板式塔流体力学
板式塔流体力学性质

化工基础实验报告实验名称板式塔流体力学实验班级化21 姓名张腾学号2012011864 成绩实验时间2014.5 同组成员张煜林一、实验目的1、观察塔板上气、液两相流动时的特性。
2、测量气体通过塔板的压力降与空塔气速的关系,测定雾沫夹带量、漏液量与气速的关系。
3、研究板式塔负荷性能图的影响因素,做出筛孔塔板的负荷性能图。
二、实验原理当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。
当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相符合均过大时,还会产生液泛这种不正常的操作状态。
塔板的气液正常操作区通常以塔板的负荷性能图表示。
当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验测定。
三、实验装置与流程1、塔主体是用有机玻璃制成的,分段用法兰连接。
2、风源:罗茨鼓风机,D22 / 5型;风压:3500mm H2O;风量5m3/min。
3、气液流量测量用转子流量计:LZB-50,气体流量16~160m3/h。
LZB-25,液体体积流量100~1000 L/h4、U型管压差计:指示液为水,测量范围0~700 mm H2O实验装置图如下:1-水箱;2-泵;3-液体流量计;4-气体流量计;5-压差计;6-板式塔四、实验步骤及注意事项1、熟悉实验装置流程,了解各部分作用。
2、在启动气路前,要检查罗茨鼓风机旁路阀是否开启,转子流量计阀门是否关闭,以免损坏设备。
3、测量干板阻力降与气速关系。
4、启动水泵。
启动前要检查水泵内是否充满水,转动泵的联轴节是否灵活,关闭泵的出口阀门。
5、在一定的喷淋密度下,测定塔板的压降、漏液量和雾沫夹带与空塔速度的关系。
6、改变喷淋密度,重复5的内容。
7、实验结束,先关水,后关气。
五、实验原始数据表格1、设备参数塔内径D=2000mm;堰长l w=130mm;堰高ℎw=30mm;堰宽w d=27mm;孔径d0=8mm;孔数n=36;t=20mm;开孔率φ=12.6%2、原始数据记录表1、干板压降2、不同喷淋密度下的操作状态六、数据处理1、对原始数据表格中的数据进行换算塔半径r=0.1m,则塔截面积A = 0.0314m2;空塔气速=流量÷截面积÷3600;压降(pa)=ρgh=压降(mmH2O)×9.8×1000÷1000=压降(mmH2O)×9.8;漏液量(ml/s)=夹带量/时间;夹带量(ml/s)=夹带量/时间;换算后的数据列表如下:干板气速-压降关系2、干板及各种喷淋密度下压力降与空塔速度的关系曲线(1)空塔压降与气速的关系:对压降与气速取对数做双对数图如下:拟合出的直线斜率为1.43,与理论值2相差较大,原因暂时还不是很清楚,可能是由于塔设备相对于直管路的不理想程度比较大,也有可能是某些参数的错误,但这样大的差距必然有其内在的原因,目前还不能从根本上得出具体的结论。
板式塔的实验报告

实验名称:板式塔流体力学性能测定学生姓名:[你的姓名]学号:[你的学号]指导教师:[指导教师姓名]生助教:[生助教姓名]实验日期:[实验日期]交报告日期:[交报告日期]一、实验目的1. 了解板式塔的结构和工作原理。
2. 掌握板式塔的流体力学性能测定方法。
3. 分析不同操作条件下板式塔的流体力学性能。
4. 培养实验操作能力和数据处理能力。
二、实验原理板式塔是一种常用的分离设备,广泛应用于化工、石油、食品等行业。
板式塔的工作原理是利用气液两相在塔板上的接触、传质和分离作用,实现物质的分离。
本实验通过测定板式塔的流体力学性能,包括塔板压降、液相流量、气相流量等参数,分析不同操作条件下板式塔的流体力学性能。
三、实验装置与仪器1. 实验装置:板式塔、进料泵、流量计、压力计、温度计、流量调节阀、冷却水系统等。
2. 实验仪器:秒表、卷尺、计算器、数据采集器等。
四、实验步骤1. 搭建实验装置,检查各连接部分是否严密。
2. 将进料泵、流量计、压力计、温度计等仪器与板式塔连接。
3. 开启冷却水系统,保持实验温度稳定。
4. 调节进料泵,控制进料流量。
5. 测量塔板压降、液相流量、气相流量等参数。
6. 改变操作条件(如进料流量、塔板间距等),重复步骤5,记录实验数据。
7. 对实验数据进行处理和分析。
五、实验结果与分析1. 塔板压降:塔板压降是衡量板式塔流体力学性能的重要指标。
实验结果表明,塔板压降随液相流量和气相流量的增加而增加,这与流体力学原理相符。
2. 液相流量:液相流量是影响板式塔分离效果的重要因素。
实验结果表明,液相流量与塔板压降呈正相关关系,即液相流量越大,塔板压降越大。
