高等数学 第一章 1.1 作业答案
高等数学大一教材答案
高等数学大一教材答案1. 第一章:函数与极限1.1 函数的概念及性质1.2 极限的概念1.3 极限的运算法则2. 第二章:导数与微分2.1 导数的定义2.2 导数的几何意义2.3 微分的概念及运算法则3. 第三章:微分中值定理与导数的应用3.1 微分中值定理3.2 最值问题3.3 凹凸性与拐点4. 第四章:不定积分4.1 不定积分的概念4.2 基本积分表与积分法4.3 特殊曲线的面积5. 第五章:定积分5.1 定积分的定义5.2 区间上的连续函数的积分5.3 定积分的性质与计算方法6. 第六章:定积分的应用6.1 近似计算积分6.2 弧长与曲线面积的计算6.3 牛顿—莱布尼茨公式7. 第七章:多元函数的极限与连续7.1 二元函数的连续与偏导数7.2 多元函数的极限与连续7.3 多重积分8. 第八章:多元函数的微分法与隐函数的求导法8.1 多元函数的全微分8.2 隐函数的求导法8.3 多元函数的泰勒公式9. 第九章:向量代数与空间解析几何9.1 向量的概念与运算9.2 空间中的曲线与曲面9.3 平面与直线的方程10. 第十章:多元函数的导数与微分10.1 偏导数的概念10.2 高阶偏导数和混合偏导数10.3 多元函数的隐函数及其导数11. 第十一章:多元函数的极值与条件极值11.1 多元函数的极值11.2 多元函数的条件极值11.3 二重积分的计算12. 第十二章:曲线积分与曲面积分12.1 曲线积分12.2 曲面积分与高斯积分定理12.3 斯托克斯定理文章结束。
预科高等数学习题参考答案(上学期)
第一章函数与极限1.1 数列的极限1 (1) 对任意的自然数n 有7)1(5750n n ,所以有07)1(51751n n,即01nnx x ,因此数列}{n x 是单调递减数列.显然对于任意的自然数n 有175n ,因而有17510n x n.进而存在1M ,对任意的自然数n 有,M x x nn1,所以数列}{n x 是有界的.综上数列是单调递减有界数列,因此必有极限.观察出0limnnx .nn n x x nn1517510.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nx n 10,故0limn nx .(2) 对任意的自然数n 有5)1(2520n n,所以有10n n x x ,因此数列}{n x 是单调递增数列.显然对于任意0M ,存在}25,1max {0M n ,使得M n x n 5200,因此数列}{n x 是无界的.综上数列是单调递增无界数列,因此数列}{n x 的极限不存在.(3) 从数列的前几项,5,0,3,0,154321x x x x x 可以看出数列}{n x 既非单调递减数列也非单调递增数列.显然对于任意0M ,存在}21,1max {0M k ,使得M k k k x k122)12(sin)12(0120,因此数列}{n x 是无界的.综上数列既不是单调数列也不是无界数列,因此数列}{n x 的极限不存在.2 分析用“N ”语言证明数列极限A x nnlim的步骤如下:(1) 化简A x n(往往需将它适当放大后)得)(n f ;(2) 逆序分析求N .0,要使)(n f ,(解不等式后知))(g n,于是取正整数)(g N;(3) 按定义作结论则当N n时,就有Ax n.故A x nnlim.证明 (1)nnn110144.0,要使n1,只要1n,于是取正整数1N.则当N n时,就有nn 1014,故014limnn.(2)nnnn 1241231213.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nn n 1231213,故231213limnn n .(3)nnC CCCn nnnnnnnn 1919991)91(11011999.022109个.0,要使n1,只要1n,于是取正整数1N.则当N n 时,就有nn 11999.09个,故1999.09lim个n n.3证明222222656112136561121365611213limlimlim limlimlim limlimnnn n nnn n nnn n nnnnnnnn6130060013.4 证明当0q时,显然00limlimnnnq;当0q 时,显然nnq q0.0(10),要使nq,由于10q ,因此只要qnlog ,于是取正整数qNlog.则当N n 时,就有nnqq0,故0limnnq.综上所述,当1q 时,0lim nnq .5证明 (N定义证明)令01nnn h ,则有nnh n)1(,即nn n n nnnnh nh h n n nh h n122)1(1)1(,进而22)1(n h n n n ,即)1(12nn h n.0,要使121n h n nn,只要212n ,即1112n,于是取正整数112N .则当N n 时,就有121n nn,故1limnnn.(夹逼定理证明) 由于nn nnn n n n nn nn n2211111111212个个,并且122limnn nn,因此1limnnn.5 证明由数列}{n x 有界知,0M,使得数列}{n x 的每一项都有M x n.又0limnny ,则有0,存在0N,当N n时,My y nn.进而当N n时,MMy x y x nn nn 0.因此0lim nnny x.1.2 函数的极限1证明0,0,当00x x时,c c .因此c c x xlim.2证明)1sin (1sin 0sin x xx x xx .0,要使x1,只要1x,于是取正数1M.则当M x时,就有xxx 10sin ,故0sin limx x x .343434343433412313412313423limlimlim limlimlimlimlimxxx x xxxx x x xxx x xxxxx x xx0001000.4解3212223213212321limlim44x x x x x x xx xx34381242321223214242limlim44xx x x x x xx.5解ax ax a xax a x axax2cos 2sin2sin sin limlima a a x a x axaxcos cos 12cos22sinlim.另解axaa a x axa xaxaxsin ])sin[(sin sin limlima xaaa x aa x axsin sin )cos(cos )sin(limaaxa xaaxa x axsin 1)cos(cos )sin(limaa x a x a x aax a x axsin 2sin22sincos )sin(lima aa cos sin 01cos 1.6 因为0)1()(lim limxxxex f ,00)(lim limxxx f ,即0)()(limlimx f x f xx.因此函数)(x f 在0x点处极限存在,并且0)(lim0x f x.7111111113323323131limlimxxxxxxx x xx xx3211111133213321limlimxxxx x x xx xx .8xx x xx xx xx)2sin()2sin()2sin()2sin(limlim2cos 2sin 2cos 2sin 2cos 2limlim00xx xxxx.92122322233221231212314232limlimlime eexxxx xx xx xxxxxx.另解221)42(421142114232limlimlimx x xxxxxxxx 221)42(42114211limxxx x221)42(42114211limlimxxxx x 21211e e10aba b ax xbxxbx xax axax ax 33113113114limlimlimabab ababax xe eax ax 333311131131lim.另解a baba bab ax abax xbxbxxbxxe e eaxax axax ax ax 344441141114114limlimlim.1.3 无穷小与无穷大1因为x,1sin x ,01limxx,即x时x sin 是有界变量,x1是无穷小量,因此01sin sin limlimxxxx xx.2 (利用无穷大的)(M E定义求解)0E ,要使E xx 523,只要)5(223xE xx ,即E x2,于是取}5,2max {E M ,当M x时,E xx 523.所以523xx 是x时的无穷大量,即523limxx x.