大学物理第六章习题解答和分析
大学物理课后习题答案第六章
x解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取 dq1dl , dq 在带电圆环轴线上x 处产生的场强大小为dEdq4(x R )根据电荷分布的对称性知,E y E z 0dE x dE cos1 xdq4(x 2 R 2)'2第6章 真空中的静电场 习题及答案1.电荷为 q 和 2q 的两个点电荷分别置于 x 1m 和x 1m 处。
一试验电荷置于 x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 0位于点电荷 q 的右侧,它受到的合力才可能为0,所以2qq o qq o2 24 n o (x 1)4 n o (x 1)故 x 3 2 22.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2这种平衡与三角形的边长有无关系 ?解:(1)以A 处点电荷为研究对象,由力平衡知, q 为负电荷,所以(2)与三角形边长无关。
3.如图所示,半径为 R 、电荷线密度为 1的一个均匀带电圆环,在其轴线上放一长为I 、电荷线密度为 2的均匀带电直线段, 该线段的一端处于圆环中心处。
求该直线段受到的电场力。
2% cos30 a1 qqa)24nE xsin d4n 0R 2n 0R式中:为dq 到场点的连线与x 轴负向的夹角。
---------------------------------- 3dq4 o (x 2 R 2) 2x 1 2 R 1R x40 (x 2 R 2)'2 2 0(x 2 R 2)'2下面求直线段受到的电场力。
在直线段上取 dq2dx , dq受到的电场力大小为dF E x dq1 2只 ------- x ———dx2 0(x 2 R 2),2方向沿x 轴正方向。
大学物理第6章真空中的静电场课后习题及答案
⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
大学物理下答案第六章
(2)
6-25声波是流体或固体中的压缩波,在讨论声波时,讨论声波中的压强(即压力)变化要比讨论声波中质元的位移更方便些,可以证明,当声波的位移波函数为 时,对应于压力变化的波函数为
是相对于为扰动时压力 的压强变化值, 是介质的体密度。
(1)人耳能够忍受的强声波中的最大压强变化pm约为28N/m2(正常的大气压强约为1.0×105N/m2)若这一强度波的频率为1000Hz,试求这声波所对应的最大位移。
此时系统做振幅为A,圆频率为w的简振动。
6-7有一鸟类学家,他在野外观察到一种少见的大鸟落在一棵大树的细枝上,他想测得这只鸟的质量,但不能捉住来称量,于是灵机一动,测得这鸟在数枝上在4s内来回摆动了6次,等鸟飞走以后,他又用1kg的砝码系在大鸟原来落得位置上,测出树枝弯下了12cm,于是很快算出了这只鸟的质量。你认为这位鸟类学家是怎样算的?你想到了这种方法了吗?这只鸟的质量是多少?
