二级齿轮减速器外文翻译解读资料讲解
中英LC系列两级硬齿面圆柱齿轮减速机
目录
Content
1. 概述(General)………………………………………………………………………2 2. 工作条件(Working condition)…………………………………………………2 3. 安装,调试(Installation and commissioning)………………………………3 4. 使用与维护(Application and maintenance)……………………………………5 5. 润滑(Lubrication)……………………………………………………………………9 6. 减速机的轴承及油封(Bearing and shaft seal of reducer)……………………11 7. 故障分析与处理(Trouble analyzing and shooting)……………………………………12 8. 减速机加油量(Filling oil amount of reducer)………………………………13
使 用 说 明 书
ISO9001Certified ISO9001 认证企业
Production Enterprise Certified by the Ministry of Chemical Industry 化工部定点企业
ZHE JIANG GREAT WALL REDUCER CO., LTD. 浙江长城减速机有限公司
Coaxial reducers with two stages and hard cylindrical gear are suitable for various equipments, especially for vertical power transmission agitating equipment on vessel. It is smooth in transmission, low in noise, high in efficiency, strong in load, compact in structure, and light in weight. It can match with several motors, stepless transmissions, pedestals, couplings and shaft seals as well as explosion-proof and diverse parameter. 1.2 本系列减速机分 LC 型(立式)、LC(A)型(立式改进型:增设润滑油泵,采用循环喷 油润滑以提高传动效率,增设密封装置提高密封性能)、LCW 型(卧式)等三种机型。
二级减速器(斜齿轮)说明书
目录1 设计任务书 (1)1.1 设计题目 (1)1.2 设计任务 (1)1.3 具体作业 (1)1.4 数据表 (2)2 选择电动机 (3)2.1 电动机类型的选择 (3)2.2 确定传动装置的效率 (3)2.3 选择电动机容量 (3)2.4 确定传动装置的总传动比和分配传动比 (4)2.4.1 总传动比的计算 (4)2.4.2 分配传动装置传动比 (4)3 计算传动装置的参数 (5)3.1 电动机输出参数 (5)3.2 高速轴的参数 (5)3.3 中间轴的参数 (5)3.4 低速轴的参数 (5)3.5 工作机的参数 (6)3.6 各轴的数据汇总 (6)4 普通V带设计计算 (7)4.1 已知条件和设计内容 (7)4.2 设计计算步骤 (7)4.2.1 确定计算功率 (7)4.2.2 选择V带的带型 (7)4.2.3 确定带轮的基准直径并验算带速 (7)L (7)4.2.4 从确定V带的中心距a和基准长度d (8)4.2.5 验算小带轮的包角14.2.6 计算带的根数z (8)F (9)4.2.7 计算作用在带轮轴上的压力Q5 减速器齿轮设计 (10)5.1 选择齿轮的材料及确定许用应力 (10)5.2 按齿轮弯曲强度设计计算 (10)5.2.1 计算第一对齿轮(高速轴与中间轴) (10)5.2.2 计算第二对齿轮(中间轴与低速轴) (11)6 轴的设计 (14)6.1 高速轴尺寸设计计算 (14)6.1.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (14)6.1.2 轴的尺寸设计 (14)6.2 中间轴尺寸的设计计算 (15)6.2.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (15)6.2.2 轴的尺寸设计 (16)6.3 低速轴尺寸设计计算 (17)6.3.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (17)6.3.2 轴的尺寸设计 (17)7 轴的校核计算 (19)7.1 高速轴的校核 (19)7.1.1 轴受力计算 (19)7.2 中间轴的校核 (21)7.2.1 轴受力计算 (22)7.2.2 计算危险截面处轴的最小直径 (25)7.3 低速轴的校核 (25)7.3.1 轴受力计算 (25)7.3.2 计算危险截面处轴的最小直径 (26)8 滚动轴承寿命校核 (28)8.1 高速轴上的轴承寿命校核 (28)8.1.1 计算当量动载荷 (28)8.1.2 计算轴承承受的额定动载荷 (28)8.2 中间轴上的轴承寿命校核 (29)8.2.1 计算当量动载荷 (29)8.2.2 计算轴承承受的额定动载荷 (29)8.3 低速轴上的轴承寿命校核 (29)8.3.1 计算当量动载荷 (29)8.3.2 计算轴承承受的额定动载荷 (30)9 键联接设计计算 (31)9.1 高速轴上键的校核 (31)9.2 中间轴上键的校核 (31)9.3 低速轴上键的校核 (31)10 联轴器的校核 (32)11 润滑及密封类型选择 (33)11.1 润滑方式 (33)11.2 密封类型的选择 (33)11.3 轴承箱体内,外侧的密封 (33)12 减速器箱体主要结构尺寸 (34)13 结论与展望 (36)参考文献 (37)1 设计任务书1.1设计题目示。
二级圆锥圆柱齿轮减速器说明书
前言本设计为带式运输机传动装置,其工作平稳,使用较为广泛,主要结构包括电动机,减速器以及链轮,根据工作要求,为小功率传动,选择二级圆锥-圆柱圆柱齿轮减速器。
减速器是原动机和工作机之间的封闭式传动装置,用来减低转速和增大转矩的以满足各种工作的需要,二级齿轮减速器结构简单,但齿轮相对于轴承的位置不对称,要求轴有较大的刚度,高速既齿轮布置在远离转矩输入端,这样,轴在转矩的作用下产生的扭矩变形和在载荷作用下轴产生的弯曲变形可部分相互抵消,以缓解沿齿宽载荷分布不均匀的现象。
当今的减去器的发展正朝向大功率、大传动比、小体积、高效率、高寿命的方向。
在现代机械行业起着较大的作用,种类也更趋于多样化。
通过本次对减速器的设计,能使我加深对减速器的理解,和对机械行业的认识。
关键词:链式传输机二级圆锥-圆柱齿轮减速器课程设计机械设计任务书姓名:班级:学号:设计题目:设计用于链式运输机的二级圆锥-圆柱齿轮减速器运动简图:工作条件传动不逆转,载荷平稳,小批量生产,起动载荷为名义载荷的1.25倍。
输送带速度允许误差为±5% 。
原始数据已知条件题号F3输送链工作拉力F(N)3500运输链工作速度V(m/s)1.0运输链齿数Z 10运输链节距P(mm)60每日工作时数T(h) 16传动工作年限(年)10设计工作量1.减速器装配图1张(0号、计算机绘图);2.工作图:零件图2张(计算机绘图1张,手工1张)3.设计计算说明书1份(6000~8000字)。