另解(利用无穷大与无穷小的关系求解)显然当x时,0523xx ,但是01515332limlimx xx xxx,进而根据无穷大与无穷小的关系有,3223515limlimxxxx xx.3 (利用无穷大的)(M E 定义求解)0E ,要使E xx x x21232,只要)3(121x E x x x ,即1E x,于是取}3,1max{EM,当M x 时,E xx232.所以232xx是x时的无穷大量,即232limx xx.4414144tan sin limlimlim220220xxxxxxx.52121cos 12202limlimx x xx xx.6设00,当0x x时,)(x g 有界,则存在00M,使得当0x x时,0)(M x g .当0x x时,)(x f 是无穷大量,则0M,存在01,当10x x时,0)(M M x f .取},m in{1,则当0x x 时,00)()()()(M M M x g x f x g x f ,因此)()(x g x f 是0x x 时的无穷大量.7x x y cos 在,不是有界变量,即x x y cos 在,是无界的.因为0M,存在1][Mx ,使得M M x x 1][cos 00.下面证明当x 时,x x y sin 不是无穷大量.1E ,对于0M ,存在10Mx ,使得M x 0,并且E x x 0sin 00.因此当x时,x x ysin 不是无穷大量.1.4 函数的连续性与间断点1 (1) 函数)(x f 的定义域是),3()3,5()5,(.由于函数)(x f 是初等函数,因此)(x f 的连续区间是),3(),3,5(),5,(.(2) 函数)(x f 的定义域是]6,4[.由于函数)(x f 是初等函数,因此)(x f 的在区间)6,4(内连续.又)4(464464)(limlim44f x xx f xx,则)(x f 在4x 处右连续;)6(664664)(limlim66f xxx f xx,则)(x f 在6x 处左连续.因此)(x f 的连续区间是]6,4[.(3) 函数)(x f 的定义域是]2,1[.显然函数)(x f 在区间)2,1(),1,0(),0,1(内连续.又)1(11)(lim lim11f x f xx,则)(x f 在1x处右连续;1)(lim lim0xxx f )0(1f ,)0(1sin )(limlim 0f xx x f xx,即)0()()(limlim 0f x f x f xx,则)(x f 在0x 处连续;)1(81sin sin )(limlim11f xx x f xx,即)(x f 在1x 处不左连续,则)(x f 在1x处不连续;)2(14)83()(limlim 22f xx f xx,则)(x f 在2x 处左连续.因此)(x f 的连续区间是]2,1(),1,1[.2 (1)函数)(x f 的定义域是),7()7,2()2,(,进而函数的间断点只可能为2x 和7x.对于2x,72)7)(2()2)(2(1494)(limlimlimlim222222xx xxx x xxx x f xxxx54,因此2x 是函数)(x f 的第一类间断点中的可去间断点.对于7x,)7)(2()2)(2(1494)(lim limlim72277xxx x xxx x f xxx,因此2x 是函数)(x f 的第二类间断点中的无穷间断点.综上,2x 是函数)(x f 的第一类间断点中的可去间断点,7x 是第二类间断点中的无穷间断点.(2) 显然函数)(x f 的定义域是Zk Zk k kk k )1(,22,,进而函数)(x f 的间断点只可能为k x 和)(2Z kkx .对于0x,1tan )(limlim 0xx x f xx,因此0x是函数)(x f 的第一类间断点中的可去间断点.对于)0,(k Z k k x,xx x f kxkxtan )(limlim,因此当0k 时,kx是函数)(x f 的第二类间断点中的无穷间断点.对于)(2Z k kx ,0tan )(limlim22xx x f kxkx,因此2kx 是函数)(x f 的第一类间断点中的可去间断点.综上,0x和)(2Z k kx是函数)(x f 的第一类间断点中的可去间断点,)0,(k Z k k x 是第二类间断点中的无穷间断点.(3) 显然函数)(x f 的定义域是),1()1,0()0,(,进而函数)(x f 的间断点只可能为0x和1x .对于0x,111)(limlimx xxxe xf ,因此0x 是)(x f 的第二类间断点中的无穷间断点.对于1x,011)(111limlim x xxxex f ,111)(111limlimxxxxe xf ,即函数)(x f 在1x处的左右极限存在,但不相等,因此1x 是)(x f 的第一类间断点中的跳跃间断点.综上,0x 是)(x f 的第二类间断点中的无穷间断点,1x 是第一类间断点中的跳跃间断点.(4) 显然函数)(x f 的定义域为),0()0,(,进而)(x f 的间断点只可能为0x .21arctan)(limlim 0xx f xx,21arctan)(limlimxx f xx,即)(x f 在0x处的左右极限存在,但不相等,因此0x函数)(x f 的第一类间断点中的跳跃间断点.(5) 显然函数)(x f 的定义域为),1()1,0()0,(,进而)(x f 的间断点只可能为0x 和1x.对于0x,0223)(limlimxx f xx,因此0x 是)(x f 的第一类间断点中的可去间断点.对于1x ,xx f xx223)(limlim11,因此1x 是)(x f 的第二类间断点中的无穷间断点.因此0x 是)(x f 的第一类间断点中的可去间断点,1x 是第二类间断点中的无穷间断点.(6) 显然函数)(x f 的定义域为),0()0,(,进而)(x f 的间断点只可能为0x .22cos 1cos 1)(2limlimlimxx x x x f xxx,22cos 1cos 1)(20limlimlimx xxxx f xxx,即)(x f 在0x 处的左右极限存在,但不相等,因此0x函数)(x f 的第一类间断点中的跳跃间断点.(7) 显然函数)(x f 的定义域为),1()1,(,进而)(x f 的间断点只可能为1x .xx x f xx12)(lim lim 11,因此1x 是)(x f 的第二类间断点中的无穷间断点.1.5 连续函数的运算与初等函数的连续性1 (1) 当1x 时,02limnnx,则有x x x x x f nn n2211)(lim ;当1x 时,nnx2lim,并且11122lim nn nxx ,则有x x xx x f nn n2211)(lim ;当1x 时,012nx,则有011)(22lim xxx x f nn n.因此111,,0,)(xx x x x x f .显然函数)(x f 在区间),1(),1,1(),1,(内连续.对于1x,1)(limlim11x x f xx,1)()(lim lim11x x f xx,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.对于1x,1)()(limlim11x x f xx,1)(limlim11xx f xx,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,1(),1,(,1x 函数)(x f 的第一类间断点中的跳跃间断点.(2) 显然1x时,函数)(x f 无定义;当1x 时,0limnn x,则有01)(lim nnnxxx f ;当1x 时,nnxlim,则有11)(lim nnnx xx f ;当1x 时,1nx ,则有211)(lim nnnxxx f .因此111,0,21,1)(xx x x f .显然函数)(x f 在区间),1(),1,1(),1,(内连续.对于1x ,00)(lim lim11xxx f ,11)(lim lim11xxx f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.对于1x,11)(limlim11xxx f ,00)(limlim11xxx f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,1(),1,(,1x 函数)(x f 的第一类间断点中的跳跃间断点.(3) 当10x 时,0limnnx,则有111)(lim nnxx f ;当1x 时,nnxlim,则有011)(lim nnxx f ;当1x时,1nx,则有2111)(lim nnxx f .因此1011,1,21,0)(xx x x f .显然函数)(x f 在区间),1(),1,0(内连续.对于0x ,)0(11)(limlimf x f xx,因此)(x f 在0x 处右连续.