3. 气相流量:气相流量对板式塔的分离效果也有较大影响。
实验结果表明,气相流量与塔板压降呈正相关关系,即气相流量越大,塔板压降越大。
4. 操作条件对流体力学性能的影响:实验结果表明,改变进料流量和塔板间距对板式塔的流体力学性能有显著影响。
增大进料流量和塔板间距,塔板压降增大,分离效果降低。
板式塔的流体力学性能介绍

板式塔的流体力学性能介绍★评价塔设备性能的主要指标生产能力塔板效率操作弹性塔板压强降★板式塔的流体力学性能塔板压强液泛雾沫夹带漏液液面落差一、塔板压降也就是气体通过塔板时的阻力损失。
包括:干板阻力:由板上各部件所造成的局部阻力板上充气液层的静压强板上液体的表面张力(摩擦阻力)∙塔板压降对板式塔操作特性的影响∙影响塔底操作压强:塔板压降↑若为吸收操作,则要求送气压强↑ ;若为精馏操作,则要求釜底压强↑ ;若为真空精馏操作,则同样要求釜底压强↑ →导致实际操作不能在真空下进行。
∙影响板效率:∙干板压降↑ → 气体流动不畅↑ 气液接触时间↑ → 板效率↑∙板上充气液层静压↑(即板上液层厚度↑)→ 气液传质时间↑→板效率↑总而言之,要综合考虑,原则:在保证较高板效率的前提下,力求减小塔板压强,以降低能耗,改善塔的操作性能。
二、液泛正常操作时,降液管中有一足够的液体高度,以克服两板间由气体压差造成的压降使液体能够自上而下流动。
∙但若气相的流量↑→塔板压降↑→降液管内液体流动不畅→管内液体积累;∙若液相的流量↑→降液管内截面不能满足该液体顺利流过→管内液体积累;从而必然使降液管内液体不断增高→最终使整个板间充满液体→塔操作被严重破坏。
这种现象即为液泛(淹塔)。
一般,气速↑→有利于形成湍动的泡沫层→传质速率↑。
但显然不能超过液泛时的气速。
因此,液泛时的气速应为塔操作的极限速度。
此外,板间距↑→可提高液泛速度。
三、雾沫夹带∙当气速↑,使塔板处于泡沫状态或喷射状态时→液体被吹塔板,该现象称为雾沫夹带。
∙雾沫夹带造成的影响:液相在塔板间返混→塔板效率↓∙因此,应限制雾沫夹带。
eV<0.1kg(液)/kg(气)∙影响雾沫夹带量的因素:空塔气速↑塔板间距↓雾沫夹带量↑四、漏液∙在正常操作的塔板上,液体横向流过塔板,然后通过降液管流下。
∙但若气体通过塔板的速度↓ → 上升气体通过孔道的动压不足以克服板上液体的重力→液体从塔板上的开孔处往下漏,称漏液。
板式塔流体力学事故

板式塔流体力学事故(实用版)目录1.板式塔的概述2.板式塔的流体力学原理3.板式塔的常见事故及其原因4.板式塔事故的预防和处理措施正文【板式塔的概述】板式塔是一种常用的塔式设备,广泛应用于化工、石油、制药等行业。
其主要功能是通过塔内液体和气体的接触,实现物质的分离、吸收或反应等过程。
板式塔通常由塔体、塔板、进出口、支撑结构等部分组成,其中塔板是核心部件,起到增大气液接触面积、提高传质效果的作用。
【板式塔的流体力学原理】板式塔的流体力学原理主要涉及两个方面:一是气体在塔内的流动状态,二是液体在塔内的分布和流动。
在塔内,气体自下而上流动,通过塔板时,会形成气泡并扩大接触面积,从而促进物质的传递。
液体则在塔内自上而下流动,与气体进行逆流接触,以提高吸收或反应效果。
板式塔的设计需要充分考虑流体的动力学特性,以实现高效的物质传递。
【板式塔的常见事故及其原因】板式塔在运行过程中可能会发生一些流体力学事故,如气泡夹带、压降过大、泛液等。
这些事故的原因多种多样,包括:1.气泡夹带:气泡在塔内夹带液体,导致塔顶液体泡沫过多,影响塔内分离效果。
原因可能包括气速过快、液体黏度过高、塔板设计不合理等。
2.压降过大:塔内气体流动阻力过大,导致压力降过高,影响气体流动和物质传递。
原因可能包括塔板结构不合理、气体流速过快、管道阻力过大等。
3.泛液:塔内液体超过设计高度,从塔顶溢出。
原因可能包括进液量过大、塔内液体分布不均、塔板堵塞等。
【板式塔事故的预防和处理措施】为预防和处理板式塔的流体力学事故,可以采取以下措施:1.合理设计塔板结构,提高气液分布均匀性,降低气泡夹带和泛液的风险。
2.控制进液量和进气量,避免过大的流速导致压降过大和气泡夹带。
3.定期对塔内进行清洗和维护,确保塔板畅通,避免塔内液体分布不均和泛液现象。
4.安装监测设备,实时监测塔内压力、流量等参数,以便及时发现并处理异常情况。
总之,板式塔作为一种重要的化工设备,其流体力学事故的预防和处理至关重要。
板式塔流体力学实验