6-44试解释弦乐器的以下现象:
(1)较松的弦发生的音调较低,而较紧的弦则音调较高;
(2)较细的弦发生的音调较高,而较粗的弦则音调较低(古人称之为“小弦大声,大弦小声”);
(3)正在振动的两端固定的弦,若用手指轻按弦的中点时,音调变高到两倍,若改按弦的三分之一处时,音调增至三倍;
(4)用力弹拨琴弦(而非用手指按弦)时,能同时听到若干音调各异的声音。(提示:音调高低与弦振动的频率成正比。此外,在(4)情形中弦以基频振动的同时还以若干泛频振动。)
试据此推导(6.11)、(6.12)及(6.40)式。
6-42海啸是一种波长约为几十至几百千米、在海水中传播的波动现象。它在深海区域并不易被察觉,但一旦海啸接近岸边往往会造成巨大的灾害。试从能量角度分析其中的原因。
大学物理(华中科技版)第6章习题解答
大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。
发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。
什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。
大学物理学(第三版上) 课后习题6答案详解
习题66.1选择题(1)一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A)它的动能转化为势能. (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.[答案:D ](2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2 (C)5π/4 (D)0[答案:A](3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为 (A)s v (B)s Bv uV u + (C)s B v V u u + (D) s Bv V u u-[答案:A]6.2填空题(1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。
[答案:0.5m ](2)一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是____,波长是____,频率是____,波的传播速度是____。
[答案:0.02;2.5;100;250/m m Hz m s ](3) 设入射波的表达式为])(2cos[1πλνπ++=xt A y ,波在x =0处反射,反射点为一固定端,则反射波的表达式为________________,驻波的表达式为____________________,入射波和反射波合成的驻波的波腹所在处的坐标为____________________。
[答案:)(2cos 2λνπxt A y -= ;2cos(2)cos(2)22x A t ππππνλ++ (21)4x k λ=-]6.3产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。
大学物理第6章习题参考答案
第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理第六章课后习题答案马文蔚第五版
第六章 静电场中的导体与电介质6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )d εqV d εq E 020π4,π4==(C )0,0==V E (D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理第六章课后习题答案
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理习题答案第六章
[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。
试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。
解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。
若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。
解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。
若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。
解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。
当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。
由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。
解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。
大学物理第06章恒定磁场习题解答
第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的 ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2. 下列关于磁感应线的描述,哪个是正确的 ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3. 磁场的高斯定理 0S d B说明了下面的哪些叙述是正确的 ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化 ( D )(A ) 增大,B 也增大;(B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。