对于1x ,00)(lim lim11x xx f ,11)(lim lim11xx x f ,即)(x f 在1x 处的左右极限存在,但不相等,因此1x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),1(),1,0[,1x 函数)(x f 的第一类间断点中的跳跃间断点.(4) 当0x 时,xnxnnnlim lim ,0,则有1)(limxxx x n nnn n x f ;当0x 时,0,lim lim xnxnnn,则有1)(limxxx x nnnn n x f ;当0x 时,1xn,则有0)(limxxx x nnnn n x f .因此000,1,0,1)(xx x x f .显然函数)(x f 在区间),0(),0,(内连续.对于0x ,11)(lim limxxx f ,1)1()(lim limxxx f ,即)(x f 在0x 处的左右极限存在,但不相等,因此0x 函数)(x f 的第一类间断点中的跳跃间断点.综上,函数)(x f 的连续区间是),0(),0,(,0x 函数)(x f 的第一类间断点中的跳跃间断点.(5)显然1x 时,函数)(x f 无定义.又xexnxn x f xxnnnxn1111111)(limlim,因此xe xf x1)(,并且定义域为),1()1,(.显然函数)(x f 在区间),1(),1,(内连续.对于1x,xex f xxx1)(lim lim11,因此1x 函数)(x f 的第二类间断点中的无穷间断点.综上,函数)(x f 的连续区间是),1(),1,(,1x函数)(x f 的第二类间断点中的无穷间断点.2 (1) 因为函数)(x f 在区间),0(),0,(内是初等函数,因此函数)(x f 在,连续,只需在分段点0x处连续,即)0()()(limlim 00f x f x f xx.又在0x 处,b f )0(,b b ax x f xx)()(limlim,1)(lim limxxxex f ,因此1b.由于2)1(f ,即2b a,因此1a .综上当1,1ba 时,函数)(x f 在,上连续.(2) 因为函数)(x f 在区间),1(),1,1(),1,(内是初等函数,因此函数)(x f 在,连续,只需在分段点1x处连续,即)1()()(limlim11f x f x f xx,)1()()(limlim11f x f x f xx.在1x 处,1)1(f ,b a bx axx f xx)()(211limlim ,11)(limlim11xx f xx,因此1ba .在1x处,1)1(f ,11)(limlim11xx f xx,b a bx axx f xx)()(211limlim,因此1b a .于是有11b a b a ,解得1,0b a .综上当1,0b a 时,函数)(x f 在,上连续.3 )(x f 在1x 处连续,则)1()(lim1f x f x,即4313)(lim1xx b xb a x.由于0313lim1xx x,则有0)(lim1bxb ax,即02ba ,进而b a 2.从而313313)(limlim11xx b bx xxb x b a x x313313313)1(lim1x x x x x x x b x)1(2313)1(lim1x x x x b x b xxb x22313lim1.因此42b ,即2b,于是4a .综上当2,4ba 时,)(x f 在1x处连续.1.6 闭区间上连续函数的性质1若)0()(f a f ,则0或a .因此下面假设)0()(f a f .令)()()(a x f x f x F .显然)(x F 在],0[a 上连续,并且)2()()(),()0()0(a f a f a F a f f F .由于)2()0(a f f ,所以有0)]0()()][()0([)()0(f a f a f f a F F ,从而根据根的存在定理知,),0(a ,使得0)(F ,即)()(a f f .综上存在一点],0[a ,使得)()(a f f .2由于b x f a )(,则b b f a f a )(),(.令x x f x F )()(.显然)(x F 在],[b a 上连续,并且0)()(aa f a F ,0)()(bb f b F ,从而根据根的存在定理知,],[),(b a b a ,使得0)(F ,即)(f .3令bx b xa ax B x f A x F ,),(,)(.显然)(x F 在],[b a 上连续,并且A a F )(,B b F )(.又0AB ,因此0)()(b F a F 从而根据根的存在定理知,),(b a ,使得0)(F ,即0)(f .4方程可以变为),,(0))(())(())((321213312321x x x a x x a x xa .令))(())(())(()(213312321xxa xxa xxa x F .显然)(x F 在],[],,[3221上连续,并且))(()(322111a F ,))(()(321222a F ,))(()(131333a F .由于321,0,,321a a a ,所以0)(1F ,0)(2F ,0)(3F .进而根据根的存在定理知,),(211,),(322,使得0)(1F ,0)(2F ,即),(211,),(322,使得0313212111a a a ,0323222121a a a .5 (反证法)假设存在),(,使得0)(f .若 (或),则函数)(x f 在],[ (或],[)内连续,并且0)(f ,0)(f ,即0)()(f f .因此存在),( (或),(),即),(,使得0)(f .这与x和x是0)(x f 相邻的两个根相矛盾.故),(x都有0)(x f .6若1)sin(b a,则显然方程b x a x sin 有一个根是b a x .下面假设1)sin(b a .令b x a xx f sin )(.显然)(x f 在],0[b a上连续,并且0)0(bf ,0)]sin(1[)sin()(b a a b b a a b a b a f (因为0,0b a),进而0)()0(b a f f .因此存在),0(b a,使得0)(f ,即b x a xsin 在区间),0(b a上至少有一个根.综上方程b x a x sin 至少有一正根,并且它不超过b a .7 令)}(,),(),(min{21n x f x f x f m,)}(,),(),(m ax {21n x f x f x f M,则n x x x ,,,21中至少有一个i x 使得m x f i )(,至少有一个j x 使得M x f j )(,显然有M x f nx f x f mj nk k i )()()(1.若这个不等式中有一等号成立,则对应的i x 或j x 即为所求的点.若不等式都是严格不等式时,又)(x f 在],[j i x x 或],[i j x x 上连续,由介值定理知,至少存在一点介于i x 与j x 之间,使得nx f x f x f f n )()()()(21.综上存在],[b a ,使得nx f x f x f f n )()()()(21.习题 110,要使nn n n 11)1(1,只要1n,于是取正整数1N,当N n 时,1)1(1n nn ,因此1)1(1limnn n n.2由于当0x时,x ex~1,所以x ex3~13.进而331limlim30xx xexxx.3因为nnnn333213,则有nnnn33)321(31,并且nn33lim3,因此3)321(1limnnnn.4 令x t arcsin ,则t x sin ,并且00tx .因此1sin arcsin limlimtt xx tx.53sin 2tan 2limxxxxxxxxx x xxsin 2tan 2sin 2tan 2sin 2tan 23limxxxx xxsin 2tan 2sin tan 3limxx xx x xsin 2tan 2)cos 1(tan 3limxxxxx xsin 2tan 22132limxxxsin 2tan 221lim 082241.6任取),(0b a x ,对0,存在0k ,当00x x时,kx xk x f x f 00)()(.因此)()(0limx f x f x x,即)(x f 在0x x处连续.由0x 的任意性知,)(x f 在),(b a 上连续.当ax 0时,ka x k a f x f )()(.因此)()(lima f x f ax,即)(x f 在a x 处右连续.当0bx 时,kb x k b f x f )()(.因此)()(limb f x f bx,即)(x f 在b x处左连续.综上)(x f 在],[b a 上连续,又由于0)()(b f a f ,所以根据根的存在定理知,存在),(b a 使得0)(f .7 函数)(x f 的定义域为),2()2,1()12,12(0,k Z k k k.