三角形的中位线 教学课件

合集下载

三角形中位线公开课课件

三角形中位线公开课课件
总结词
中位线定理在求线段长度中的应用
详细描述
中位线定理还可以用来求线段的长度。具体来说,如果知道三角形的一边和它所对应的中位线的长度 ,就可以利用中位线定理来求出其他边的长度。这个定理在解决几何问题时非常有用,可以帮助我们 找到一些未知的长度。
03 三角形中位线的实际应用
在几何图形中的应用
三角形中位线定理
答案解析
基础练习题1解析
首先根据中位线的性质,我们知道DE平行 于BC且DE=0.5BC。由于DE平行于BC,根 据相似三角形的性质,我们可以得出△DEF 相似于△BCF。根据给定的BF:FC=1:3,我 们可以计算出DE:BC=1:6。因此,AC与CF 的长度比为6:1。
基础练习题2解析
同理于基础练习题1,我们可以根据中位线 的性质和相似三角形的性质得出DE:BC=1:4。 因此,AC与CF的长度比为4:1。
三角形中位线的其他性质
总结词
三角形中位线具有一些重要的性质,包括中位线与第三边的关系、中位线与三角形的高 的关系以及中位线与三角形的角平分线的关系等。
详细描述
三角形中位线具有许多重要的性质。其中,中位线与第三边的关系表明,中位线的长度 是第三边的一半。此外,中位线与三角形的高的关系表明,中位线平行于三角形的高, 并且等于高的一半。最后,中位线与三角形的角平分线的关系表明,中位线平行于角平
利用三角形中位线定理解决实际问题
在解决实际问题时,可以利用三角形中位线定理来找到解决问题的关键点,如测量、计算 等。
三角形中位线定理在实际问题中的应用举例
在测量河宽、计算建筑物的高度等实际问题中,可以利用三角形中位线定理来简化计算过 程。
三角形中位线定理在实际问题中的应用注意事项
在实际应用中,需要注意实际情况的限制条件,如测量角度、距离等误差的影响。

三角形的中位线性质ppt课件

三角形的中位线性质ppt课件

例1:口答
(1)三角形的周长为18cm,这个三角形
的三条中位线围成三角形的周长是多少?为
什么?
A
D
E
B
F
C
(1) △DEF的周长与 △ABC的周长有什么关系?
(2) △DEF的面积与 △ABC的面积有什么关系?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
用符号语言表示 A
∵AE=EB AD=DC
1 ∴ DE∥BC, DE= 2 BC.
E
D
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
A 如图1:在△ABC中,DE是中位线
(1)若∠ADE=60°,
△ADE是什么三角形? 等边三角形
DE是△ABC的什么线? 中位线
DE与BC有什么样的位置关系和数量关系?
∴DE
1
BC
A
E
D
2
C
B
一般的三角形的中位线与第三边有什么
样的位置关系和数量关系呢?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
观察猜想
在△ABC中,中位线
DE和边BC什么关系? D
DE∥BC
A E
DE和边BC关系
B
C
位置关系: 平行
数量关系:DE是BC的一半