指导教师:开始日期:2015年12月07日完成日期:2015年12月27日目录第一章电动机选择 (3)1.1选择电动机类型 (3)1.2选择电机容量 (3)1.3确定电动机转速 (4)第二章减速器外传动计算 (4)2.1选择链轮齿数 (4)2.2确定计算功率 (4)2.3选择链型和节距 (5)2.4确定电动机型号、转速 (5)2.5计算链节数和中心距 (5)第三章计算、分配传动比 (6)3.1计算装置总传动比 (6)3.2分配各级传动比 (6)第四章各轴动力参数好运动参数的计算 (6)第五章第一级传动计算 (7)5.1选定齿轮类型、精度等级、材料及齿数 (7)5.2按齿面接触疲劳强度设计 (7)5.2.1小齿轮分度圆直径 (7)5.2.2调整小齿轮分度圆直径 (8)5.3按齿根弯曲疲劳强度设计 (9)5.3.1齿轮模数 (9)5.3.2调整齿轮模数 (11)5.4计算几何尺寸 (12)第六章第二级传动计算 (12)6.1选定齿轮类型、精度等级、材料及齿数 (12)6.2按齿面接触疲劳强度设计 (12)6.2.1小齿轮分度圆直径 (12)6.2.2调整小齿轮分度圆直径 (14)6.3按齿根弯曲疲劳强度设计 (15)6.3.1齿轮模数 (15)6.3.2调整齿轮模数 (16)6.4计算几何尺寸 (18)第七章联轴器 (18)7.1联轴器类型 (18)7.2联轴器的计算转矩和型号 (18)第八章轴的结构设计 (19)8.1输入轴的结构设计 (19)8.1.1按扭转强度条件确定最小轴径 (19)8.1.2结构设计 (19)8.2中间轴的结构设计 (20)8.2.1按扭转强度确定轴的最小直径 (20)8.2.2结构设计 (21)8.3输出轴的结构设计 (21)8.3.1按扭转强度条件确定州的最小轴径 (21)8.3.2结构设计 (22)第九章轴的强度校核 (23)9.1输入轴强度校核 (23)9.1.1载荷分析 (23)9.1.2按弯扭组合应力校核轴强度 (24)9.2中间轴强度校核 (25)9.2.1载荷分析 (25)9.2.2按弯扭组合应力校核轴强度 (26)9.3输出轴的强度校核 (27)9.3.1载荷分析 (27)9.3.2按弯扭组合应力校核轴强度 (28)第十章键的选择与强度校核 (29)10.1输入轴 (29)10.2中间轴 (29)10.3输出轴 (30)第十一章齿轮的结构设计 (30)第十二章选择润滑方式 (30)第十三章箱体结构设计 (31)第十四章箱体附件 (32)齐齐哈尔大学机电学院设计专用纸设计项目计算及说明主要结论第一章电动机选择1.1选择电动机类型按已知工作要求和条件,选用Y系列一般用途全封闭自扇冷鼠笼型三相异步电机。
汽车主减速器外文文献翻译、中英文翻译、外文翻译
汽车主减速器外文文献翻译、中英文翻译、外文翻译AUTOMOTIWE FINAL DRIVEFINAL DRIVEA final drive is that part of a power transmission system between the drive shaft and the differential. Its function is to change the direction of the power transmitted by the drive shaft through 90 degrees to the driving axles. At the same time. it provides a fixed reduction between the speed of the drive shaft and the axle driving the wheels.The reduction or gear ratio of the final drive is determined by dividing the number of teeth on the ring gear by the number of teeth on the pinion gear. In passenger vehicles, this speed reduction varies from about 3:1 to 5:1. In trucks it varies from about 5:1 to 11:1. To calculate rear axle ratio, count the number of teeth on each gear. Then divide the number of pinion teeth into the number of ring gear teeth. For example, if the pinion gear has 10 teeth and the ring gear has 30 (30 divided by 10), the rear axle ratio would be 3:1. Manufacturers install a rear axle ratio that provides a compromise between performance and economy. The average passenger car ratio is 3.50:1.The higher axle ratio, 4.11:1 for instance, would increase acceleration and pulling power but would decrease fuel economy. The engine would have to run at a higher rpm to maintain an equal cruising speed.The lower axle ratio. 3:1, would reduce acceleration and pulling power but would increase fuel mileage. The engine would run at a lower rpm while maintaining the same speed.The major components of the final driveinclude the pinion gear, connected to the drive shaft, and a bevel gear or ring gearthat is bolted or riveted to the differential carrier. To maintain accurate and proper alignment and tooth contact, the ring gear and differential assembly are mounted in bearings. The bevel drive pinion is supported by two tapered roller bearings, mounted in the differential carrier. This pinion shaft is straddle mounted. meaning that a bearing is located on each side of the pinion shaft teeth. Oil seals prevent the loss of lubricant from the housing where the pinion shaft and axle shafts protrude. As a mechanic, you willencounter the final drive gears in the spiral bevel and hypoid design.Spiral Bevel GearSpiral bevel gears have curved gear teeth with the pinion and ring gear on the same center line. This type of final drive is used extensively in truck and occasionally in older automobiles. This design allows for constant contact between the ring gear and pinion. It also necessitates the use of heavy grade lubricants.Hypoid GearThe hypoid gear final drive is an improvement or variation of the spiral bevel design and is commonly used in light and medium trucks and all domestic rear- wheel drive automobiles. Hypoid gears have replaced spiral bevel gears because they lower the hump in the floor of the vehicle and improve gear-meshing action. As you can see in figure 5-13, the pinion meshes with the ring gear below the center line and is at a slight angle (less than 90 degrees).Figure 5-13.