6.再进一步关小气阀 再进一步关小气阀 当气速大大小于设计气速时,泡沫层明显减少, 当气速大大小于设计气速时,泡沫层明显减少, 因为鼓泡少, 液两相接触面积大大减少, 因为鼓泡少,气、液两相接触面积大大减少, 显然,这是各类型塔不正常运行状态。 显然,这是各类型塔不正常运行状态。 7.再慢慢关小气阀 再慢慢关小气阀 可以看见塔板上既不鼓泡、 可以看见塔板上既不鼓泡、液体也不下漏的现 若再关小气阀, 象。若再关小气阀,则可看见液体从塔板上漏 这就是塔板的漏液点。 出,这就是塔板的漏液点。
够大时,塔板上的液体会有一部分从筛孔漏下, 够大时,塔板上的液体会有一部分从筛孔漏下, 这样就会降低塔板的传质效率。 这样就会降低塔板的传质效率。因此一般要求 塔板应在不漏液的情况下操作。所谓“漏液点” 塔板应在不漏液的情况下操作。所谓“漏液点” 是指刚使液体不从塔板上泄漏时的气速。 是指刚使液体不从塔板上泄漏时的气速。 液泛点 当气速大到一定程度, 当气速大到一定程度,液体就不再从 降液管下流,而是从下塔板上升, 降液管下流,而是从下塔板上升,这就是板式 塔的液泛。液泛速度也就是达到液泛时的气速。 塔的液泛。液泛速度也就是达到液泛时的气速。
实验九
板式塔流体力学实验
教师: 教师:张晓艳
一、实验目的
1.观察板式塔各类型塔板的结构, 1.观察板式塔各类型塔板的结构,比较各塔板 观察板式塔各类型塔板的结构 上的气液接触状况。 上的气液接触状况。 2.实验研究板式塔的极限操作状态, 2.实验研究板式塔的极限操作状态,确定各塔 实验研究板式塔的极限操作状态 板的漏液点和液泛点。 板的漏液点和液泛点。
三、实验装置
4
5 6 7 8 3 2 1
图 9-4 塔板流体力学演示实验 1-增压水泵,2-调节阀,3-转子流量计,4-有降液管筛孔板,5- 浮阀塔板,6-泡罩塔板,7-无降液管筛孔板,8-风机。
实验5板式塔的流体力学性能的测定

板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。
4、观察流体在塔板上的流动状态。
三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。
塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。
实验塔板采用U型压差计测定其压降,漏液和夹带量采用体积测量法。
通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。
图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。
由《化工原理》查询孔流系数,并计算气体流量。
测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。
干板压降经验式:()22000.051()1vd Lw h C γϕγ=- ϕ-----开孔率;v γ-----气相密度;L γ-----液相密度;d h -----干板压降,米液柱; 0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。
固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。
每个测量点稳定30秒,读取压降,由体积法测量一定时间的漏液量和夹带量。
计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。
3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。
塔板之上的清液层逐渐消失,泡沫层逐渐升高,甚至达到液泛状态。
板式塔流体力学性能测定-实验报告

化学实验教学中心
实验报告
化学测量与计算实验Ⅱ实验名称:板式塔流体力学性能测定实验报告
学生姓名:学号:
院(系):年级:级班
指导教师:研究生助教:
实验日期: 2017.05.25 交报告日期: 2017.06.01
图1 筛孔塔板干板压头降Δh d 与筛孔速度u a 之间的关系图2 板式塔的Δh 与空塔速度的关系曲线
塔板上形成稳定液层后,塔板上气液两相的接触和混和状态,也将随着气速的改变而发生变化。
当气速较较小时,气体以鼓泡方式通过液层。
随着气速增大,鼓泡层逐渐转化为泡沫层,并在液面上形成的雾沫层也将随之增大。
对传质效率有着重要作用的因素是充气液层的高度及其结构。
充气液层的结构通常用其平均密度大小来表示。
如果充气液层的气体质量相对于液体质量可略而不计,则
h fρf= h1ρl(4)
调节阀和孔板流量计进入塔底。
通过塔板的尾气由塔顶排出。
气体通过塔板的压力降由压差计显示。
图3 筛板塔
1.塔体;
2.筛孔塔板;
3.漏液排放口;
4.温度计;
5.溢流装置