三角形的中位线ppt教学课件

三角形的中位线ppt教学课件

三角形的中位线性质
❖ 定理:三角形的中位线平行于第三边,且 等于第三边的一半.
❖ 已知:如图,DE是△ABC的中位线.
❖ 求证:DE∥BC,DE=0.5BC
A
D
E
B
C
做一做
❖ 如图,任意作一个四边形,并将其四边的 中点依次连接起来,得到一个新的四边形, 这个新四边形的形状有什么特征?
D H
A G
水,M2 20oC
图0-1 传热学与热力学的区别
(2) 传热学以热力学第一定律和第二定律为基础,即 始终从高温热源向低
温热院传递,如果没有能量形式的转化,则 始终是守恒的
3 传热学应用实例
自然界与生产过程到处间里气体的温度在夏天和 冬天都保持20度,那么在冬天与夏天、人在房间里所 穿的衣服能否一样?为什么? b 夏天人在同样温度(如:25度)的空气和水中的感 觉不一样。为什么? c 北方寒冷地区,建筑房屋都是双层玻璃,以利于保 温。如何解释其道理?越厚越好?
0.05
硅藻土砖:
q tw1 tw2 0.242 300 100 4.84102 W m2
0.1
讨论:由计算可见, 由于铜与硅藻土砖导热系数的巨大差 别, 导致在相同的条件下通过铜板的导热量比通过硅藻土 砖的导热量大三个数量级。 因而,铜是热的良导体, 而 硅藻土砖则起到一定的隔热作用
2 对流(热对流)(Convection)
(2) 建筑环境与设备工程专业领域大量存在传热问题
例如:热源和冷源设备的选择、配套和合理有效利用; 供热通风空调及燃气产品的开发、设计和实验研究;各 种供热设备管道的保温材料及建筑围护结构材料的研制 及其热物理性质的测试、热损失的分析计算;各类换热 器的设计、选择和性能评价;建筑物的热工计算和环境 保护等。

八年级数学下册教学课件《三角形的中位线》

八年级数学下册教学课件《三角形的中位线》
∴ DE∥BC,DE= 1 BC. 2
归纳总结
三角形中位线定理 三角形的中位线平行于三角形的第三边,并且等于第三边的一半.
几何语言: 在△ABC中
∵点D,E分别为AB,AC的中点,
∴DE 1BC
D
2
A E
B
C
对应训练
1. 如图, D, E, F分别是△ABC各边的中点, 且AB=11c
m, BC=8cm, AC=6cm, 则DE= 3 cm, DF= 4 cm, EF= 5.5 cm, △DEF的周长是 12.5 cm.
求证:四边形DEFB是平行四边形.
A
证明:∵D,E分别是AC,AB的中点,
∴DE是△ABC的中位线.
D
E
∴DE∥BC,BC=2DE.
∵CF=3BF, ∴BC=2BF. ∴DE=BF. C
BF
又DE∥BF, ∴四边形DEFB是平行四边形.
对应训练
1. 如图, 在△ABC中, D, E, F分别是, AB, BC, CA 的
中点.以这些点为顶点,在图中,你能画出多少个平行
四边形?为什么?【选自教材P49,练习第1题】
解:能在图中画出3个平行四边形. 如图,连接DE,EF,FD,
A
D
F
则▱BEFD,▱DECF,▱DEFA即为所 B 画的3个平行四边形.
E
C
对应训练
【选自教材P49,练习第3题】
2.如图,A, B两点被池塘隔开,在 A, ቤተ መጻሕፍቲ ባይዱ外选一点C,连接
D
A
C
E
B
方法2:可分别延长AC和BC到D, E, 使 DC=BC ,
EC=AC, 连接DE, 量出DE的距离,即得AB的距离,

三角形的中位线课件(共22张PPT)

三角形的中位线课件(共22张PPT)
D
A E F
C
DF//BC DE// 1 BC
2
已知:如图,DE是△ABC的中位线.
1 DE // BC 求证: 2
证法三:延长DE到点F,使EF=DE,
A
D E
连结AF、CF、CD
∵AE=EC∴DE=EF F ∴四边形ADCF是平行四边形 ∴AD∥=FC
C 又D为AB中点,∴DB∥=FC 所以,四边形BCFD是平行四边形
菱形
A
什么叫三 角形的中位 线呢?
D B
E C
三角形的中位线
连接三角形两边中点的线段叫做 三角形的中位线。 画出△ABC中所有的中位线
画出三角形的所有中线并说 出中位线和中线的区别.
D B A F C
E
结论:三角形的中位线平行于第三边, 并且等于它的一半.A
D E
B
C
三角形的中位线与第三边有什么关系?
正方形
(4)顺次连结梯形各边 中点所得的四边形是什 么?
平行四边形
(5)顺次连结等腰梯形 各边中点所得的四边形 是什么?
菱形
平行四边形
平行四边形
于但得 什它到 么是的 顺 呢否四 次 ?特边 连 殊形接 的一四 平定边 行是形 四平各 边行边 形四中 取边点 决形所 ,
菱形
菱形
矩形
正方形
( 6 )顺次连结对角线相 等的四边形各边中点所得 的四边形是什么? ( 7 ) 顺次连结对角线垂 直的四边形各边中点所得 的四边形是什么? (8)顺次连结对角线相等 且垂直的四边形各边中点 所得的四边形是什么?
例1、如图,在四边形中,E、F、G、H 分 别 是 AB 、 BC 、 CD 、 DA 的 中 点 。 四 边 形 EFGH是平行四边形吗?为什么?