—Types of final drives.This angle and the use of heavier (larger) teeth permit an increased amount of power to be transmitted while the size of the ring gear and housing remain constant. The tooth design is similar to the spiral bevel but includes some of thecharacteristics of the worm gear. This permits the reduced drive angle. The hypoid gear teeth have a more pronounced curve and steeper angle, resulting in larger tooth areas and more teeth to be in contact at the same time. With more than one gear tooth in contact, a hypoid design increases gear life and reduces gear noise. The wiping action of the teeth causes heavy tooth pressure that requires the use of heavy grade lubricants.Double-Reduction Final DriveIn the final drives shown in figure 5-13, there is a single fixed gear reduction. This is the only gear reduction in most automobiles and light- and some medium-duty trucks between the drive shaft and the wheels.Double-reduction final drives are used for heavy- duty trucks. With this arrangement (fig. 5-14) it is not necessary to have alarge ring gear to get the necessary gear reduction. The first gear reduction is obtained through a pinion and ring gear as the single fixed gear reduction final drive. Referring to figure 5-14, notice that the secondary pinion is mounted on the primary ring gear shaft. The second gear reduction is the result of the secondary pinion which is rigidly attached to the primary ring gear, driving a large helical gear which is attached to the differential case. Double-reduction final drives may be found on military design vehicles, such as the 5-ton truck. Many commercially designed vehicles of this size use a single- or double-reduction final drive with provisions for two speeds to be incorporatedFigure 5-14.—Double-reduction final driveTwo-Speed Final DriveThe two-speed or dual-ratio final drive is used to supplement the gearing of the other drive train components and is used in vehicles with a single drive axle (fig. 5-15). The operator can select the range or speed of this axle with a button on the shifting lever of the transmission or by a lever through linkage The two-speed final drive doubles the number of gear ratios available for driving the vehicle under various load and road conditions. For example, a vehicle with a two-speed unit and a five-speed transmission, ten different forward speeds are available. This unit provides a gear ratio high enough to permit pulling a heavy load up steep grades and a low ratio to permit the vehicle to run at high speeds with a light load or no load The conventional spiral bevel pinion and ring gear drives the two-speed unit, but aplanetary gear train is placed between the differential drive ring gear and the differential case. The internal gear of the planetary gear train is bolted rigidly to the bevel drive gear. A ring on which the planetary gears are pivoted is bolted to the differential case. A member, consisting of the sun gear and a dog clutch, slides on one of the axle shafts and is controlled through a button or lever accessible to the operatorWhen in high range, the sun gear meshes with the internal teeth on the ring carrying the planetary gears and disengages the dog clutch from the left bearing adjusting ring, which is rigidly held in the differential carrier. In this position, the planetary gear train is locked together. There is no relative motion between the differential case and the gears in the planetary drive train. The differential case is driven directly by the differential ring gear, the same as in the conventional single fixed gear final drive.When shifted into low range, the sun gear is slid out