显然)(x f 的间断点只可能是)0,(12kZ k k x ,0x和2x.由于)(x f 在区间)0,)(12,12(k Z k k k ,)0,1(,)2,0(,),2(内是初等函数,因此)(x f 在这些区间上连续.对于2x,4222limxx,则有42sin )(222lim limxx f xx不存在,但是在1到1之间来回振荡,因此2x 是)(x f 的第二类间断点中的振荡间断点.对于0x ,21sin42sin)(2limlimxx f xx,02cos)1()(limlimxx x x f xx,即左右极限存在但不相等, 因此0x 是)(x f 的第一类间断点中的跳跃间断点.对于1x ,)1(2cos )1(2cos)1()(limlimlim111t t t xx x x f tx t xx2)1(22)1(2sin)1(limlimlimt tt t tt t ttt,因此1x 是)(x f 的第一类间断点中的可去间断点.对于)1,(12kZ kkx,xx x x f k xk x2cos)1()(limlim1212,因此12k x )1,(k Z k 是)(x f 的第二类间断点中的无穷间断点.综上所述,函数)(x f 在区间)0,)(12,12(kZ kkk ,)0,1(,)2,0(,),2(内连续;0x 是第一类间断点中的跳跃间断点;1x是第一类间断点中的可去间断点;2x 是第二类间断点中的振荡间断点;)1,(12kZ kkx是第二类间断点中的无穷间断点.8先证命题:若)(x F 在],[b a 上连续,则)(x F 在],[b a 上也连续.由于)(x F 在],[b a 上连续,则任取],[0b a x ,)()(0limx F x F x x(a x 0时取右极限,b x 0时取左极限).若)0(0)(0x F ,则根据极限的局部保号性知,在0x 的某个邻域内)0(0)(x F ,进而)()()()(00lim limx F x F x F x F x xx x()()()()(00limlimx F x F x F x F x xx x),注意a x 0时取右极限,b x 0时取左极限.因此)(x F 在],[b a 上也连续.由于)(),(x g x f 在],[b a 上连续,则)()(x g x f 在],[b a 上连续,进而)()(x g x f 在],[b a 上连续.又2)()()()()}(),(max {x g x f x g x f x g x f ,因此)}(),(max{x g x f 在],[b a 上连续.9由于n 为非零有理数,则可令qp n,其中q p,为非零整数,并且0p .进而nx与方程0qp x同解.(存在性)令px x f )(.则)(x f 在),0[内连续,并且当x时,)(x f .因此存在),0(a使得)(a f .显然)(x f 在],0[a 上连续,并且)()0(0a f f ,根据介值定理知,存在),0(a ,使得)(f ,即是方程px的一个正根.(唯一性)假设21,是方程px的两个正根. 进而有pp 21,即))((12221221112121p p p p pp ,由于0,21,则01222122111p p p p .因此21,即方程px只有一个正根.10狄利克雷(Dirichlet)函数是无理数是有理数,,x x x D 01)(.显然狄利克雷函数在),(上每一点都有定义, 但是在每一点都不连续.第二章一元函数的导数和微分2.1 导数的概念1 分析 (1) AA x f x f Ax f )(')(')('00_0;(2) 2 函数在0x x处可导,则函数在0x x处必连续;(3) 0 4ln )(x f 是常值函数,因此0)('x f ;(4) 0 驻点:函数的导数值为0的点.2 (1)xx f x x f xx f x x f xx2)()2(2)()2(0000limlim)('22)()2(20000limx f xx f x x f x.(2)xx f x x f xx f x x f xx)()()()(000000limlim)(')()(000limx f xx f x x f x.(3)hx f h x f x f h x f hh x f h x f h h)()()()(212)()(00000000lim limhx f h x f hx f h x f h )()()()(2100000lim)(')()()()(2100000limlimx f hx f h x f hx f h x f hh.(4)000)()()()(limlimx x x f x f x xx f x f x xx x)(')()(000limx f x x x f x f x x.3 (1)22)12(]1)(2['limlimlimxx xx x xxy y xxx;(2)xx x xxxx x xy y xxx2sin2sin 2cos )cos('limlimlimx xx x xxsin 22sin2sin lim;(3)xx x x xx x xy y xx)()]()[('22limlim12)12()()12(limlim2x x x x x xx xx;(4)1)1()](1['limlimlimx x xx x x x y y xxx.4因为0)0(f ,01sin)(limlimxx x f xx,即)0()(limf x f x,因此)(x f 在0x 处连续.因为xxxx xf x f xxx1sin1sin)0()(limlimlim不存在,因此)(x f 在0x 处不可导.5 (1) 因为x y cos ',故曲线在点)0,0(处的切线斜率为10cos 'x y k,进而曲线x ysin 在点)0,0(处的切线方程是x y ,法线方程是x y.(2) 因为x y sin ',故曲线在点)1,0(处的切线斜率为00sin 'x y k,进而曲线x y cos 在点)1,0(处的切线方程是1y,法线方程是0x.(3) 因为xy 1',故曲线在点)0,1(处的切线斜率为1'1x y k ,进而曲线x y ln 在点)0,1(处的切线方程是1x y,法线方程是1xy.6因为速度是t t tt S t V 22)'211()(')(2,加速度是)(')(t V t a 2)'22(t ,因此速度2)2(,6)2(a V ,即2t 秒时,运动物体的速度是s m/6,加速度是2/2s m .2.2 求导公式和求导法则1 (1)1620'3xx y .(2)'221'21211xx mxx my 32232121111xxxm mxxmxm.(3)xx y 55ln 5'4.(4)01111'22xxy .(5)52)2()3()'3)(2()3()'2('x x x x x x xy .(6)xxxx xxx x x xxxy 1ln 21)1(ln 2)')(ln 1(ln )'1('2222.(7)xxxxxxe e e e e y 3)13(ln )3ln()3(]')3[()'3('.(8))'(sin sin )'()'(cos '22x x x x x y x x x x x x x x xcos sin )12(cos sin 2sin 22.(9)x xx xy 22csc sec tan '.(10))'(ln sin ln )'(sin ln sin ''x x x x x x x x x y x x x x x x xx x xx x x x sin ln cos ln sin sin ln cos ln sin .(11)222ln 1ln 1'ln )'(ln 'xx xx x xxx x x x y .(12)2cos 1)'cos 1(sin )cos 1()'(sin 'xx x x x y xxx xxx x x cos 11cos 1cos 1cos 1sin sin )cos 1(cos 22.另解2sec21'2tan'cos 1sin '2x x xx y .(13)22''sin cos sin cos sin sin sin 'xxxx xxx x xx xx y .(14)422)')(ln ()'ln ('xx x x x x xy 342ln 21)ln (211xxx xx x x xx.(15)2)ln 1()'ln 1)(ln 1()ln 1()'ln 1('x x x x x y 22)ln 1(2)ln 1(ln 1ln 1x x x xxx x.另解222)ln 1(2)ln 1(12)ln 1()'ln 1(2'1ln 12'x x x x x x xy .