八年级数学《三角形的中位线》课件

八年级数学《三角形的中位线》课件

我是怎么教的
教的效果如何
1 学情分析
2 教材处理 3 教学目标 4 重点难点 5 教法学法 6 设计理念
课堂引入 生动化
教学内容 直观化
解决方法 多样化
为什么这么教
我是怎么教的
教的效果如何
1 学情分析
2 教材处理 3 教学目标 4 重点难点 5 教法学法 6 设计理念
1.掌握三角形中位线的概念和性质及性质的验证 2.灵活构造含有中位线的三角形
提出一个教学问题 借助两种教学媒体 展现三化教学课堂 组织学生合作学习
提培提 高养升 学学学 生生生 的的的 学合数 习作学 能意思 力识维
为什么这么教
我是怎么教的 教的效果如何
激趣引入
探索新知
作业布置
学以致用
深化总结
为什么这么教
我是怎么教的 教的效果如何
激趣引入
探索新知
学以致用
激趣引入
深化总结
我是怎么教的 教的效果如何
激激趣趣引引入入
探索新知
引出概念
学以致用用
深深化化总总结结
作业布置
A
三角形中位线的概念:连结三角形
D。 。E
两边中点的线段叫三角形的中位线。
B
C
① 如果D、E分别为AB、AC的中点, 那么DE为 △ABC的 中位线 ;
② 如果DE为△ABC的中位线,那么 D、E分别 为AB、AC的 中点 。
深化 总结
多媒体
为什么这么教
我是怎么教的
教的效果如何
1 学情分析
2 教材处理 3 教学目标 4 重点难点 5 教法学法 6 设计理念
教师如何动
合作 研讨
成果 展示
为什么这么教 我是怎么教的

三角形的中位线ppt课件

三角形的中位线ppt课件
3 三角形的中位线
第六章 平行四边形
学习目标
1.理解三角形中位线的概念,掌握三角形中位线定理的内容; 2.经历探索,猜想,证明三角形的中位线定理的过程,进一步发展 推理论证的能力. 重点:探索并证明三角形中位线定理.
新知探究 你能将一个三角形分成四个全等的三角形吗?你能通过剪拼的方式 将一个三角形拼成一个与其面积相等的平行四边形吗?
课堂小结
1.三角形中位线定理: 连接三角形两边中点的线段平行于第三边,且等于第三边的一半. 2.我们既可以用三角形知识研究平行四边形的问题,又可以用平行四边形 知识研究三角形的问题.
谢谢观看
新知探究
①△ABC中,连接每两边的中点,看上去就得到了四个全等的三角形. ②将△ADE绕点E按顺时针方向旋转180°到△CFE的位置,这样就得到 了一个与△ABC面积相等的平行四边形.
新知探究
我们在研究平行四边形时,经常采用把平行四边形转化为三角形的问题,
能否用平行四边形研究三角形呢?
如图,△ABC中,D,E分别是边AB,AC 的中点,连接DE.
在△ABC中,
∵D,E分别是边AB,AC的中点,
∴DE∥BC,且DE=
1 2
BC
.Hale Waihona Puke ADEB
C
知识训练 1.如图,在△ABC中,∠C=90°,AC=8,CB=6,D,E,F分别是BC, AC,AB的中点,则四边形AEDF的周长为____1_8___;Rt△ABC的中位线 分别是___D_E_,__D__F__;斜边上的中线是___C_F___,其长为___5___.
像DE这样,连接三角形两边中点的线段叫做三角形的中位线.
看一看,量一量,猜一猜:
A
DE与BC之间有什么位置关系和数量关系?

