module and the comb module. Then the function of each module were analyzed and designed. Finally the performance of the filter was analyzed under ModelSim and the correctness of the design was verified. Keywords:CIC filter; Decimation; FPGA; Verilog HDL1. 引言:数字滤波是数字信号分析中最重要的组成部分之一,数字滤波与模拟滤波相比,具有精度和稳定性高,系统函数容易改变,灵活性高,不存在阻抗匹配问题,便于大规模集成,可实现多维滤波等优点。

cic滤波器的原理与设计

cic滤波器的原理与设计

CIC的冲击响应{1,010,()n Dh n≤≤-=其他,D为CIC滤波器的阶数(即抽取因子),Z变换后11()1DzH zz---=-,当积分梳状滤波器的阶数不等于抽取器的抽取倍数时,令N=DM(N为滤波器的阶数,D为抽取倍数)则积分梳状滤波器的传递函数为:)1(11)(1DMzzzH----=M是梳状滤波器中的延时因子,故称M为差分延时因子;其频率总响应为12()()()jw jw jwH e H e H e==sin(/2)sin(/2)wDMw=1()()22wDM wDM Sa Sa-⋅⋅xxxSa/)sin()(=为抽样函数,且1)0(=Sa,所以CIC滤波器在0=ω处的幅度值为N,即:DMeH j=)(0;一般数字滤波器的指标:()20lg()()20lg()apa pasa sH jH jH jH jααΩ=ΩΩ=Ω通带最大衰减阻带最小衰减即:CIC 幅频特性响应曲线图由其频率响应函数可以看出其主瓣电平最大为D ,旁瓣电平为21.51()sin(3/2)/sin(3/2)sin(3/2)j DMH e DM DM ωπωπππ=⋅==,旁瓣与主瓣的差值 (用dB 数表示)为: dB A DM s 46.1323lg 20lg201===πα 可计算出旁瓣与主瓣的差值约为13.46,意味着阻带衰减很差,单级级联时旁瓣电平很大,为降低旁瓣电平,增加阻带衰减采用级联的方式,N 级频率响应为:)2()2()()2/sin()2/sin()(ωωωωωQ Q Q Qj Q Sa DM Sa DM DM e H -⋅⋅=⎥⎦⎤⎢⎣⎡=, 可得到N 级CIC 的旁瓣抑制 dB Q Q A DM Q Qs )46.13(23lg 20)lg(201⨯=⋅==πα 分析一下发现在Q 级联时多出了Q DM 这个处理增益,因此分析一下尽量减少带内容差(通带衰减),即,在通带内,幅度应尽量平缓;下面就它的幅平响应曲线来分析:00()20lg ()()20lg()ps j a p jw a j a s jw a H e H eH e H e αα==1、设在红线w1处抽取的信号带宽很窄,为无混叠信号的带宽,能很好的对窄带信号进行滤波,去除掉高频信号噪声;且在绿线w2=2pi/DM-w1处衰减值足够大,则在其信号带宽内,红线到绿线,信号给CIC 滤波器带来的混叠就可以忽略,计算此时阻带衰减:)2/sin()2/sin(lg 20()(lg 2022012w DM w DM e H e H A jw j ==·引入带宽比例因子b=B/(fs/DM ), B 为抽取信号的带宽,D 为抽取因子,M 为延时因子;fs 为输入端采样率,则w1=b*2pi/DM ;带入可化简得:b A lg 201-≈; (假设b=0.01;即fs=100MHz ,D=20,信号带宽为50khz,此时衰减为40dB);可见单级的CIC 滤波器的无混叠信号带宽内的阻带衰减能达到40dB;;并不怎么大,适用于较粗略的滤波,适合放在第一级抽取;如果采用级联的方式可以加大无混叠信号带宽;但是满足的通带不够窄;2、在红线w1处幅度不能下降太多,通带内幅值容差不能太大,否则会引起高频失真;设该带内容差为s δ,则,)()(lg 2010jw j s e H e H =δ将w1带入可简化得)sin(lg 20b bs ππδ≈,当N 级时,其带内容差也会增大;由上面分析可知,阻带衰减和带内容差,只与带宽比例因子b 有关,Df Bb s /=,分析可知,在信号带宽一定的前提下,应尽可能采用小的抽取因子,或增大输入采样率;故一般把它放在抽取系统的第一级,所以在配置CIC 时,信号带宽,采样率,抽取因子,综合考虑,下面是阻带衰减和通带衰减的一个表:表1:大抽取因子下的通带衰减由CIC频幅响应图可以发现,幅频特性的零点位于1/M处(M取值为整数),这说明差分因子M决定了零点的位置;抽取因子D狭定了抽取后信号的采样频率,它同差分延时因子M一起还决定了主瓣和旁瓣的宽度;级数Q可以用来控制阻带衰减,Q越大阻带衰减越大,通带内的混叠就越小,但Q越大,通带内主瓣衰减也越大,所以Q不可太大,不宜超过5级。