of mesh with the ring carrying the planetary gears. The dog clutch makes a rigid connection with the left bearing adjusting ring. Because the sun gear is integral with the dog clutch, it is also locked to the bearing adjusting rings and remains stationary. The internal gear rotates the planetary gears around the stationary sun gear, and the differential case is driven by the ring on which the planetary gears are pivoted. This action produces the gear reduction, or low speed, of the axleDIFFERENTIAL ACTIONThe rear wheels of a vehicle do not always turn at the same speed. When the vehicle is turning or when tire diameters differ slightly, the rear wheels must rotate at different speeds.If there were a solid connection between each axle and the differential case, the tires would tend to slide, squeal, and wear whenever the operator turned the steering wheel of the vehicle.A differential is designed to prevent this problem.Driving Straight AheadWhen a vehicle is driving straight ahead, the ring gear, the differential case, the differential pinion gears, and the differential side gears turn as a unit. The two differential pinion gears do NOT rotate on the pinion shaft, because they exert equal force on the side gears. As a result, the side gears turn at the same speed as the ring gear, causing both rear wheels to turn at the same speed.Turning CornersWhen the vehicle begins to round a curve, the differential pinion gears rotate on the pinion shaft. This occurs because the pinion gears must walk around the slower turning differential side gear. Therefore, the pinion gears carry additional rotary motion to the faster turning outer wheel on the turn..Differential speed is considered to be 100 percent. The rotating action of the pinion gears carries 90 percent of this speed to the slowing mover inner wheel and sends 110 percent of the speed to the faster rotating outer wheel. This action allows the vehicle to make the turn without sliding or squealing the wheels.Figure 5-15.—Two speed final drive汽车主减速器主减速器主减速器是在传动轴和差速器之间的一个动力传动系统的组成部分。
二级齿轮减速器说明书
二级齿轮减速器说明书目录1.目录---------------------------------------------------12.摘要---------------------------------------------------33.计任务书-----------------------------------------------44.传动方案的拟定-----------------------------------------54.1拟定传动方案--------------------------------------------54.2确定减速器结构和零部件类型------------------------------55.电机的选择及传动装置的运动和动力参数的计算-------------6 5.1电机类型和结构形式的选择--------------------------------65.2选择电机的容量------------------------------------------65.3确定电机转速--------------------------------------------75.4 传动比分配----------------------------------------------85.5 传动装置各轴的运动和动力参数----------------------------96.传动零件的设计计算-------------------------------------106.1带轮的设计计算------------------------------------------106.2高速级齿轮的设计计算------------------------------------136.3低速级齿轮的设计计算------------------------------------187.轴的计算-----------------------------------------------247.1高速轴的计算--------------------------------------------247.2中间轴的计算--------------------------------------------277.3低速轴的计算--------------------------------------------308.键连接的选择和计算-------------------------------------318.1 高速轴(I轴)上键的选择及校核--------------------------31 8.2 中间轴(II轴)上键的选择及校核-------------------------318.3 高速轴(III轴)上键的选择及校核------------------------329.滚动轴承的选择和计算-----------------------------------3310.联轴器的选择和计算-------------------------------------3611.参考资料-----------------------------------------------372摘要机械设计课程设计主要是培养理论联系实际的设计思想。
二级圆柱齿轮减速器说明书
目录一、前言 (2)1.作用意义 (2)2.传动方案规划 (2)二、电机的选择及主要性能的计算 (3)1.电机的选择 (3)2.传动比的确定 (3)3.传动功率的计算 (4)三、结构设计 (6)1.齿轮的计算 (6)2.轴与轴承的选择计算 (9)3.轴的校核计算 (11)4.键的计算 (14)5.箱体结构设计 (14)四、加工使用说明 (16)1.技术要求 (16)2.使用说明 (16)五、结束语 (17)参考文献 (18)一、前言1. 作用及意义机器一般是由原动机、传动装置和工作装置组成。