三角形的中位线课件(共19张PPT)数学北师大版八年级下册

三角形的中位线课件(共19张PPT)数学北师大版八年级下册

感悟新知
知1-练
解题秘方:紧扣三角形中位线定理的数量关系, 将证明线段的倍数关系转化为证明 OF 是△ ABC 的中位线 .
感悟新知
证明:如图 6-3-2,连接 BE. ∵四边形 ABCD 为平行四边形, ∴ AB ∥ CD, AB=CD,点 O 是 AC 的中点 . ∵ E 为平行四边形 ABCD 中 DC 边延长线 上的一点,且 CE=DC, ∴ AB ∥ CE, AB=CE. ∴四边形 ABEC 是平行四边形 .
感悟新知
知1-讲
2. 三角形中位线定理 三角形的中位线平行于第三边,且等 于第三边的一半 . 几何语言: 如图 6-3-1,∵ AD=BD, AE=EC,

DE

BC,且
Hale Waihona Puke DE=1 2BC.
感悟新知
3. 三角形中位线的应用
知1-讲
(1) 三角形中位线定理反映了三角形的中位线与第三边的
双重关系:一是位置关系,可以用来证两直线平行;
感悟新知
证明:∵AB=AC,∴∠ABC=∠ACB.
知1-练
∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB.
∴∠ADE=∠AED.∴AD=AE.∴DB=EC.
∵点 F,G,H 分别为 BE,DE,BC 的中点,
∴FG 是△EDB 的中位线,FH 是△ BCE 的中位线.
∴FG=12BD,FH=12CE.∴FG=FH.
感悟新知
特别提醒
知1-讲
◆一个三角形有三条中位线 .
◆三条中位线将原三角形分割成四个全等的三角形, ▲▲ 三个面积相等的平行四边形 . ▲▲
◆三角形的中位线与三角形的中线的区别:
三角形的中线是连接一顶点和它的对边中点的线段,

三角形中位线定理课件

三角形中位线定理课件

02 三角形中位线定理的推导 与证明
三角形中位线的定义与性质
定义
在三角形中,连接一个顶点和它所对 边的中点的线段叫做三角形的中位线 。
性质
三角形的中位线平行于第三边,并且 等于第三边的一半。
三角形中位线定理的推导过程
01
02
第一步,根据定义,画 出三角形的一条中位线。
ห้องสมุดไป่ตู้
第二步,通过相似三角形的 性质,证明中位线与第三边 平行且等于第三边的一半。
解析法
通过建立坐标系,利用解析几何的 方法证明三角形中位线定理,通过 点的坐标和直线的方程进行推导。
03 三角形中位线定理的应用 举例
在几何问题中的应用
证明线段相等
利用三角形中位线定理可 以证明两条线段相等,通 过构造中位线并利用其性 质进行推导。
证明线段平行
通过三角形中位线的性质, 可以证明两条线段平行, 这在几何问题中经常用到。
对三角形中位线定理的深入理解与展望
01
深入理解三角形中位线的性质
除了基本的定义和性质外,还可以进一步探讨三角形中位线的其他性质,
如与三角形各边之间的关系、与三角形内角之间的关系等,以加深对三
角形中位线的理解。
02
拓展三角形中位线定理的应用范围
可以进一步拓展三角形中位线定理的应用范围,探索其在更广泛的数学
证明角相等
三角形中位线定理还可以 用来证明两个角相等,通 过构造适当的三角形并应 用定理进行推导。
在三角形面积计算中的应用
计算三角形面积
利用三角形中位线定理,可以将一个 三角形划分为两个小的相似三角形, 从而简化面积计算过程。
求解三角形高
推导三角形面积公式
结合三角形中位线定理和其他几何知 识,可以推导出三角形面积的多种计 算公式。