5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少 ( C )(A )0; (B )R I 2/0 ;(C )R I 2/20 ; (D )R I /0 。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 117、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BI8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。
大学物理第06章 恒定磁场习题解答解读
第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3. 磁场的高斯定理⎰⎰=⋅0S d B说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。
5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BIS IIo8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。
大学物理课后习题答案(高教版 共三册)
第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。
解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。
解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。
大学物理课后答案第六章真空中的静电场
⼤学物理课后答案第六章真空中的静电场习题66-1 解:以x 轴上的点电荷Q 作为研究对象,其受q 的作⽤⼒具有对称性,所受合⼒沿x 轴,即F=qx Q x F F F 2+=其中:202)2(4a Q F Q πε=;02045cos 4aqQ F qx πε=所以:02020245cos 42)2(4a qQ a Q F πεπε+=令上式为零可得:q Q 22-= 6-2 解:据分析,3E 只能取垂直⽅向,D 点的场强如图所⽰:xa1q q 3(1)D 点的合场强的垂直分量为零,0cos 32=+E E θ,即32co s E E -=θ带⼊点电荷场强关系式,得203220422)2(41aq a q πεπε-=?C q 9310*9.9--= (2)22201021?+=+=a q a q E E E πεπε =m v /10*79.16-6-3 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解:如题6-3图所⽰(1)在带电直线上取线元x d ,其上电量q d 在P 点产⽣场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==?-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ0.5-?=λ1m C -?, 5.12=a cm 代⼊得21074.6?=P E 1C N -? ⽅向⽔平向右(2)同理 2220d d π41d +=x xE Q λε⽅向如题8-6图所⽰由于对称性?=l Qx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ?==lQyQy E E ?-+2223222)d (d l l x x2220d4π2+=l lελ0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代⼊得21096.14?==Qy Q E E 1C N -?,⽅向沿y 轴正向6-4 ⼀个半径为R 的均匀带电半圆环,电荷线密度为λ,求环⼼处O 点的场强.解: 如6-4图在圆上取?Rd dl =题6-4图λλd d d R l q ==,它在O 点产⽣场强⼤⼩为 20π4d d R R E ε?λ=⽅向沿半径向外则 ??ελd sin π4sin d d 0RE E x ==ελπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελελπ==0d cos π400=-=?ελπRE y∴ RE E x 0π2ελ=6-5解:如图所⽰,将半球⾯分割成⽆数半径不等环⾯与X 轴垂直的细圆环,图中圆环所带电荷量θθπλλγd ds dq sin 22==,该带电细圆环在O 点产⽣的电场强度为E d =()i xdqy x o224123+επ由⼏何关系,θγcos =x θγs i n =yγ222=+yx有 E d=()i xdq y x o224123+επ = επo41i dθθπσθγγγsin 2cos 2=i d oθθθσεcos sin 2球⼼处的电场强度:i i d E d E o oεεσθθθσπ4cos sin 220===??6-6解:将球⾯沿垂直于X轴的⽅向分割成⽆数半径不等的细圆环,圆中阴影环的带电荷量为:ααπσσRd R ds dq sin 2==在P 点的场强为:θααπσπεθπεαcos sin 241cos 42020r Rd R r d dE ?==(1)⽅向沿X 轴正⽅向(设0>α)如图由余弦定理θc o s 2222xy r x R -+=得: xrR r x 2cos 222-+=θ(2)⼜由余弦定理得:(3)式两边微分得:ααd Rx rdr sin 22= 得:xr dd R =ααs i n(4)将(1)、(2)、(3)式代⼊(1)式得:dr rR x x R rx R r x xr Rrdr E d 2222022220142241-+=-+?