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计

FPGA的CIC滤波器的设计CIC滤波器的设计主要涉及滤波器的参数确定、级联结构的设计、数据格式的选择和实现细节。

首先,CIC滤波器的参数包括滤波器阶数、滤波器响应和抽取/插值比例。

滤波器阶数决定了滤波器的截止频率和滤波器的响应速度。

滤波器响应可以是低通、高通或带通响应,根据实际需求选择。

抽取/插值比例决定了滤波器的抽取/插值功能,可以根据需要选择。

其次,CIC滤波器采用级联结构,每个级联包括一个积分器和一个信号延迟器。

级联结构的数量决定了滤波器的阶数,阶数越高滤波器的性能越好。

级联结构还可以根据需求进行扩展或压缩。

然后,对于FPGA的CIC滤波器设计,数据格式的选择非常重要。

常见的数据格式有定点(Fixed-Point)和浮点(Floating-Point)两种。

定点数据格式可以节省硬件资源,但需要进行定点数的运算和溢出处理。

浮点数据格式计算精度高,但需要更多的硬件资源。

根据实际需求选择合适的数据格式。

最后,实现细节包括CIC滤波器的硬件资源分配、时钟分配和时序约束等。

硬件资源分配需要根据滤波器的参数确定所需要的积分器、延迟器和加法器等硬件资源。

时钟分配需要合理分配时钟信号,以满足滤波器的运算速度和性能需求。

时序约束能够帮助设计人员解决时序问题,确保滤波器的正确性和稳定性。

总的来说,FPGA的CIC滤波器设计涉及滤波器参数选择、级联结构设计、数据格式选择和实现细节。

通过合理的设计和优化,可以实现快速、高效的滤波功能,满足各种信号处理需求。

CIC滤波器设计

CIC滤波器设计

CIC滤波器设计报告
拟制
日期2012-01-15
一、CIC 抽取滤波器 1、原理概述
(x n ()
n
图1.1 系统流程图
2、模块实现 2.1 积分器
2.2 抽取单元
2.3 微分器
二、CIC 插值滤波器 1、 原理概述
2、 模块实现
模块说明
1、 交织模块
交织模块负责将连续数据在时间上打散,取得时间增益,并将突发错误变为卷积码可以纠错的随机错误,CC 编码输出为16bit 的编码信息。

交织块尺寸为600*15*16=9000*16,其中位宽为16,9000为16位字的个数(扩频因子为8)
,或者68*15*16=1020*16,即1020个16位字;表1给出了不同扩频因子时交织块的几个重要参数。

表1 数据载荷扩频方式与每子帧中比特交织块的关系
交织采用行入列出的形式,输入数据位宽为16bit ,输出数据位宽为1bit ,整个交织模
块需要两块RAM ,采用乒乓的形式对数据进行交织处理。

该模块的接口示意图(草图)如图4所示。

clk
图4、交织模块接口示意草图表2给出了该模块的接口说明
表2、交织模块接口说明
(二)CIC插值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CIC 的冲击响应{
1,010,()n D h n ≤≤-=
其他
,D 为CIC 滤波器的阶数(即抽取因子),
Z 变换后
1
1()1
D
z H z z ---=-,
当积分梳状滤波器的阶数不等于抽取器的抽取倍数时,令N=DM(N 为滤波器的 阶数,D 为抽取倍数)
则积分梳状滤波器的传递函数为:)1(11
)(1
DM z z
z H ----=
M 是梳状滤波器中的延时因子,故称M 为差分延时因子;
其频率总响应为12()()()jw jw jw
H e H e H e ==
sin(/2)sin(/2)wDM w =1()()22
wDM w
DM Sa Sa -⋅⋅
x x x Sa /)sin()(=为抽样函数,且1)0(=Sa ,所以CIC 滤波器在0=ω处的幅度值
为N ,即:DM e H j =)(0; 一般数字滤波器的指标:
()20lg
()()20lg ()
a p
a p a s a s H j H j H j H j ααΩ=ΩΩ=Ω通带最大衰减阻带最小衰减
即:
CIC 幅频特性响应曲线图
由其频率响应函数可以看出其主瓣电平最大为D ,旁瓣电平为
21.51
()
sin(3/2)/sin(3/2)sin(3/2)
j DM
H e DM DM ωπωπππ=⋅
==