人教版数学八下《第4课时 三角形的中位线》教学课件(共16张PPT)

人教版数学八下《第4课时 三角形的中位线》教学课件(共16张PPT)

用符号语言表示:
A
D
E
B
C
合作探究
如图,点E,F,G,H分别是四边形ABCD的边AB,BC,
求:四边形DECF的周长.
CD,DA的中点.求证:四边形EFGH是平行四边形. 证明:延长DE至F,使EF=DE,连接FC,DC,AF.
三角形的中位线平行于第三边,并且等于第三边的一半. 问题3:三角形的中位线有什么性质? 问题2:三角形的中位线与中线一样吗? 3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
∴四边形ADCF是平行四边形,CF 1.理解三角形中位线的概念,掌握它的性质.
中线是连接一个顶点和它的对边中点的线段.
DA .
∵AE=CE,ED=EF,
∴CF BD. ∵AE=CE,ED=EF,
连接各边中点所成三角形的周长为_________.
D
(1)表示位置关系------平行于第三边;
E
F
∴四边形BCFD是平行四边形. 求:四边形DECF的周长.
一个三角形共有三条中位线. 得到结论:三角形的中位线定理
∴DF BC. 连接各边中点所成三角形的周长为_________.
区分三角形的中位线与中线: 证明:延长DE至F,使EF=DE,连接FC,DC,AF.
B
C
“ ”表示平行且相等.
1
2
合作探究
得到结论:三角形的中位线定理
三角形的中位线平行于第三边,并且等于第三边的一半.
2. 如果等边三角形的边长为3cm,那么连接各边中点所 成的三角形的周长_4_.__5_c_m_.
随堂检测
3.已知,如图,D、F、E是△ABC的中点.
(1)若△ABC的周长为12,则△DEF的周长为 __6__ .

三角形中位线课件

三角形中位线课件

三角形中位线的定理
• 定理:三角形的中位线定理是指三角形的中位线长度等于 第三边长度的一半,并且平行于第三边。
三角形中位线的性质定理
01
02
03
性质定理1
三角形的中位线将相对边 分为两段,且这两段长度 相等。
性质定理2
三角形的中位线与第三边 平行,且长度为第三边的 一半。
性质定理3
三角形的中位线将相对顶 点与对边中点连接,且该 连线长度为中位线长度的 一半。
电路设计
在电路设计中,三角形中位线可以用来平衡电流,防止电流过大导致设备损坏或 火灾等安全事故。
05 总结与思考
三角形中位线的重要性和意义
几何构造的基础
在实际生活中的应用
三角形中位线是几何学中的基础概念 ,对于理解几何图形的构造和性质至 关重要。
在建筑、工程和设计等领域,三角形 中位线的应用广泛,例如在测量、绘 图和计算面积等方面。
02 三角形中位线的 性质与判定
三角形中位线的性质
三角形中位线平行于第三边
01
三角形中位线与第三边平行,这是三角形中位线的基本性质。
三角形中位线长度为第三边的一半
02
三角形中位线的长度是第三边长度的一半,这是三角形中位线
的长度性质。
三角形中位线将相对边等分
03
三角形中位线将相对边等分,这是三角形中位线的等分性质。
在解题中的应用
解题辅助
在解决一些几何问题时,三角形中位线可以作为一个重要的解题工具,帮助我 们找到解题的突破口。
证明定理
通过三角形中位线,我们可以证明一些重要的几何定理,如“三角形中位线定 理”等。
在生活中的实际应用
建筑测量
在建筑行业中,三角形中位线被广泛应用于测量和计算角度、长度等参数,决几何证明问题