图4 板式塔流动特性实验装置流程
空气源;2.放空阀;3.消声器;4.孔板流量计;5.U型水柱压差计;6. U型汞柱压差计;
7.板式塔;转子流量计;9. U型水柱塔压差计;10.高位槽;11.排水管。
北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定一、实验名称:板式塔的流体力学性能的测定二、实验目的:1、对板式塔的结构、普通筛板、导向筛板有一个初步认识;2、对塔板上流体流动状态有初步认识;3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。
4、观察流体在塔板上的流动状态。
三、实验原理与流程:实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。
塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。
实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。
通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。
图1 实验装置流程图四、实验步骤:1、测定干板压降将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定塔的干板压降,气体流量由小至大调节。
孔板流量计计算公式:0v q C A =由《化工原理》查询孔流系数,并计算气体流量。
测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。
干板压降经验式:()220'00.051()1vd Lw h C ρϕρ=- ϕ-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱;'0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制)2、测定湿板压降和夹带、漏液调节气体流量为一定值,打开转子流量计。
固定液体流量,将气体流量由小至大调节,每次增加200Pa ,至到2000Pa 。
每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。
计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。
3.观察塔板上气液接触状态随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理实验教学研究室
四、实验基本操作步骤
(1)检查鼓风机旁路阀与转子流量计阀门的 状态,确认鼓风机旁路阀门开启,转子流 量计阀门关闭; (2)启动泵2,将水箱1中的水输送至塔6顶 部,其流量大小由转子流量计3控制和调节; (3)启动离心式鼓风机4,将空气输送至塔6 底部,其流量大小由转子流量计5控制和调 节;
化工原理实验教学研究室
二、实验原理
塔板上气、液就出好坏主要取决于流 体的流动状态、两相混合物的物性及塔板 的结构等因素。当液体流量一定时,气体 空塔速度由小到大变动时,可以观察到塔 板上气液接触时的几种操作状态,即鼓泡 接触状态、泡沫接触状态和喷射接触状态 等。
化工原理实计的好坏,与塔板水 力学性能及阻力等因素相关,因 此对板式塔塔板流体力学性能的 实验与测定是十分重要的。
一、实验目的和任务
研究不同结构类型的塔板及其流 体力学性能,包括气体通过塔板 的阻力,板上鼓泡情况、漏液情 况、雾沫夹带的液泛等;
化工原理实验教学研究室
研究气液负荷改变,即冷模实验 时,风量和水量改变时塔板操作 性能的变化规律; 研究塔板负荷性能图的影响因素 及测定方法。
(4)有压差计8测定全塔压降; (5)有压差计9测定但板压降; (6)有压差计10测定降液管底隙阻力; (7)读出不同气液流量下踏板上清液层高度 及降液管h内清液层高度H; (8)按拟定的实验内容进行实验,并记录相 关数据; (9)实验结束后,停水、停气、停电。
六、注意事项
启动鼓风机之前,检查鼓风机旁路阀 是否开启,避免风机过载;同时检查 转子流量计阀门是否关闭,防止风机 启动时,流量计转子突然高速上升将 流量计玻璃管打碎。 实验结束后,要先关水泵,后关鼓风 机,防止设备和管道内充水。
实验七 板式塔流体力学 性能实验
化工原理实验教学研究室
板式塔在精馏和吸收操作中应 用很广,是一种重要的液气接触传 质设备.在化工生产中,根据物料性 质和操作条件设计的塔板,一般都 能在设计条件下的气液负荷正常操 作,且具有满意的塔板效率.