(16)2222)1()'1(ln )1()'ln ('x x x x x x x y 22222222)1(ln )1(1)1(ln 2)1)(1(ln x xx xx xx x x .2 (1) 2222222)'(1'xax x axay .(2))53cos(3)'53()53cos('x x x y .(3))1sin(2)1()1sin('222xx xxy .(4)xx x xy ln 1)'(ln ln 1'.(5)xxe x ey 333)'3('.(6)222)'('2x x xex e y .(7)22'24121212211'xx x x y .(8)422212)'(11'xx x xy .(9)222'21111111111'xxxxx y .(10)222'211)1(21111111111'xx xx xx xx y .(11)x e x e x e x e y xx xx 3sin 33cos 3cos 3cos '''.(12)'2'21sin1sin'xxxxy xxx xxxxx 1cos1sin21cos11sin 222.(13))'(arccos 1arccos 1'2'2x xxx y 11arccos 111arccos 12222xx x xxxxx .(14)''11112111111111'xx xx xx xx x x y 1112112122xxxx .另解11111121)1ln()1ln(21'2'xxxx x y .(15))'(sin )sin 2(22ln )'(sin 22ln '22sin2sin x x x y xxx xx xx2sin 22ln cos )sin 2(22ln 22sin sin .(16)x xx x xx xy 4csc 42cos 2sin 2)]2(sec 2[2tan 1)'2(tan 2tan 1'2.(17)x x x x x y 6sin 3)3cos 3()3sin(2)'3(sin 3sin 2'.(18))'12(sin sin '21212'12122222x xeeeey x x x x x x x x。
中国人民大学出版社(第四版)高等数学一第1章课后习题详解
中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
大学高等数学基础教材答案
大学高等数学基础教材答案(字数:1631)第一章:函数与极限1. 函数与映射1.1 函数定义与性质1.2 函数的四则运算1.3 反函数与复合函数2. 极限的概念与性质2.1 极限的定义2.2 极限存在的判定定理2.3 极限的性质与四则运算2.4 极限存在的唯一性3. 极限运算法则3.1 数列极限的性质3.2 函数极限的性质3.3 极限运算法则第二章:导数与微分1. 导数的概念与性质1.1 导数定义1.2 导数存在的条件1.3 函数可导的判定定理2. 导数运算法则2.1 基本导数运算法则2.2 高阶导数与Leibniz公式3. 高阶导数与隐函数求导3.1 高阶导数定义与性质3.2 隐函数求导原理第三章:微分中值定理及其应用1. 微分中值定理1.1 罗尔中值定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 函数的极值与最值2.1 函数极值的判定定理2.2 求解函数最值的方法3. 函数图形的简单性质与描绘 3.1 函数的对称轴与奇偶性3.2 函数的图像描绘第四章:不定积分1. 不定积分的定义与性质1.1 不定积分的定义1.2 不定积分的基本性质2. 基本不定积分与换元积分法 2.1 基本不定积分表2.2 第一换元法2.3 第二换元法3. 分部积分法与有理函数的积分 3.1 分部积分法3.2 有理函数的积分第五章:定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的基本性质1.3 可积函数与Riemann积分2. 定积分计算方法2.1 基本积分公式2.2 定积分的几何应用3. 牛顿-莱布尼茨公式与定积分的换元法 3.1 牛顿-莱布尼茨公式3.2 定积分的换元法第六章:微分方程1. 微分方程的基本概念1.1 微分方程的定义与解1.2 微分方程的阶与类型2. 可分离变量的微分方程2.1 可分离变量的微分方程解法2.2 可分离变量的应用3. 一阶线性微分方程3.1 一阶线性微分方程解法3.2 一阶线性微分方程的应用第七章:级数1. 级数的定义及基本性质1.1 级数的定义1.2 级数的基本性质1.3 级数的敛散性判定2. 收敛级数的性质与判别法2.1 收敛级数性质2.2 正项级数判别法2.3 任意项级数判别法3. 幂级数3.1 幂级数的性质3.2 幂级数的收敛半径以上是大学高等数学基础教材的答案,希望对你的学习有所帮助。
北大版高等数学教材答案
北大版高等数学教材答案第一章极限和连续1.1 从数列的极限到函数的极限1.1.1 数列极限的定义1.1.2 数列极限的性质1.1.3 函数极限的定义1.1.4 函数极限的性质1.1.5 无穷小与无穷大1.2 一元函数的连续性1.2.1 函数连续的定义1.2.2 连续函数的性质1.2.3 闭区间上连续函数的性质1.3 极限存在准则1.3.1 两个重要极限存在准则1.3.2 极限存在准则的应用1.4 函数的间断点1.4.1 第一类间断点1.4.2 第二类间断点1.4.3 间断点的分类1.4.4 间断点与连续性的关系第二章导数与微分2.1 导数的概念与几何意义2.1.1 导数的定义2.1.2 几何意义2.1.3 导数的性质2.2 导数的计算2.2.1 利用导数定义计算2.2.2 导数的四则运算2.2.3 高阶导数2.3 函数的微分与高阶导数2.3.1 函数的微分2.3.2 高阶导数的计算2.4 切线与法线2.4.1 切线的定义2.4.2 切线与导数的关系2.4.3 法线的定义2.4.4 法线与导数的关系2.5 隐函数与参数方程的导数2.5.1 隐函数的导数2.5.2 参数方程的导数2.6 可导与连续函数第三章微分中值定理与导数应用3.1 Rolle定理与Lagrange中值定理3.1.1 Rolle定理的条件与结论3.1.2 Lagrange中值定理的条件与结论3.1.3 多次应用Lagrange中值定理3.2 函数的单调性与极值3.2.1 函数的单调性与单调区间3.2.2 极值的必要条件与充分条件3.2.3 极值的判定和求解3.3 函数图形的描绘3.3.1 函数的对称性3.3.2 函数的周期性3.3.3 函数的凹凸性与拐点3.4 洛必达法则与泰勒展开3.4.1 洛必达法则3.4.2 泰勒展开3.5 导数在自然科学中的应用3.5.1 导数在物理学中的应用3.5.2 导数在生物学中的应用3.5.3 导数在经济学中的应用第四章不定积分4.1 基本积分公式4.1.1 基本积分公式的推导4.1.2 基本积分公式的应用4.2 第一换元法4.2.1 第一换元法的步骤4.2.2 第一换元法的应用4.3 分部积分法4.3.1 分部积分法的推导4.3.2 分部积分法的应用4.4 第二换元法4.4.1 第二换元法的步骤4.4.2 第二换元法的应用4.5 有理函数的积分4.5.1 有理函数的积分的一般步骤4.5.2 有理函数分解的方法4.6 函数的定义积分4.6.1 定义积分的概念4.6.2 定义积分的性质4.7 牛顿—莱布尼茨公式与定积分的应用4.7.1 牛顿—莱布尼茨公式4.7.2 定积分在曲线长度计算中的应用4.7.3 定积分在平面图形的面积计算中的应用第五章定积分5.1 定积分的定义与性质5.1.1 定积分的定义5.1.2 定积分的性质5.2 定积分的计算5.2.1 分割求和法5.2.2 定积分的换元法5.2.3 定积分的分部积分法5.3 定积分的应用5.3.1 定积分在物理学中的应用5.3.2 定积分在几何学中的应用5.3.3 定积分在经济学中的应用5.4 不定积分与定积分之间的关系5.4.1 不定积分与定积分的定义5.4.2 不定积分与定积分的性质5.4.3 不定积分与定积分的计算方式...(以此类推,继续描述后续章节内容)这是根据北大版高等数学教材的章节划分及内容概要,提供了一个大纲结构。
第二版高等数学教材答案
第二版高等数学教材答案由于高等数学是一门较为复杂的学科,学生在学习过程中常常会遇到一些难题和疑惑。
为了帮助广大学生更好地掌握高等数学知识,提高学习效果,我们特别整理了《第二版高等数学教材答案》。
本答案提供了全书各章节的详细解析,旨在给学生提供学习的参考和借鉴。