三角形中位线定理PPT教学课件

三角形中位线定理PPT教学课件

2 在△ADC中,同1 理可得
B
F
C
HG//AC,HG= AC
2
所以EF//HG,EF=HG
所以四边形EFGH是平行四边形
从例1中你能得到什么结论?
顺次连接四边形各边中点的 线段组成一个平行四边形 演示2
顺次连接矩形各边中点的线
段组成一个 菱形
演示3 为什么?
(1) 顺次连结平行四边 形各边中点所得的四边形是 什么?
是AC的中点。 则有:DE∥BC, DE=
1
BC.
2
A
能说出理由
吗?
E
D
B
C
如图:在△ABC中,D是AB的中点,E
是AC的中点。
则有:DE∥BC, DE= 1 BC.
2
A
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
E
D
F 得CF=AE , CF//AB
又可得CF=BE,CF//CE

(3)那雪正下得紧。

(4)看那雪,到晚越下得紧了。屋时,四下里崩坏了, 又被朔风吹撼,动摇得很。


(5)那两间草厅已被雪压倒了。

(6)火盆内火种都被雪水浸灭了。

推动情节 烘托人物
风雪对情节发展的推动作用
4、投宿庙中
风 雪 3、压倒草厅
5、大石倚门 6、隔门偷听
2、途中见庙
思 考 1.林冲性格是怎样变化发展的?
提示:林冲刺配沧州,邂逅李小二,从 言谈中表现了他什么样的思想状况
提示:陆谦、富安来到沧州表明了什么?林冲 的反应表现了他什么样的思想状况?
提示:当林冲知道看守草料场本是这伙人的 诡计,这时林冲是什么态度?

《三角形的中位线定理》PPT课件 (共28张PPT)

《三角形的中位线定理》PPT课件 (共28张PPT)

6 ⑥ 若△ABC的面积为24,△DEF的面积是_____
探究活动
1、三角形三条中位线围成的三角形 的周长与原三角形的周长有什么关系?
2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
设 计 方 案:
A
(中点)D
E(中点)
B
F (中点)
C
A、B两点被池塘隔开,如何才 能知道它们之间的距离呢?
(4)顺次连结矩形各边中点所得的四 边形是什么?
菱形
例2已知:如图,四边形ABCD中,E、F、 G、H分别是AB、BC、CD、DA的中点. 求证(1)四边形EFGH是平行四边形。
(2)请增加一个条件使得四 边形ADFE为菱形。 (3)请增加一个条件使得四 边形ADFE为矩形。
A
H D E G F C
四边形BCFD是平行四边形吗?说 说你的理由!
F
已知: 如图:在△ABC中,D是AB的中点, E是AC的中点。 1 求证: DE∥BC, DE= BC.
A
E B D C
2
分析:
延长ED到F,使DF=ED , 连接CF
易证△ADE≌△CFE,
F
得CF=AE , ∠A=∠ACF
又可得CF=BE,CF//BE
在AB外选一点C,连结AC和 BC,并分别找出AC和BC的中点M、 N,如果测得MN = 20m,那么A、 B两点的距离是多少?为什么?
M 20 C
A
40
N
B
A
E
F
C
D
H G
B
在△ABC中,E、F、G、H分别为AC、CD、 BD、 AB的中点,若AD=3,BC=8,则四边 形EFGH的周长是 11 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年1月30日
如图: △ABC的中线AF与中位线 DE相交于O点,AF与DE有怎样的 关系?为什么?
A
D E
o
F
B
C
2015年1月30日
2015年1月30日
C
A
D E
如果 DE是△ABC的中位线
那么 ⑴ DE∥BC,
⑵ DE=1/2BC
B
C
C 用

① 证明平行问题
② 证明一条线段是另一条 线段的2倍或1/2
2015年1月30日
基本 应用
D
A
1.如图1:在△ABC中,DE是中位线 (1)若∠ADE=60°,
E
则∠B= 60 4
度.
A
D
F E C
B
2015年1月30日
问题: A 、 B 两点被建筑物隔开 , 如 何测量A、B两点距离呢?
B
E A D F
G
C
1.若DE的长为36米,则AB的长为多少? 2.若DE之间还有阻隔,你又有什么办法解决呢?
2015年1月30日
大显身手