=εσπσπε(1)球⾯外(R x >)任⼀点P 的场强值+-= ?-+==x R x R x qdr r R x x R dE E 2022220414πεεσ(2)球⾯内:(R x <)+-=?-+==x R x R dr r R x x R dE E 01422220εσ6-7均匀带电的细线弯成正⽅形,边长为l ,总电量为q .求这正⽅形轴线上离中⼼为r 处的场强E .解: 如6-7图⽰,正⽅形⼀条边上电荷4q在P 点产⽣物强P E d ⽅向如图,⼤⼩为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=π4d 22220l r l l r E P ++=ελP Ed 在垂直于平⾯上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题6-7图由于对称性,P 点场强沿OP ⽅向,⼤⼩为2)4(π44d 422220l r l r lrE E P ++==⊥ελE P ++=ε⽅向沿OP6-8如题6-8)图所⽰,在点电荷q 的电场中取半径为R 的圆平⾯.q 在该平⾯轴线上的A 点处,求:通过圆平⾯的电通量.解:题6-8图∵通过半径为R 的圆平⾯的电通量等于通过半径为22x R +的球冠⾯的电通量,球冠⾯积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠⾯积的计算:见题8-9(c)图ααα)cos 1(π22α-=r6-9 解: ⾼斯定理0d ε∑?=?q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E15r =cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=3.98≈1C N -?,⽅向沿半径向外. 50r =cm 时,3π4∑=ρq -3(外r )内3r∴ ()33204π3 1.064πr r E r ρε-=≈外内 1C N -? 沿半径向外. 6-10 解:由⾼斯定理得:= dv s d E Sρε0球体内: E(r)? 4πr 2='rr k 041πεr d r ''2=4r k επ r e kr r E24)(ε= ,0球体外:4202414)(R R r d r r k r r E Rεππεπ=''?'=2044)(r rkR r Eε= (r>R ) 6-11 半径为1R 和2R (2R >1R )的两⽆限长同轴圆柱⾯,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: ⾼斯定理0d ε∑?=q S E s取同轴圆柱形⾼斯⾯,侧⾯积rl S π2=则 rl E S E Sπ2d =??对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >题6-12图6-12 两个⽆限⼤的平⾏平⾯都均匀带电,电荷的⾯密度分别为1σ和2σ,试求空间各处场强.解: 如题6-12图⽰,两带电平⾯均匀带电,电荷⾯密度分别为1σ与2σ,两⾯间, n E)(21210σσε-=1σ⾯外, n E)(21210σσε+-= 2σ⾯外, n E)(21210σσε+= n:垂直于两平⾯由1σ⾯指为2σ⾯.6-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去⼀块半径为r <R 的⼩球体,如题8-13图所⽰.试求:两球⼼O 与O '点的场强,并证明⼩球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀⼩球的组合,见题6-13图(a).(1) ρ+球在O 点产⽣电场010=E,ρ- 球在O 点产⽣电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产⽣电场'd π4d 3430301OO E ερπ=' ρ-球在O '产⽣电场002='E∴ O ' 点电场 003ερ='E'OO题6-13图(a) 题6-13图(b)(3)设空腔任⼀点P 相对O '的位⽮为r',相对O 点位⽮为r (如题6-13(b)图)E PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.6-15解:将这⼀平⾯看作是由⼀系列环带所组成,取以O 为圆⼼,半径为r, 宽度为dr 的环带作为⾯元,该⾯元所带电量为rdrds dq πσσ2=?=rdr dq πσ2=该带电圆环在其轴线上P 点处的电场强度E d的⽅向沿X 轴正向,其⼤⼩为2322023220)(2)(41r x rdrx r x xdqdE +??=+?=εσπε做积分可得轴线上P 点的总场强:+2122023220)(2)(2x R xr x rdr x E R +?=+?=?∞εσεσ6-16解:① aqa q a q a q U 0002334πεπεπεπε-=-+-+=② aqQQ U U A 0023)(πε-=?-=∞题6-17图6-17 如题6-17图所⽰,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另⼀正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场⼒作的功.