传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。
传动装置是否合理将直接影响机器的工作性能、重量和成本。
合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。
传动方案采用了两级传动,第一级传动为二级直齿圆柱齿轮减速器,第二级传动为链传动。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。
本设计采用的是二级直齿轮传动(说明直齿轮传动的优缺点)。
说明减速器的结构特点、材料选择和应用场合。
综合运用机械设计基础、机械制造基础的知识和绘图技能,完成传动装置的测绘与分析,通过这一过程全面了解一个机械产品所涉及的结构、强度、制造、装配以及表达等方面的知识,培养综合分析、实际解决工程问题的能力,2. 传动方案规划原始条件:胶带运输机由电动机通过减速器减速后通过链条传动(传动比为2,传动效率为0.88),连续单向远传输送谷物类散粒物料,工作载荷较平稳,设计寿命10年,每天工作8小时,每年300工作日,运输带速允许误差为%5 。
原始数据:运输机工作拉力 )/(N F 2400 运输带工作转速)//(s m v 2.1 卷筒直径 mm D / 300二、电机的选择及主要性能参数计算1.电动机的选择⑴电机类型的选择,按已知工作要求和条件选用Y 系列一般用途的全封闭自扇鼠笼型三相异步电动机,电压380V⑵电动机的选择 滚筒工作所需功率为:kW Fv P 88.210002.124001000=⨯==ω确定各个部分的传动效率为:链条传动效率88.01=η,滚动轴承效率(一对)98.02=η,闭式齿轮传动效率97.03=η,二级减速器传动效率96.04=η,带入得 733.096.097.098.088.024423421=⨯⨯⨯==ηηηηη所需电动机功率为:kW P P d 93.3733.088.2===ηω因载荷平稳,电动机额定功率P ed 大于P d ,查电动机技术数据选择电动机的额定功率为5.5kW 。
二级斜齿圆柱齿轮减速器
山东交通学院2010届毕业生毕业设计任务书题目:两级斜齿圆柱齿轮减速器结构设计和三维实体设计专业:机械设计制造及其自动化班级:机械063学号:**********名:**指导教师:***完成日期:2010 年月日设计任务书发题时间:年月日预计完成时间:年月日毕业设计开题报告书题目:两级斜齿圆柱齿轮减速器结构设计和三维实体设计专业:机械设计制造及其自动化班级:机械063学号:060611328姓名:王飞指导教师:张秀芳年月日开题报告书第一页开题报告书第二页一、毕业设计相关软件Solidworks简介Solidworks公司是专业从事三维机械设计、工程分析和产品数据管理软件开发和营销的跨国公司,其软件产品Solidworks提供一系列的三维(3D)设计产品,帮助设计师减少设计时间,增加精确性,提高设计的创新性,并将产品更快推向市场。
Solidworks软件组成:➢2D到3D转换工具将2D工程图拖到SolidWorks工程图中的功能;支持包括外部参考的可重复使用2D几何;视图折叠工具,可以从DWG资料产生3D 模型。
➢内置零件分析测试零件设计,分析设计的完整性。
➢机器设计工具具有整套熔接结构设计和文件工具,以及完全关联的钣金功能。
➢模具设计工具测试塑料射出制模零件的可制造性。
➢消费产品设计工具保持设计中曲率的连续性,以及产品薄壁的内凹零件,可加速消费性产品的设计。
➢对现成零组件的线上存取让3D CAD系统使用者透过市场上领先的线上目录使用现在的零组件。
➢模型组态管理在一个文件中产生零件或零组件模型的多个设计变化,简化设计的重复使用。
➢零件模型建构利用伸长、旋转、薄件特征、进阶薄壳、特征复制排列和钻孔来产生设计。
➢曲面设计使用有导引曲线的叠层拉伸和扫出产生复杂曲面、填空钻孔,拖曳控制点以进行简单的相切控制。
直观地修剪、延伸、图化、缝织曲面、缩放和复制排列曲面。
二、研究该齿轮减速器的目的、意义齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。
二级圆锥圆柱齿轮减速器说明书
前言本设计为带式运输机传动装置,其工作平稳,使用较为广泛,主要结构包括电动机,减速器以及链轮,根据工作要求,为小功率传动,选择二级圆锥-圆柱圆柱齿轮减速器。
减速器是原动机和工作机之间的封闭式传动装置,用来减低转速和增大转矩的以满足各种工作的需要,二级齿轮减速器结构简单,但齿轮相对于轴承的位置不对称,要求轴有较大的刚度,高速既齿轮布置在远离转矩输入端,这样,轴在转矩的作用下产生的扭矩变形和在载荷作用下轴产生的弯曲变形可部分相互抵消,以缓解沿齿宽载荷分布不均匀的现象。
当今的减去器的发展正朝向大功率、大传动比、小体积、高效率、高寿命的方向。
在现代机械行业起着较大的作用,种类也更趋于多样化。
通过本次对减速器的设计,能使我加深对减速器的理解,和对机械行业的认识。
关键词:链式传输机二级圆锥-圆柱齿轮减速器课程设计机械设计任务书姓名:班级:学号:设计题目:设计用于链式运输机的二级圆锥-圆柱齿轮减速器运动简图:工作条件传动不逆转,载荷平稳,小批量生产,起动载荷为名义载荷的1.25倍。
输送带速度允许误差为±5% 。
原始数据已知条件题号F3输送链工作拉力F(N)3500运输链工作速度V(m/s)1.0运输链齿数Z 10运输链节距P(mm)60每日工作时数T(h) 16传动工作年限(年)10设计工作量1.减速器装配图1张(0号、计算机绘图);2.工作图:零件图2张(计算机绘图1张,手工1张)3.设计计算说明书1份(6000~8000字)。
指导教师:开始日期:2015年12月07日完成日期:2015年12月27日目录第一章电动机选择 (3)1.1选择电动机类型 (3)1.2选择电机容量 (3)1.3确定电动机转速 (4)第二章减速器外传动计算 (4)2.1选择链轮齿数 (4)2.2确定计算功率 (4)2.3选择链型和节距 (5)2.4确定电动机型号、转速 (5)2.5计算链节数和中心距 (5)第三章计算、分配传动比 (6)3.1计算装置总传动比 (6)3.2分配各级传动比 (6)第四章各轴动力参数好运动参数的计算 (6)第五章第一级传动计算 (7)5.1选定齿轮类型、精度等级、材料及齿数 (7)5.2按齿面接触疲劳强度设计 (7)5.2.1小齿轮分度圆直径 (7)5.2.2调整小齿轮分度圆直径 (8)5.3按齿根弯曲疲劳强度设计 (9)5.3.1齿轮模数 (9)5.3.2调整齿轮模数 (11)5.4计算几何尺寸 (12)第六章第二级传动计算 (12)6.1选定齿轮类型、精度等级、材料及齿数 (12)6.2按齿面接触疲劳强度设计 (12)6.2.1小齿轮分度圆直径 (12)6.2.2调整小齿轮分度圆直径 (14)6.3按齿根弯曲疲劳强度设计 (15)6.3.1齿轮模数 (15)6.3.2调整齿轮模数 (16)6.4计算几何尺寸 (18)第七章联轴器 (18)7.1联轴器类型 (18)7.2联轴器的计算转矩和型号 (18)第八章轴的结构设计 (19)8.1输入轴的结构设计 (19)8.1.1按扭转强度条件确定最小轴径 (19)8.1.2结构设计 (19)8.2中间轴的结构设计 (20)8.2.1按扭转强度确定轴的最小直径 (20)8.2.2结构设计 (21)8.3输出轴的结构设计 (21)8.3.1按扭转强度条件确定州的最小轴径 (21)8.3.2结构设计 (22)第九章轴的强度校核 (23)9.1输入轴强度校核 (23)9.1.1载荷分析 (23)9.1.2按弯扭组合应力校核轴强度 (24)9.2中间轴强度校核 (25)9.2.1载荷分析 (25)9.2.2按弯扭组合应力校核轴强度 (26)9.3输出轴的强度校核 (27)9.3.1载荷分析 (27)9.3.2按弯扭组合应力校核轴强度 (28)第十章键的选择与强度校核 (29)10.1输入轴 (29)10.2中间轴 (29)10.3输出轴 (30)第十一章齿轮的结构设计 (30)第十二章选择润滑方式 (30)第十三章箱体结构设计 (31)第十四章箱体附件 (32)齐齐哈尔大学机电学院设计专用纸设计项目计算及说明主要结论第一章电动机选择1.1选择电动机类型按已知工作要求和条件,选用Y系列一般用途全封闭自扇冷鼠笼型三相异步电机。
二级圆柱齿轮减速器说明书