第一章:极限和连续1.1 实数与数列1.2 函数与极限1.3 无穷小与无穷大1.4 极限运算法则1.5 极限存在准则1.6 数列极限的性质1.7 函数的极限1.8 连续与间断1.9 无穷小的比较1.10 极限与连续的关系第二章:导数与微分2.1 函数的概念2.2 三角函数与反三角函数2.3 反函数与复合函数2.4 极限与连续2.5 导数概念2.6 导数的几何意义与物理应用2.7 导数的运算法则2.8 高阶导数2.9 隐函数与参数方程的导数2.10 函数的微分2.11 中值定理与导数的应用第三章:定积分3.1 面积与定积分3.2 定积分的概念与性质3.3 定积分的计算3.4 反常积分3.5 定积分与无穷小量3.6 牛顿—莱布尼兹公式3.7 定积分的应用第四章:不定积分和微分方程4.1 不定积分概念4.2 基本积分公式4.3 第一换元法4.4 分部积分法4.5 三角函数的积分4.6 有理函数的积分4.7 反常积分4.8 微分方程的基本概念4.9 可分离变量的微分方程4.10 齐次方程4.11 一阶线性微分方程4.12 可降阶的高阶微分方程第五章:无穷级数5.1 数项级数概念5.2 正项级数收敛的判别法与性质5.3 收敛级数的四则运算5.4 交错级数5.5 绝对收敛与条件收敛5.6 幂级数5.7 函数展开成幂级数第六章:多元函数微分学6.1 多元函数的概念6.2 偏导数6.3 全微分6.4 多元复合函数的求导法则6.5 隐函数与参数方程的求导6.6 微分的几何应用6.7 方向导数与梯度6.8 极值问题6.9 条件极值与最小二乘法6.10 多元函数积分学的基本概念以上是《第二版高等数学教材答案》各章节的内容概述。
高等数学重庆大学版教材答案
高等数学重庆大学版教材答案第一章:极限与连续1.1 极限的概念与性质1.2 极限存在准则及常用极限第二章:函数与导数2.1 函数的概念与性质2.2 一次函数与多项式函数2.3 指数函数与对数函数2.4 三角函数与反三角函数2.5 导数的概念及其几何意义第三章:微分学应用3.1 微分学中的中值定理3.2 泰勒公式与函数的凹凸性3.3 曲线的渐近线与曲率第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分公式及其应用4.3 定积分的概念与性质4.4 定积分的计算方法第五章:常微分方程5.1 常微分方程的基本概念与解法5.2 一阶线性常微分方程5.3 高阶常系数线性微分方程第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 多元函数的全微分与全导数第七章:多元函数积分学7.1 二重积分及其计算方法7.2 三重积分及其计算方法7.3 曲线与曲面的面积与曲线积分第八章:无穷级数与幂级数8.1 数项级数的概念与性质8.2 收敛级数判别法8.3 幂级数及其收敛半径第九章:向量代数与空间解析几何9.1 向量的概念与性质9.2 空间几何与平面方程第十章:连续性与一元函数微积分应用10.1 函数连续性与间断点10.2 一元函数微积分应用第十一章:二重积分与曲线积分应用11.1 二重积分应用11.2 曲线积分应用第十二章:无穷级数与多元函数微积分应用12.1 数项级数的应用12.2 多元函数微积分的应用总结:以上为高等数学重庆大学版教材的答案提纲。
希望这个提纲能够帮助你更好地学习和理解高等数学的知识。
在实际讲授过程中,还请参考教材详细内容和课堂教学,确保准确性和全面性。
祝你学习进步!。
高等数学第一章函数例题及答案
高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
高等数学第一章参考答案(精华)
第一章参考答案习题1.11.(1)证:对0,(要使得33110nn ,考虑到311n n,只要1n,即1n)取1=[]+1N ,则当n N 时,有310n,故31lim0nn。
(2)证:2121131393n n n n,对0,(要使得212313n n ,只要1n 即可,即1n)取1=[]+1N ,则当nN 时,有212313n n ,故212lim313nn n 。
(3)证:0,(要使得22sin 10n nn,由于211nn ,只要1n,即1n)取1=[]+1N ,则当nN 时,有2sin 0n n ,则2sin lim0nn n。
(4)证:1111n nn n n故对0,(要使1n n,只要1n ,即21n)取21=[]+1N ,则当n N 时,有10n n,则lim 10nn n ()。
2.证明:对实数a 、b ,0,ab a b证“”ab ,则0a b,故0a b,即a b再证“”假设a b ,不妨令a b ,取0=2a b ,由条件可知=2a ba b,即112,矛盾。
3. 证明:“”,{}n a 收敛于a ,0,N ,当nN 时,na a,即naa a,nN 时,(,)n a U a ,故(,)U a之外最多只含数列n a 的前N 项。
“”,若对0,(,)U a 之外只含数列n a 的有限项,不妨设为120,,...,m k k k a a a ,取|精. |品. |可. |编. |辑. |学. |习. |资. |料. * | * | * | * | |欢. |迎. |下. |载.12max{,,...,}m Nk k k ,则当nN 时,na (,)U a ,即na a{}n a 收敛于a 。
4.证:lim nna a ,则对0,故N ,当nN 时,n a a(由于a ba b ),故此时nna aa alim nna a 。
该命题的逆命题不成立,例如数列{(1)}n,令(1)nna ,则有lim 1nn a ,而lim n n a 不存在。
机电工业出版社高等数学第1章习题答案
习题解答习题1.11.求下列函数的定义域:解 (1)要使函数有定义,必须10x +>,即1x >-,故函数的定义域为(1,)-+∞.(2)要使函数有定义,必须2090x ≠-≥⎪⎩,解之得33x -<<,故函数的定义域为(3,3)-.(3)要使函数有定义,必须100x x -≠⎧⎨≥⎩,解之得01x ≤<或1x >,故函数的定义域为[0,1)(1,)+∞ .(4)要使函数有定义,必须020x x ≠⎧⎨-≠⎩,即0x ≠且2x ≠,故函数的定义域为(,0)(0,2)(2,)-∞+∞ .(5)要使函数有定义,必须111ln(1)010x x x -≤+≤⎧⎪+≠⎨⎪+>⎩,解之得10x -<<,故函数的定义域为(1,0)-.2.判断下列各组中的两个函数是否相同,并说明理由:解 (1)这两个函数不同.因为它们的定义域不同,前者的定义域为(,1)(1,)-∞+∞ ,而后者的定义域为(,)-∞+∞.(2)这两个函数相同.因为y x ==则均相同.(3)这两个函数不同.因为cos y x ==,所以它们的对应法则不同. (4)这两个函数相同.因为它们的定义域与对应法则均相同. 3.下列函数哪些是奇函数?哪些是偶函数?哪些是非奇非偶函数?.解 (1) 所给函数是偶函数. (2) 所给函数是奇函数.(3) 所给函数是非奇非偶函数. (4) 所给函数是偶函数. (5) 所给函数是奇函数. (6) 所给函数是奇函数.4.求下列函数的反函数: 解 (1) 由11x y x -=+得,11y x y +=-.故所给函数的反函数为11xy x+=-.(2) 由ln(2)1y x =++得,1e2y x -=-.故所给函数的反函数为1e 2x y -=-.(3) 由221x x y =+得,2log 1y x y =-.故所给函数的反函数为2log 1xy x=-.5.设2211()f x x xx +=+,求1()f x . 解 因为222111()()2f x x x x x x+=+=+-,故2()2f u u =-.于是,211()2f x x=-. 6.设1,||1,()21,||1,x x f x x x +≤⎧=⎨->⎩,求(2),(1),(0)f f f --,(1)f 及(3)f .解 (2)5,(1)0,(0)1,(1)2,(3)5f f f f f -=--====.7.设1,1,()0,1,1,1,x f x x x ⎧<⎪==⎨⎪->⎩ ()e x g x =,求[()]f g x 及[()]g f x . 解 1,()1,1,e 1,[()]0,()1,0,e 1,1,()1,1,e 1,x x x g x f g x g x g x ⎧⎧<<⎪⎪====⎨⎨⎪⎪->->⎩⎩1,0,0,0,1,0.x x x <⎧⎪==⎨⎪->⎩()1e,1,[()]e 1,1,e , 1.f x xg f x x x -⎧<⎪===⎨⎪>⎩8.已知()f x 的定义域为(0,1],求下列复合函数的定义域: (1) (1)f x -; (2) (ln )f x ; (3) 1133f x f x ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭.解 (1) 函数(1)f x -的定义域为{}{}1(0,1]01[0,1)D x x x x =-∈=≤<=. (2) 函数(ln )f x 的定义域为{}{}ln (0,1]1e (1,e]D x x x x =∈=<≤=. (3) 函数1133f x f x ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的定义域为11141212(0,1](0,1],33333333D x x x x x x x x ⎧⎫⎧⎫⎧⎫⎧⎫⎛⎤=-∈+∈=<≤-<≤=⎨⎬⎨⎬⎨⎬⎨⎬ ⎥⎝⎦⎩⎭⎩⎭⎩⎭⎩⎭ .9.在下列各题中,求由所给函数复合而成的复合函数,并求对应于所给自变量值的函数值:(1) 205,2y u x x ==+=; (2) 20,2cos ,6y u u x x π===;(3) 12e ,ln ,1,uy u v t t t =====解(1) y =,23x y ==;(2) 24cos y x =,3x y ==π6;(3) y =11t y ==,t y =10.某厂生产某种产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价销售,超过700吨时超过的部分打九折出售.试将销售总收益与销售量的函数关系用数学表达式表出.解 设用x 表示销售量,用R 表示销售总收益,根据题意可得销售总收益R 与销售量x 的函数关系如下:130,0700,9100117,7001000.x x R x x ≤≤⎧=⎨+<≤⎩11.假设某种商品的需求量Q 是价格p (单位:元)的函数:120080Q p =-;商品的总成本是需求量的函数:250005C Q =+;每单位商品需要纳税2元.试将销售利润L 表示为单价的函数.解 根据题意,销售利润L 与单价p 的函数关系为:2L pQ C Q =--(250005)2pQ Q Q =-+- (7)25000p Q =--(7)(120080)25000p p =--- 280176033400p p =-+-.习题1.21.观察下列数列的变化趋势,指出是收敛还是发散.如果收敛,写出其极限:解 (1) 收敛于0.(2) 收敛于0.(3) 收敛于1.(4) 发散.(5) 收敛于1-.(6) 发散.2.根据数列极限的定义证明: (1) 21lim0n n →∞=; (2) 313lim 212n n n →∞-=+.证 (1) 对于任意给定的正数ε, 要使210n ε-<,只要21n ε<,即n > 于是,取正整数N≥,则当N n >时,总有210nε-<.据数列极限的定义,得21lim0n n →∞=.(2)对于任意给定的正数ε,由于313521242n n n --=++, 故要使313212n n ε--<+,只要542n ε<+,即524n εε->. 于是,取正整数524N εε-≥,则当N n >时,总有313212n n ε--<+.据数列极限的定义,得313lim212n n n →∞-=+.3.证明:若lim n n x a →∞=,则lim n n x a →∞=.证 由于()n n n x x a a x a a =-+≤-+, ()n n n n a a x x x a x =-+≤-+,所以n n x a x a -≤-因为lim n n x a →∞=,所以据数列极限的定义,对于任意给定的正数ε, 存在正整数N ,当N n >时,有n x a ε-<,从而n x a ε-<.再据数列极限的定义,有lim n n x a →∞=.习题1.31.根据函数极限的定义证明: (1) 11lim22x x x →∞+=; (2) lim0x =. 证 (1)对于任意给定的正数ε,由于111222x x x+-=,故要使1122x x ε+-<,只要12x ε<,即12x ε>. 于是,取正数12X ε=,则当||x X >时,就有1122x x ε+-<.据函数极限的定义,得11lim22x x x →∞+=.(2)对于任意给定的正数ε(不妨设1ε<),由于=≤ε-<ε<,即211x ε>-.于是,取正数211X ε=-,则当x X >时,0ε-<.据函数极限的定义,得limx =. 2.根据函数极限的定义证明:(1) 2lim(31)5x x →-=; (2) 211lim21x x x→--=+. 证 (1) 对于任意给定的正数ε,由于(31)532x x --=-,故要使(31)5x ε--<,只要23x ε-<.于是,取正数3εδ=,则当02x δ<-<时,就有(31)5x ε--<.据函数极限的定义,得2lim(31)5x x →-=.(2) 对于任意给定的正数ε,由于21211x x x--=++, 故要使2121x xε--<+,只要1x ε+<. 于是,取正数δε=,则当0(1)x δ<--<时,就有2121x xε--<+.据函数极限的定义,得211lim 21x x x→--=+. 3.证明:函数()f x x =当0x →时极限为零.证 0lim ()lim lim ()0x x x f x x x ---→→→==-=,0lim ()lim lim 0x x x f x x x +++→→→===, 因为0lim ()lim ()0x x f x f x -+→→==,所以0lim ()0x f x →=. 4.求下列函数当0x →时的左、右极限,并说明他们当0x →时的极限是否存在:(1)2,10,()1,0,01;x x f x x x ⎧-<<⎪==⎨<≤ (2)()x f x x =.解 (1) 0lim ()lim 20x x f x x --→→==,00lim ()lim 0x x f x ++→→==.因为0lim ()lim ()x x f x f x -+→→=,所以0lim ()x f x →存在. (2) 0lim ()lim lim 1x x x x x f x xx ---→→→-===-, 000lim ()lim lim 1x x x x xf x x x+++→→→===. 因为0lim ()lim ()x x f x f x -+→→≠,所以0lim ()x f x →不存在.习题1.41.下列函数在其自变量的指定变化过程中哪些是无穷小?哪些是无穷大?哪些既不是无穷小也不是无穷大?;解 (1) 当0x →时,函数()f x 为无穷大. (2) 当x →∞时,函数()f x 为无穷小. (3) 当x →∞时,函数()f x 为无穷小.(4) 当x →∞时,函数()f x 既不是无穷小也不是无穷大.2.下列函数在自变量的哪些变化过程中为无穷小?在自变量的哪些变化过程中为无穷大?(1) 21()x f x x-=; (2) 3222()32x x f x x x -=-+.解 (1) 当1x →或x →∞时为无穷小,当0x →时为无穷大.(2) 当0x →时为无穷小,当1x →或当x →∞时为无穷大. 3.利用无穷小的性质求下列极限: .解 (1) 因为arctan x <π2,且1lim 0x x →∞=,所以arctan 1lim lim arctan 0x x x x xx →∞→∞==. (2) 因为2sin1x≤是有界函数,且20lim 0x x →=,所以202lim sin0x x x→=.(3) 因为1cos 2x +≤是有界函数,且1lim 0x x→∞=,所以1cos 1lim lim (1cos )0x x x x xx →∞→∞+=+=. (4) 因为222121limlim 0x x x x x x →∞→∞+⎛⎫=+= ⎪⎝⎭,所以2lim 21x x x →∞=∞+.习题1.51.求下列极限:解 (1) 12211lim(31)314lim 223lim(23)2x x x x x x x x x →→→++===-+-+.(2) 222213x x x x x +-==+ (3) 22224(2)(2)lim lim lim(2)422x x x x x x x x x →→→-+-==+=--.(4) 2322000(1)1lim lim lim 1(1)1x x x x x x x x x x x x x →→→---===-+++. (5) 201lim lim(1)1x x x x x x →→⎛⎫+=+= ⎪⎝⎭. (6) 2244468(2)(4)22lim lim lim 34(1)(4)15x x x x x x x x x x x x x →→→-+---===--+-+. (7) 222000()2limlim lim(2)2h h h x h x xh h x h x h h→→→+-+==+=. (8) 222111lim lim 0132312x x x x x x x x x →∞→∞++==-+-+.(9) 22221112211lim lim 11231223x x x x x x x x x x→∞→∞-+-+==----. (10) 3(2)(23)(34)234limlim 1236n n n n n n n n n →∞→∞+++⎛⎫⎛⎫⎛⎫=+++= ⎪⎪⎪⎝⎭⎝⎭⎝⎭. (11) 1111112lim 1lim2124212n n n n +→∞→∞⎛⎫- ⎪⎛⎫⎝⎭+++⋅⋅⋅+== ⎪⎝⎭-.