解: 如题6-17图⽰0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=6-18 如题6-18图所⽰的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中⼼O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产⽣的场强互相抵消,取θd d R l =则θλd d R q =产⽣O 点Ed 如图,由于对称性,O 点场强沿y 轴负⽅向题6-18图θεθλππcos π4d d 222R E E y R 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产⽣电势,以0=∞U===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产⽣ 2ln π40 2ελ=U半圆环产⽣ 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 6-19解:⑴如图所⽰,建⽴坐标V ala x dx U la ap 300105.2ln 44?=+==?+πελπελV x b dxU l l Q 32220103.44?=+=?-πελ6—22解:⑴在板状圆环上取半径为为1r ,宽为dr 的环带作为⾯元,该⾯元的带电量为:rdr rdr ds dq πσπσσ22=?==该带电圆环在轴线上P 点的电势为21)(2)(42221220r x rdr r x dq dU +?=+=πσπε积分可得点P 的总电势+-+=+=+=212222022021222|2)(22121R x R x r x r x rdr U R R R R P εσεσεσ⑵⼩球在下落过程中,电场⼒和重⼒都在对⼩球做功,我们对⼩球应⽤质点动能定理,则有221mv A A =+电重下落过程中重⼒的做功为:mgx A =重电场⼒能做的功为:)(00U U q l d E q A p p--=?-=?电由第⼀问得的结果可知,环⼼处的电势为:)(21200R R U -=εσ由此可知,)(2)(2121221200R x R x R R q U U q A p +++--=--=εσ电将上述结果带⼊动能定理中得由此可得⼩球到环⼼O 处的速度为()121222212022??+++--+=R x R x R R gx v εσ6—23解:参考6—19题i xa ar x U E x z dzU p p aap 220220244+?=??-=+=?-πελπεσ。
大学物理电场部分答案
02/εδE o x 02/εδE o x2/εδ02/εδ-Eox 02/εδ02/εδ-oEx 第六章 电荷的电现象和磁现象序号 学号 姓名 专业、班级一 选择题[ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。
(B)带电体的线度很小。
(C)带电体的线度与其它有关长度相比可忽略不计。
(D)电量很小。
[ D ]2.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负)(A ) (B ) (C )(D )二 填空题1. 在点电荷系的电场中,任一点的电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。
2.静电场中某点的电场强度,其数值和方向等于_________略_______________________________________________________________________________________________________。
3.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示,试写出各区域的电场强度E。
Ⅰ区E 的大小 02εσ , 方向 向右 。
Ⅱ区E的大小23εσ , 方向 向右 。
δ-xoI II IIIσ2-σ02/εσ0/εσ02/2ε022εσⅢ区E的大小2εσ, 方向 向左 。
4.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。
则A 、B 两平面上的电荷面密度分别为A δ= 3/E 200ε- ,Bδ =3/E 400ε 。
三 计算题1.一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷 q ,如图所示,试以a , q , θ0表示出圆心O 处的电场强度。
大学物理第六章课后习题答案(马文蔚第五版)汇总
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理第六章习题解答和分析
6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。
解:波速ρ/E u =,波长νλ/u =0.4m λ==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-= (1)求波的振幅、波速、频率及波长; (2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.分析 与标准方程比较即可确定其特征参量。
解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = /2 2.5/2 1.25Hz νωπππ=== 2, 2.0m ππλλ== 2.5/u m s λν== (2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-= x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.题图6-2分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出 t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样?分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。
《大学物理》 第二版 课后习题答案 第六章
习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。