旁瓣与主瓣的差值 (用dB 数表示)为: dB A DM s 46.132
3lg 20lg
201===π
α 可计算出旁瓣与主瓣的差值约为13.46,意味着阻带衰减很差,单级级联时旁瓣
电平很大,为降低旁瓣电平,增加阻带衰减采用级联的方式,N 级频率响应为:
)2()2()()2/sin()2/sin()(ωωωωωQ Q Q Q
j Q Sa DM Sa DM DM e H -⋅⋅=⎥⎦
⎤⎢⎣⎡=, 可得到N 级CIC 的旁瓣抑制 dB Q Q A DM Q Q
s )46.13(2
3lg 20)lg(
201⨯=⋅==π
α 分析一下发现在Q 级联时多出了Q DM 这个处理增益,因此分析一下尽量减少带内容差(通带衰减),即,在通带内,幅度应尽量平缓;下面就它的幅平响应曲线
来分析:
00()20lg ()
()20lg
()
p
s j a p jw a j a s jw a H e H e
H e H e αα==
1、
设在红线w1处抽取的信号带宽很窄,为无混叠信号的带宽,能很好的对窄带信号进行滤波,去除掉高频信号噪声;
且在绿线w2=2pi/DM-w1处衰减值足够大,则在其信号带宽内,红线到绿线,信号给CIC 滤
波器带来的混叠就可以忽略,计算此时阻带衰减:
)
2/sin()
2/sin(lg 20()(lg 2022012w DM w DM e H e H A jw j ==·
引入带宽比例因子b=B/(fs/DM ), B 为抽取信号的带宽,D 为抽取因子,M 为延时因子;fs 为输入端采样率,则w1=b*2pi/DM ;带入可化简得:b A lg 201-≈; (假设b=0.01;即fs=100MHz ,D=20,信号带宽为50khz,此时衰减为40dB);可见单级的CIC 滤波器的无混叠信号带宽内的阻带衰减能达到40dB;;并不怎么大,适用于较粗略的滤波,适合放在第一级抽取;如果采用级联的方式可以加大无混叠信号带宽;但是满足的通带不够窄;
2、在红线w1处幅度不能下降太多,通带内幅值容差不能太大,否则会引起高频失真;设
该带内容差为s δ,则,)()(lg 201
0jw j s e H e H =δ将w1带入可简化得)
sin(lg 20b b
s ππδ≈,当N 级时,其带内容差也会增大;由上面分析可知,阻带衰减和带内容差,只与带宽比例因子b 有关,D
f B
b s /=
,分析可知,在信号带宽一定的前提下,应尽可能采用小的抽取因子,或增大输入采样率;故一般把它放在抽取系统的第一级,所以在配置CIC 时,信号带宽,采样率,抽取因子,综合考虑,下面是阻带衰减和通带衰减的一个表:
表1:大抽取因子下的通带衰减
由CIC频幅响应图可以发现,幅频特性的零点位于1/M处(M取值为整数),这说明差分因子M决定了零点的位置;抽取因子D狭定了抽取后信号的采样频率,它同差分延时因子M一起还决定了主瓣和旁瓣的宽度;级数Q可以用来控制阻带衰减,Q越大阻带衰减越大,通带内的混叠就越小,但Q越大,通带内主瓣衰减也越大,所以Q不可太大,不宜超过5级。

显然,级数Q和差分延时因子M具有类似的作用,但它们完成这一作用所采取的方法却不一样,提高级数N 来减小混叠,其实质是通过加大阻带衰减来实现,而增加差分延时因子M来减少混叠,其实质是通过增大延时,改变混叠区域来实现的。

假设该信号工作在1M-30M 的频段,由带通采样定理,得fs=62MHz;假如中心频率为f0=10MHz;
假设要求把带宽为400kHz 、采样率为80MHz 的10MHz 的正弦信号降低为采样
率为800kHz 的信号,抽取因子为D=100=25*2^2; b=8
1
125.025/80400/====
M k D f B b s ;
设计带宽比例因子b=1/8;通带衰减可忽略;则CIC 滤波器可根据要求 通带衰减最大不得超过3dB ,阻带衰减不得低于60dB 。

由以上公式及上表查出,最好级联5级,差分延迟为1,可完成25倍抽取;半带滤波器完成级联2级的2倍抽取,完成4倍抽取;然后经过FIF 滤波器进行整形;下面是仿真:
下面是我假设的一个模型:
10M 的正弦信号+噪声
10M 的正弦信号
5级CIC ;抽取系数为25
Fs=80M
2级HB ,每级抽取系数为2
Fs=3.2MHz
FIR 低通滤波器
Fs=800kHz
数字基带信号。

相关文档
最新文档