A D


如图:D、E、F分别是△ABC各边的中点, (1)图中有——个平行四边形; (2)图中与△DEF全等的三角形有——个; (3)若DE=4,则可求得线段—— =8; (4)若△ABC的周长为18,面积为24, 则△DEF的周长为——。 △DEF E 的面积为——;
(2)若BC=8cm,
则DE=
B
B
cm.
图1
C
2.如图2:在△ABC中,D、E、F分别
D
F
是各边中点 AB=6cm,AC=8cm,BC=10cm,
A
图2
E
C
则△DEF的周长= ___cm 12
3.如图,在∆ABC中,D,E,F分别是 AB,BC,AC的中点,AC=12,BC=16.则四边 28 形DECF的周长为_______.
2015年1月30日
E
B
F
C
三角形的中位线与三角形的中线有 什么区别与联系? A A
D E
B 区别:中位线:中点--------中点
Bห้องสมุดไป่ตู้
C
F
C
中线:顶点--------中点 联系:一个三角形有三条中线,三条中位线, 它们都在三角形的内部且都是线段
2015年1月30日
动手实践
A
一起探究:
D

E F
为什么四边形DBCF是平行四边形? 答:由操作可知:Δ ADE与Δ CFE关于点E成中心对称 则CF=AD,∠F=∠ADE B 由∠F=∠ADE可得:AB∥CF 又由CF=AD,AD=DB可得:DB=CF 所以四边形BCFD是平行四边形 (一组对边平行且相等的四边形是平行四边形)
A
分析填表:
次序
所得三角 形周长 所得三角 形面积
2015年1月30日
1
1 2 1 4
2
3
……
…… ……
n
1 n 2 1 n 4
A1
C2
C1 B2
a s
1 4 1 16
a s
1 8 1 64
a s
a
s
B
A2 B1
C
思考:
A E B
F C G H D
如图,在四边形ABCD中,E、 F、G 、H 分别是AB、BC、 CD、DA的中点。四边形 EFGH是平行四边形吗?为什 么?
D
线段CD是△ABC的( 中线)
C
B
F
2、在△ABC中,AE=EC,
线段BE是△ABC的(中线 )
如果连结DE,那么DE是否是 △ABC的中线?
什么叫三角形的中位线?
连结三角形两边中点的线段叫三角形的中位线
如图:点 D、E分别是AB、AC边的中 点,线段DE就是△ABC的中位线。
A
一个三角形共有几条中位线? D 答:三条
问题: A 、 B 两点被建筑物隔开 , 如 何测量A、B两点距离呢?
B
A
2015年1月30日
问题: A 、 B 两点被建筑物隔开 , 如 何测量A、B两点距离呢?
B
利用全等三角形的知识.
A C E
D
2015年1月30日
三角形的中位线
2015年1月30日
A
回顾:
1、在△ABC中,AD=BD,
E

B
F
2015年1月30日
学以致用:

(1)你能把一块三 角形蛋糕平均分给四 个人吗?

(2)若要求把这块 蛋糕分成大小、形状 均相等的四块,该怎 样分呢?
2015年1月30日
2015年1月30日
小结 : A
D E
连结三角形两边中点的线段 叫做三角形的中位线
B
C
三角形中位线性质: 三角形的中位线平行于 第三边,并且等于它的一半。
三角形的中位线与中线的区别。 中位线:中点与中点的连线。 中 线:顶点与中点的连线。
2015年1月30日
探索研究:
已知:△ABC的周长为a,面积为s,连接各边中点得 △A1B1C1,再连接△A1B1C1各边中点得△A2B2C2 ……, 则(1) 第3次连接所得 1 1 s a ,面积=____ 8 64 △A3B3C3的周长=____ (2)第n次连接所得 1 1 n a n s △AnBnCn的周长=____,面积=____ 2 4
相关文档
最新文档