解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。
解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。
在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。
导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。
(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-1频率为、•. =1.25 104H Z的平面简谐纵波沿细长的金属棒传播,棒的弹性模量E =1.90 10N/m2,棒的密度匸=7.6 103Kg/m3.求该纵波的波长.分析纵波在固体中传播,波速由弹性模量与密度决定。
解:波速u = . E /「,波长,=u / :. ' - . E / ';、•:= 0.4m6-2 一横波在沿绳子传播时的波方程为:y = 0.04COS(2.5二t _「:x)(SI)(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;⑶分别画出t=1s和t=2s的波形,并指出波峰和波谷•画出x=1.0m处的质点的振动曲线并讨论其与波形图的不同•分析与标准方程比较即可确定其特征参量。
2兀解:(1)用比较法,由y =0.04COS(2.5二t - 二x)= Acosjt x)得A=0.04m 、=,/2二-2.5二/2二-1.25H Z2 ■: ,,=2.0m u = =2.5m/s(2)、m = A = 0.314m/s题图6-2(3)t=1(s)时波形方程为:% = 0.04COS(2.5二-二x)t=2(s)时波形方程为:y2=0.04COS®.-x)x=1(m)处的振动方程为:y = 0.04COS(2.5二t - 二)6-3 一简谐波沿x轴正方向传播,t=T/4时的波形图如题图6- 3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-n , n ].求各点的初相.o9jo分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。
依旋转矢量 法可求t=0时的各点的相位。
解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出 t=0时的波形图(图中实线),依旋转矢量法可知质点1的初相为n ; 质点2的初相为n 12; 质点3的初相为0; 质点4的初相为-n /2.题图6-36-4有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为讨=A cos ( 1),就图中给出的四种坐标,分别写出它们波的表达式•并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样 ?分析无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。
只要把各种情况中 b 的坐标值分别代入相应的波动方程就可求得b 点的振动规律。
解:设其波长为入,选o 点处为坐标原点,由方程y = A cos (・t 川::「) 可得取图中a 所示的坐标,则x 处质点的振动比 A 点滞后△ 2二,故点,波的表达式在形式上有所不同 但b 点的振动方程却不变.即xa. y = Acos (. 2窪::;;「)同理可得x小b. y = Acos ( t 2:,:;':) kc. y=Acos ( t _ ~~ 2 ‘ 亠「)x - |d. y = Acos ( t 2 ■亠 '■')k要求距A 为b 的点的振动规律,只要 把各种情况中b 的坐标值分别代入相 应的波动方程就可求得•从结果可知 取不\y—A UXo A b题图6-4 i vy = Acos(,t - * 2 ‘ 亠「)6-5 一平面简谐波沿x轴正向传播,其振幅为A,频率为、..,波速为u.设t =t'时刻的波形曲线如题图6- 5所示.求(1)x=0处质点振动方程;⑵该波的波方程.分析由于图中是t'时刻波形图,因此,对x=0处质点,由图得出的相位也为t'时刻的相位。
再由旋转矢量推算出t=0时刻的初相位。
进而写出波动方程。
解:(1)设x =0处质点的振动方程为y 二Acos[2「. (t -t')订由图可知, t 二t'时y 二A cos =0 , \ = -A,si n」:;:0x =0处的振动方程为:1y = Acos[2略:(t -t') ]2(2)该波的表达式为:y 二Acos[2> (t -t'-x/u)丄二]26-6 一平面简谐波沿x轴正向传播,波的振幅A = 10cm,波的角频率■ ■ = 7-rad /s,当t=1.0s时,x=10cm处的a质点正通过其平衡位置向y轴负方向运动,而x=20cm处的b质点正通过y =5.0cm点向y轴正方向运动.设该波波长■ 10cm,求该平面波的波方程.分析通过旋转矢量图法,结合x =10cm点和x =20cm点,在t =1.0s的运动状态,可得到波长和初相。
解:设平面简谐波的波长为■,坐标原点处质点振动初相为,则该列平面简谐波的表达式可写成y =0.1cos(7 二t-2二x/■J(SI)t =1.0s 时x=10cm 处y =0.1cos[7二-2二(0.1/■ ) ] =0因此时a质点向y轴负方向运动,故17二-2二(0.1/ ' ) (1)2而此时,b质点正通过y =0.05m处,有y =0.1COS[7H -2二(0.2/ J亠門二0.05,且质点b向y轴正方向运动,故17 二-2二(0.2 / •) (2)由⑴、(2)两式联立得■ = 0.24m , = -17门./ 3所以,该平面简谐波的表达式为:y =0.1COS[7二t X 17二](SI)0.12 36-7已知一平面简谐波的波方程为y =0.25cos(125t-0.37X)(SI)(1) 分别求x1=10m,x2=25m两点处质点的振动方程;⑵求X1、X2两点间的振动相位差;⑶求X1点在t=4s时的振动位移.分析波方程中如果已知某点的位置即转化为某点的振动方程。