二级圆柱齿轮减速器说明书二级圆柱齿轮减速器说明书1、引言:本文档为二级圆柱齿轮减速器的详细说明书,它包括了减速器的技术参数、使用方法、维护保养等内容。
本文档旨在帮助用户们正确使用和维护二级圆柱齿轮减速器,在确保安全和有效运行的同时,延长其使用寿命。
2、减速器概述:2.1 产品介绍介绍二级圆柱齿轮减速器的主要特点和用途。
2.2 技术参数二级圆柱齿轮减速器的规格、速比、额定输出转矩、额定输入转速等技术参数。
2.3 产品结构描述二级圆柱齿轮减速器的结构和主要零部件。
2.4 工作原理详细阐述二级圆柱齿轮减速器的工作原理和工作过程。
3、安装与调试:3.1 安装前的准备在进行二级圆柱齿轮减速器安装前,须先进行一系列的准备工作,包括安装环境检查、准备所需工具和材料等。
3.2 安装流程以步骤方式描述二级圆柱齿轮减速器的安装流程,并提供相关的安装示意图。
3.3 调试指南给出二级圆柱齿轮减速器的调试方法和步骤,以确保其正常运行和减速效果。
4、使用与维护:4.1 使用前注意事项二级圆柱齿轮减速器使用前需要注意的事项和安全操作要求。
4.2 使用步骤详细描述二级圆柱齿轮减速器的使用步骤和操作方法。
4.3 维护保养介绍二级圆柱齿轮减速器的常规维护保养方法和周期,包括润滑油更换、清洁等。
5、故障排除与维修:5.1 常见故障及处理方法二级圆柱齿轮减速器常见的故障现象,并给出相应的处理方法。
5.2 维修指南提供二级圆柱齿轮减速器的维修方法和步骤,以应对更大范围的故障。
6、安全注意事项:给出使用二级圆柱齿轮减速器时需要特别注意的安全事项和警示。
7、附件:本文档涉及的附件文件,包括二级圆柱齿轮减速器的安装示意图、维护记录表等。
8、法律名词及注释:本文档中涉及的法律名词和相关注释,以确保文档的准确性和合规性。
1、本文档涉及附件:- 安装示意图- 维护记录表2、本文所涉及的法律名词及注释: - 名词1:注释1- 名词2:注释2。
二级圆柱齿轮减速器说明书
二级圆柱齿轮减速器说明书一、产品概述二级圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于工业生产和机械传动领域。
本说明书将详细介绍该减速器的结构特点、安装使用方法、维护保养要点以及注意事项。
二、产品结构与工作原理该减速器采用二级圆柱齿轮传动原理,主要由输入轴、输出轴、外壳、油封以及内部齿轮系统组成。
当输入轴转动时,通过齿轮传动作用,将输入轴的高速旋转转变为输出轴的低速旋转,从而实现机械装置的减速功能。
三、安装使用方法1. 安装前,请先仔细检查减速器的外观是否完好无损,确认所有附件齐全,并与机械装置的连接方式相匹配。
2. 选择合适的安装位置,确保减速器的稳定安装,以避免振动和噪音产生。
3. 在进行连接之前,务必确保输入轴和输出轴的相对位置和方向正确。
4. 进行连接时,可使用合适的螺栓和螺母进行紧固,在紧固过程中应注意力均匀,避免过紧或过松。
四、维护保养要点1. 根据使用情况和环境条件,定期更换润滑油,确保减速器内部处于良好的润滑状态。
2. 定期清洁减速器的外壳及附件,避免灰尘或异物进入减速器内部,影响正常工作。
3. 定期检查减速器的齿轮磨损情况,及时更换磨损严重的齿轮,以确保减速器的正常运转。
五、注意事项1. 使用前请仔细阅读本说明书,确保理解减速器的结构特点和工作原理。
2. 在拆装减速器时,请按照产品操作步骤进行,慎防因错误操作导致的安全事故。
3. 长期不使用时,请将减速器存放在干燥、通风的场所,避免雨水或湿气对其产生影响。
4. 如出现减速器异常噪音、过热等情况,请及时停止使用,并向专业人员进行维修和保养。
5. 本说明书仅适用于二级圆柱齿轮减速器,不适用于其他型号或种类的减速器。
六、维修与售后服务1. 减速器在正常使用的情况下,可享受一定的保修期限,具体以购买合同为准。
2. 如果减速器出现故障或需要维修,请联系售后服务中心,并提供准确的故障描述和产品信息,以便专业人员进行快速响应和处理。
七、结束语本说明书详细介绍了二级圆柱齿轮减速器的结构特点、安装使用方法、维护保养要点以及注意事项。
英文翻译2 齿轮减速器
Abstract To optimize the 3-stages planetary gear reducer (PGR) in the Earth-Pressure-Balance Shield Machine (EPBSM), it is necessary to firstly define the EPBSM environment. The needed torque of the cutter-head, therefore, is analyzed when the EPBSM cutting the earth body. The load of any PGR is allocated according to the equivalent principle in the size between the force and its response one and the distributing uniformity of the PGRs around the main axle gear. Because the structure of the main drive system is equal to a huge planet-gear reducer made of 8 planetary gears, for the main axle connected with it gear, one side is connected with a bidentate coupling, the other is connected with an elastic shaft to realize the dual connection floatability of the main axle gear and support the whole main axle gear so that the relative displacement can be compensated to high degree among the PGRs resulting from the uneven force when the cutter-head cuts earth body.
二级圆锥圆柱齿轮减速器说明书
二级圆锥圆柱齿轮减速器说明书正文:一、产品介绍1.1 产品概述本说明书介绍的是二级圆锥圆柱齿轮减速器,其主要用于传动系统中的减速装置。
该减速器由二级圆锥齿轮和圆柱齿轮组成,具有传动效率高、噪音低、运行平稳等优点。
1.2 产品特点1.2.1 高传动效率:该减速器采用优质材料制造,精密加工工艺,能够提供高传动效率,减少能源消耗。
1.2.2 低噪音:减速器内部采用专利设计的减振装置,能有效减少噪音产生,提供安静的工作环境。
1.2.3 运行平稳:经过精密配合和平衡处理,减速器运行平稳,不会出现抖动和震动现象。
1.2.4 结构紧凑:减速器结构设计紧凑,体积小巧,便于安装和维修。
二、产品参数2.1 型号:2.2 齿轮材料:优质合金钢2.3 齿轮精度:等级X2.4 减速比:X.12.5 输入轴转速: rpm2.6 输出轴转速: rpm2.7 最大扭矩: Nm2.8温度范围:-20℃~+80℃三、结构与工作原理3.1 减速器结构本减速器由输入轴、输出轴、齿轮轮系、外壳等部分组成。
其中输入轴连接到上位设备,输出轴提供传动力,齿轮轮系完成减速功能,外壳则起到固定和密封的作用。
3.2 工作原理当输入轴转动时,动力通过输入齿轮传递给二级圆锥齿轮,然后再通过圆柱齿轮传递给输出轴。
由于减速器的设计,输入轴的转速会被减速,输出轴的扭矩会增大。
四、安装与调试4.1 安装前准备4.1.1 检查减速器及配件,确保无损坏。
4.1.2 清洁安装位置,清除杂物和污垢。
4.1.3 确定减速器位置和固定方式。
4.2 安装步骤4.2.1 将减速器放置在安装位置上,保持水平,并确保与上位设备的轴线对齐。
4.2.2 使用螺栓将减速器固定在安装位置上。
4.2.3 连接输入轴和输出轴与上位设备的轴线。
4.3 调试4.3.1 确认减速器无异常声音和振动现象。
4.3.2 检查减速器的温度,确保在正常范围内。
4.3.3 测试减速器的传动效果和扭矩输出。
五、维护与保养5.1 定期检查5.1.1 检查减速器的润滑油,补充或更换润滑油。
汽车主减速器外文文献翻译、中英文翻译、外文翻译