化工原理实验教学研究室
但实际生产中,气、液负荷不 可避免地会有波动,因此,常常 还需进一步了解所设计的塔板对 负荷变化的敏感程度,确定其既 能正常工作,效率也不致有明显 下降的气、液相负荷范围,这通 常就以塔板负荷性能图的形式来 表示。
当塔板在很低的气速下操作时, 会出现漏液现象;在很高的气速下, 又会产生过量的液沫夹带;在气速 和液体负荷均过大时会产生液泛等 几种不正常操作状态。
化工原理实验教学研究室
二、实验原理
本实验装置可以观察和测定塔 板压降、夹带量、漏液量,并能观 察鼓泡接触、泡沫接触、喷射接触 和液泛等现象。这对于认识和了解 板式塔的各种操作、建立感性认识 有很大帮助。
二、实验原理
负荷性能图是以气体体积流量(m/s或 m/h)为纵坐标,液体体积流量(m/s或m/h) 为横坐标标绘而成,由严重漏液线、过量 液沫夹带线、液相流量下限线、液体流量 上限线和降液管液泛线组成。负荷性能图 可由公式计算,也可用实验方法确定。
化工原理实验教学研究室
二、实验原理
对塔板的要求通常是结构简单、 传质效果好、气液通过能力大、压 降低、操作弹性大。目前工业上应 用较多的塔板有筛板塔板和浮筏塔 板等。
化工原理实验教学研究室
二、实验原理
塔板的气、液正常操作去通常用塔 板的负荷性能图来表示。当塔板结构 和物系确定后,塔板的负荷性能图就 能确定了。因此,操作可变因素仅为 气体流量和液体流量。只有当气、液 流量处于适当的比例范围内,塔板上 气、液流动状况才是良好的,才能得 到好的分离效果。
化工原理实验教学研究室
化工原理实验教学研究室
三、实验要求
学生根据所学板式塔流体力学性能的基本 原理及本装置条件确定实验内容。其中负 荷性能图中的曲线选定一条测定即可; 确定数据采集点,以获得必需的实验数据; 拟定实验步骤及操作方法,保证实验数据 的准确性和可靠性,经指导教师同意后开 始实验操作;
化工原理实验教学研究室
三、实验要求
可根据现有实验装置的条件 及学生的要求,拟定实验任务进 行实验研究,测定塔板负荷性能 图中的某一气液关系图。
二、实验原理
板式塔是使用量大,应用范围广的重要 气、液传质设备。塔板是板式塔的核心部 件,它决定了塔的基本性能。为了有效地 实现气、液两相之间的物质传递和热量传 递,要求塔板具有以下两个条件:
化工原理实验教学研究室
二、实验原理
必须创造良好的气、液接触条件, 造成较大的接触面积,而且接触 面积应不断更新,以增加传质、 传热推动力; 从全塔总体上,应保证气、液逆 流流动,防止返液和气液短路。
化工原理实验教学研究室
二、实验原理
塔是靠自下而上的气体和自上 而下的液体在踏板上流动时进行接 触而达到传质和传热目的的。因此 在某种意义上来说,塔板的传质传 热性能的好坏主要取决于板上的气 液两相流体力学状态。