直接求解两点的振动相位差和某时刻的振动位移。
解:⑴X1 =10m、X2 =25m的振动方程分别为:y x却=0.25cos(125t—3.7)(SI),y|X=25 =0.25cos(125t -9.25)(SI)(2) X2与X1两点间相位差丄'■ = 2 - \ = -5.55rad⑶兀点在t=4s时的振动位移y =0.25cos(125 4 -3.7) = 0.249m6-8如题图6-8所示,一平面波在介质中以波速u=20m/s沿X轴负方向传播,已知的振动方程为y =3 10’cos4二t(SI).(1)以A点为坐标原点写出波方程;⑵以距A点5m处的B点为坐标原点,写出波方程分析由波相对坐标轴的传播方向和已知点的振动方程直接写出波方程。
解:(1)坐标为X处质点的振动相位为t := 4 二[t (x/u)] =4 二[t (X/20)]⑵以B点为坐标原点,则坐标为x点的振动相位为B A 题图6-8波的表达式为y = 3 10絃cos4二[t (X/20)](SI)x _ 54 ' = 4:.[t ](SI)20x波的表达式为y=3 10,cos[4「:(t )-二](SI)206-9有一平面简谐波在介质中传播,波速u =100m/s,波线上右侧距波源0(坐标原点)为75m处的一点P的运动方程为y = 0.30 cos(2二t亠‘ / 2)(SI),求:(1)波向x轴正向传播的波方程;⑵波向x轴负向传播的波方程•分析先根据假设的标准波方程表示已知点P的振动方程,并与实际给出的P点方程比较求出特征量,进而求解波方程。
解:(1)设以x = 0处为波源,沿轴正向传播的波方程为:y 二Acos[,(t -x/u) 0]在上式中,代入x =75m,并与该处实际的振动方程y =0.30cos(2二t •二/2)比较可得:A = 0.3m, =2 二s」,0 =2 二,可得:y =0.30cos(2二tx)(SI)为所求100⑵设沿轴负向传播的波方程为:y = Acos[ ■ (t ■ x/u):;":「'0]在上式中,代入x =75m,并与该处实际的振动方程y = 0.30cos(2二t •二/2)比较可得:A =0.3m,,=2二s」,0口-^2兀可得:y =0.30cos[2 二t x](SI)为所求1006-10 一平面谐波沿ox轴的负方向传播,波长为入,P点处质点的振动规律如题图6- 10所示•求:(1)P点处质点的振动方程;(2)此波的波动方程;(3)若图中d 二/2,求O点处质点的振动方程.分析首先由已知振动规律结合旋转矢量图可得P点振动的初相与周期,从而得到其振动方程。
波动方程则由P与原点的距离直接得到。
波动方程中直接代入某点的坐标就可求出该点的振动方程。
解:(1)从图中可见T =4s,且t =0,yp°=-A,. 「°二二,则P点处质点的振动方程为22TL 兀 y p = Acos( 4 t •二)=Acosq t 亠■ )(SI)(2)向负方向传播的波动方程为 兀 x —d y = A cos[ (t )二] 2 h d H~*1-•AOPx(3)把d =雹.」2, x =0代入波动方程即得 y 0 = Acos[ (t2兀 一人/2 兀 3兀)二]二 Acos( t )24 6-11 一平面简谐波的频率为 500H z ,在空气(r =1.3Kg/m 3)中以340m/s 的速度传播,达到人耳时的振幅为 1.0 10-6m .试求波在人耳中的平均能量密度和声强 .解:波在耳中的平均能量密度: w J y 2宀A 2. 2 =6.41 10^J /m 3 2 声强就是声波的能流密度,即: I 二uw =2.18 10‘W/m 2分析 平均能量密度公式直接求解。
声强即是声波的能流密度。
6-12 一正弦空气波,沿直径为0.14m 的圆柱形管传播,波的平均强度为9 10」J/sm 2频率为300Hz,波速为300m/s .求: (1) 波中的平均能量密度和最大的能量密度各是多少 ? (2) 每两个相邻同相面间的波段中含有多少能量 ? 分析平均能量密度为其在一个周期内的平均值,为最大值的一半。
两个相邻同相面既是 相距一个波长的距离的波段。
解:(1) 71 =w v -I 910;J5 3 .w 3 10 J/m v 300又:W max = 2w 5 3W max =6 10 J /m ⑵两个相邻同相面间的波段所对应的体积为22—42f0.14[ 300 …心 31.54 10 m 32300W =wv =4.62 10^J6- 13在均匀介质中,有两列余弦波沿Ox轴传播,波动表达式分别为y/i = Acos[2「:(讥-x/,)]与y2 =2Acos[2「:(讥x/ ■)],试求Ox轴上合振幅最大与合振幅最小的那些点的位置。
分析合振幅大小由相位差确定。
解: (1)设合振幅最大处的合振幅为A max,有Am a^(2A)2A22A 2Acos :式中."■:■- - 4二x/,因为当cos.厂=1时,合振幅最大,即有4二x/,- _2k二一1所以,合振幅最大的点x k;,.( k=0,1,2,…)2⑵设合振幅最小处的合振幅为A min,有A m i^(2A)2A22A 2Acos :■-式中.■: '■ = 4二x/,因为当cos." - -1时,合振幅最小,即有4二x/.;.二(2k - 1)7:所以,合振幅最小的点X h'(2k・1),/4 (k=0,1,2,…)16-14相干波源0和S2,相距11m, 0的相位比S2超前.这两个相干波在S、S2连线和延长线上传播时可看成两等幅的平面余弦波,它们的频率都等于100Hz,波速都等于400m/s.试求在S]、S2的连线之间,因干涉而静止不动的各点位置分析首先确定两相干波连线上任意点两波的相位差,再根据干涉静止条件确定位置。