汽车主减速器外文文献翻译、中英文翻译、外文翻译XXX Final DriveA final drive is an essential component of a power XXX primary n is to change the n of the power transmitted by the drive shaft by 90 degrees to the driving axles。
nally。
it provides a fixedn een the speed of the drive shaft and the axle that drives the wheels.The final drive is XXX power from the engine to the wheels。
allowing the vehicle to move。
It is composed of several XXX tothe wheels。
The final drive。
determines the number of ns the wheels make for each n of the engine.There are two types of final drives: the live axle and the independent XXX to the wheels。
while the independent XXX tothe wheels through a series of CV joints and half-shafts.In n。
the final drive is a XXX of power from the engine to the wheels。
It is essential to maintain and service the final drive XXX.The gear。
减速器论文中英文对照资料外文翻译文献
中英文对照资料外文翻译文献一、什么是减速器减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。
1、减速器的作用1)降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。
2)减速同時降低了负载的惯量,惯量的减少为减速比的平方。
大家可以看一下一般电机都有一个惯量数值。
2、减速器的种类一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。
3、常见减速器1)蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。
但是一般体积较大,传动效率不高,精度不高。
2)谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。
输入转速不能太高。
3)行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。
但价格略贵一、对装配前零件的要求:1.滚动轴承用汽油清洗,其他零件用煤油清洗。
所有零件和箱体内不许有任何杂质存在。
箱体内壁和齿轮(蜗轮)等未加工表面先后涂两次不被机油侵蚀的耐油漆,箱体外表面先后涂底漆和颜色油漆(按主机要求配色)。
2.零件配合面洗净后涂以润滑油二、安装和调整的要求1.滚动轴承的安装滚动轴承安装时轴承内圈应紧贴轴肩,要求缝隙不得通过0.05mm 厚的塞尺。
2.轴承轴向游隙对游隙不可调整的轴承(如深沟球轴承),其轴向游隙为0.25~0.4mm;对游隙可调整的轴承轴向游隙数值见表。
点击查看圆锥滚子轴承轴向游隙;角接触球轴承轴向游隙3.齿轮(蜗轮)啮合的齿侧间隙可用塞尺或压铅法。
即将铅丝放在齿槽上,然后转动齿轮而压扁铅丝,测量两齿侧被压扁铅丝厚度之和即为齿侧的大小。
二级圆柱齿轮减速器
二级圆柱齿轮减速器1. 简介二级圆柱齿轮减速器是一种常用于机械传动系统中的减速装置。
它由两个圆柱齿轮组成,通过齿轮之间的啮合来实现传递动力和减速的功能。
二级圆柱齿轮减速器通常能够提供较大的减速比,使得输入速度降低到输出速度的设定比例。
它广泛应用于工业生产、航空航天、汽车制造等领域。
2. 结构和工作原理2.1 结构二级圆柱齿轮减速器主要由输入轴、输出轴和两个圆柱齿轮组成。
输入轴通过一端与电机或其他动力源相连,而输出轴则通过另一端输出动力给目标设备。
两个圆柱齿轮则位于输入轴和输出轴之间,通过齿轮的啮合转动,实现输入速度的减速。
2.2 工作原理二级圆柱齿轮减速器的工作原理基于齿轮的传动。
假设输入齿轮的齿数为N1,输出齿轮的齿数为N2,那么减速比R可以通过以下公式计算:R = N2 / N1当电机或其他动力源驱动输入轴转动时,输入齿轮随之旋转,而通过齿轮的啮合作用,输出齿轮也会跟随旋转,但速度会降低。
减速比决定了输入速度和输出速度的比例关系。
3. 优点和应用3.1 优点•高效率:二级圆柱齿轮减速器通常具有较高的传动效率,能够将大部分输入动力转化为输出动力。
•大载荷能力:由于齿轮的设计和材料的选择,二级圆柱齿轮减速器通常能够承受较大的载荷。
•较大的减速比:二级圆柱齿轮减速器能够提供较大的减速比,使得输入速度降低到输出速度的设定比例。
3.2 应用二级圆柱齿轮减速器广泛应用于以下领域:•工业生产:用于机床、输送设备、搅拌设备等机械设备中,能够提供所需的减速和转速控制。
•航空航天:用于飞机起落架、舵机、绞车等航空设备中,能够提供稳定的动力输出和控制精度。
•汽车制造:用于汽车发动机、变速箱等部件中,能够提供适当的减速比,使车辆在不同速度下的驱动更加平稳。
4. 维护和保养为了确保二级圆柱齿轮减速器的正常工作和延长使用寿命,以下是一些维护和保养的建议:•定期清洁和润滑:定期清洁减速器表面的灰尘和污垢,并添加适量的润滑剂,以保持齿轮的良好运转。
二级圆柱斜齿轮减速器说明书14672
V带设置在高速级。
V带传动和二级圆柱斜;3η为每一对齿轮啮合传动的效率,(齿轮为8级精度,油脂润滑。
因是薄壁防护罩,采用开式效率计算)。
4η为联轴器传动的效率,5η为平带传动的效率。
2.电动机的选择从动机:nw =60×1000v/3.14D=39.8r/minP w =61055.9⨯w Tn =631055.98.39101400⨯⨯⨯=5.83kw 电动机所需工作功率为: P d =a W P η=816.083.5kw =7.14kw 综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比, 选定型号为Y132S —4的三相异步电动机,额定功率为7.5kw ,满载转速=m n 1440 r/min ,同步转速1500r/min 。
3.确定传动装置的总传动比和分配传动比(1)总传动比由选定的电动机满载转速n 和工作机主动轴转速n ,可得传动装置总传动比为a i =w m n n =8.391440=36.2 (2)分配传动装置传动比经查表按推荐的传动比合理范围,选V 带传动的传动比i 1=1.75,平带传动的传动比 i 2=1.02,二级圆柱斜齿轮减速器传动的高级传动比为i f ,低级传动比为i s ,且sf i i =1.2~1.35,取sf i i =1.3。
设齿轮总传动比为i b ,则有i b =i f i s =21i i i a =02.175.12.36⨯=20.206,且sf i i =1.3计算得i f =5.135,i s =3.954.计算传动装置的运动和动力参数(1)各轴转速I n =1/i n m =1440/1.75=822.86 r/min Ⅱn =f Ⅰi n /=822.86/5.135=160.25 r/min Ⅲn = Ⅱn / i s=160.25/3.95=40.57 r/minⅣn = Ⅲn =40.57 r/minV n =Ⅳn / i 2=40.57/1.02=39.77r/min(2)各轴输入功率ⅠP =d p ×1η=7.5×0.96=7.13kWⅡP =Ⅰp ×η2×3η=7.13×0.99×0.97=6.84kW ⅢP =ⅡP ×η2×3η=6.84×0.99×0.97=6.57kWⅣP =ⅢP ×η2×η4=6.57×0.99×0.99=6.44kWP V =P w =ⅣP ×5η=6.44×0.96=6.12kW (3各轴输入转矩1T =d T ×i 1×1η N·m 电动机轴的输出转矩d T =9550mdn P =9550×7.5/1440=49.74N·m 所以: ⅠT =9550ⅠP /I n =9550×7.13/8822.86=82.75N·m ; 同理:ⅡT =9550×6.84/160.259550=407.63N·mⅢT =9550×6.57/40.57=1546.55N·m ⅣT =9550×6.44/40.57=1515.95N·mT V =9550×6.12/39.77=1469.6 N·m 运动和动力参数结果如下表⑴ 确定计算功率查课本178P 表9-9得:2.1=A KKw P k P A ca 0.95.72.1=⨯=⨯=,式中K A 为工作情况系数,P 为传递的额定功率,即电机的额定功率。
机械原理指导书二级减速器.讲解
实验一机构创意组合实验一、实验目的1、加深机构组成原理的理解,为机构创新设计奠定良好的基础。
2、利用若干不同的杆组,拼接各种不同的平面机构,以培养机构运动创新设计意识及综合设计能力。
3、训练工程实践动手能力。
二、实验设备及工具1、机构运动创新设计方案实验台及附件:齿轮、齿条、槽轮、凸轮、转动轴、连杆、各种连接组合零部件等。
2、装拆工具:十字起子、活动板手、内六角板手、钢板尺、卷尺等。
3.(自备)草稿纸、笔、绘图工具等三、实验要求1、每2-3人一组,每一组实验前拟一份机构运动设计方案,实验后提交新设计方案;2、完成实验后各组将机械零部件“物还原位”,老师验收后方可离去;3、每人完成一份实验报告。
四、实验原理及方法根据平面机构的组成原理:任何平面机构都可以由若干个基本杆组依次联接到原动件和机架上而构成,故可通过选定的机构类型,拼装该机构并进行分析。
五.实验过程1、掌握平面机构组成原理;2、熟悉本实验中的实验装置,各种零部件、装拆工具的功用,了解机构的拼接方法。
3、自拟平面机构运动方案,形成拼接实验内容;4、正确拼接各基本杆组;5、将各基本杆组按运动传递规律顺序拼接到原动件和机架上,拼接机构;6、绘制所拼机构运动简图,并进行机构自由度的计算;7、写出实验报告。
六、补充知识1、杆组的概念由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度数相等,因此机构由机架、原动件和自由度为零的从动件系统通过运动副联接而成。
将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。
根据杆组的定义,组成平面机构杆组的条件是:F=3n-2p L-p H=0其中构件数n,高副数P H和低副数P L都必需是整数。
由此可以获得各种类型的杆组。
当n=1,P L=1,P H=1时即可获得单构件高副杆组,常见的有如下几种:图1 单构件高副杆组当P H=0时,称之为低副杆组,即F=3n-2P L=0因此满足上式的构件数和运动副数的组合为:n=2,4,6……,P L=3,6,9……。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The gear and shaftReducer is a dynamic communication agencies, the use of gear speed converters, motor rotational speed reducer to the Rotary to be few, and have greater torque institutions. General helical gear reducer has reducer (including parallel shaft helical gear reducer, a worm reducer, bevel gear reducer, etc.), planetary gear reducer, Cycloid reducer, a worm reducer, a planetary friction CVT mechanical machines.The important position of the wheel gear and shaft can't falter in the design of he passing to process to make them can is divided into many model numbers , using for many situations respectively .So we must be the multilayer to the understanding of the wheel gear and shaft in reducer.In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involutes helicoids. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involutes curve. The surface obtained when every point on the edge generates an involutes is called an involutes helicoids.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft.They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical. Gear and helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only thegenerated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elements as gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or tensional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles. An axle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the tensional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe,it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements,such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking ashaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot preening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for earth geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fellows.1.Rim type with internally expanding shoes2.Rim type with externally contracting shoes3.Band type4.Disk or axial type5.Cone type6.Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1.Assume or determine the distribution of pressure on the frictional surfaces.2.Find a relation between the maximum pressure and the pressure at any point.3. Apply the condition of statically equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others. A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide alonger period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required. Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sieve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained .齿轮和轴的介绍减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。