(12) 11sin sin lim lim 11sin 1sin x x xx x x x x x x→∞→∞++==--. (13) 222241(2)11lim lim lim 42(2)(2)24x x x x x x x x x →→→---⎛⎫-===-⎪--+-+⎝⎭. (14) 32211113(1)(2)2lim lim lim 111(1)(1)(1)x x x x x x x x x x x x x →→→-++⎛⎫-===-⎪----++-++⎝⎭. 2.求下列极限: .解(1) 1lim1x →-=-.(2) 2220001)lim 1)2x x x x x →→→===.(3) 001x x x →→→===.(4) 22111limlim 11x x x x x →→→==--118x →==-.3.设243()1x f x ax b x +=++-,若已知: (1) lim ()0x f x →∞=; (2) lim ()2x f x →∞=; (3) lim ()x f x →∞=∞,试分别求这三种情形下常数a 与b 的值.解 2243(4)()(3)()11x a x b a x b f x ax b x x +++-+-=++=--. (1) 由lim ()0x f x →∞=得40a b a +=⎧⎨-=⎩,故4a b ==-.(2) 由lim ()2x f x →∞=得402a b a +=⎧⎨-=⎩,故4a =-,2b =-.(3) 由lim ()x f x →∞=∞得40a +≠,故4a ≠-,b 为任意实数.4.已知232lim 3x x x k x →-+-存在且等于a ,求常数k 与a 的值.解 因为232lim 3x x x ka x →-+=-,故222333322lim(2)lim (3)lim lim(3)0033x x x x x x k x x kx x k x x a x x →→→→-+-+-+=-=⋅-=⋅=--. 另一方面,23lim(2)3x x x k k →-+=+,故3k =-.于是233323(3)(1)lim lim lim(1)433x x x x x x x a x x x →→→---+===+=--.习题1.61.求下列极限: .解 (1) 00sin sin limlim x x x xx xωωωωω→→==.(2) 00sin 22sin 222lim lim sin 3sin 3333x x xx x xx x→→⋅==⋅. (3) ππsinπlim sin limππn n n n n n→∞→∞⋅==.(4) 211sin(1)sin(1)1limlim 1(1)(1)2x x x x x x x →→--==-----. (5) 222000sin 281cos 42sin 2(2)lim lim lim 8sin sin sin x x x x x x x x x xx x x→→→⋅-===.(6) ππ22πsin()cos 12lim lim ππ222()2x x x x x x →→-==--. (7) 00sin 22sin 1lim lim sin 2sin 32x x x x x x x x x x →→--==++. (8) 1sin 22lim 2sin lim 222n n n n n nx xx x x +→∞→∞⋅==.2.求下列极限: .解 (1) 2112200lim(12)lim (12)e xx x x x x →→⎡⎤+=+=⎢⎥⎣⎦.(2) []221200lim(1)lim 1()e xx x x x x ---→→⎧⎫-=+-=⎨⎬⎩⎭.(3) 44411lim lim 1e xx x x x x x →∞→∞⎡⎤+⎛⎫⎛⎫=+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. (4) 33333lim 1lim 1e xx x x x x ---→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-=+-=⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎪⎩⎭.(5) ()[]613622111lim 32lim 1(22)e x x x x x x ----→→⎧⎫-=+-=⎨⎬⎩⎭.(6)422444 244lim lim11e1e 222xxx xxx x x-→∞→∞⎧⎫⎡⎤+⎪⎪⎛⎫⎛⎫⎛⎫⎢⎥=+⋅+=⋅=⎨⎬⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭.3.利用极限夹逼准则证明:.证(1) 因为≤+⋅⋅⋅≤,而且1n n==,1n n==,故由夹逼准则得lim1n→∞⎛⎫+⋅⋅⋅=.(2) 因为33333111222121n nn nnn n n n n n n++≤++⋅⋅⋅+≤+++++,而且232211112lim lim lim012(1)2(1)n n nnn nn nn n nn→∞→∞→∞+++===+++,2333111(1)2lim lim lim0112(1)2(1)n n nnn n nn nn nn→∞→∞→∞+++===+++,故由夹逼准则得33312lim012nnn n n n→∞⎛⎫++⋅⋅⋅+=⎪+++⎝⎭.习题1.71.当0x →时,2x x -与23x x -相比,哪一个是高阶无穷小?解 因为23200lim lim 0x x x x x x x →→-==-,所以当0x →时,23x x -是比2x x -高阶的无穷小.2.当1x →时,无穷小1x -与下列无穷小是否同阶?是否等价?(1) 21x -;(2) 1); (3)11x-. 解 (1) 因为211111lim lim 112x x x x x →→-==-+,所以当1x →时,无穷小1x -与21x -同阶但不等价.(2)因为111x x →→==,所以当1x →时,无穷小1x -与1)同阶且等价.(3) 因为111limlim()111x x x x x→→-=-=--,所以当1x →时,无穷小1x -与11x -同阶但不等价.3.设当0x →时,21cos x -与sin na x x 是等价无穷小,求常数a 及正整数n . 解 因为当0x →时,21cos x -与sin na x x 是等价无穷小,所以42300011cos 2lim lim lim 1sin 2n n nx x x xx x a x x ax x ax →→→-===⋅, 由此得:12a =,3n =. 4.利用等价无穷小代换法求下列极限: ;解 (1) 00tan 222limlim 333x x x x x x →→==.(2) 00112lim 24x x xx →→==.(3) 223300sin limlim 1arctan()x x x x x xx x→→⋅==. (4) 22220001()sin tan tan (cos 1)12lim lim lim ln(1)ln(1)2x x x x x x x x x x x x x x x →→→---===-++⋅. (5) 222lim lnlim ln 1lim 2x x x x x x x x x x →∞→∞→∞+⎛⎫⎛⎫=+=⋅= ⎪ ⎪⎝⎭⎝⎭. (6) []111arcsin(1)arcsin(1)1limlim lim 1ln ln 1(1)1x x x x x x x x x →→→---===-+--.(7) 0000,,sin()limlim lim 1,,sin ,.mmm nn n x x x m n x x xm n x x m n -→→→>⎧⎪====⎨⎪∞<⎩习题1.81.研究下列函数在指定点处的连续性:解 (1) 因为11lim ()lim(2)1x x f x x --→→=-=,211lim ()lim 1x x f x x ++→→==,且(1)1f =,所以 11lim ()lim ()(1)x x f x f x f -+→→==, 从而()f x 在点1x =处连续.(2) 因为00sin lim ()lim1(0)x x xf x f x→→===,所以()f x 在点0x =处连续.(3) 因为()f x 在点0x =处无定义,所以()f x 在点0x =处不连续.因为11lim ()lim 22x x f x x --→→==,11lim ()lim(1)0x x f x x ++→→=-=,所以11lim ()lim ()x x f x f x -+→→≠, 从而()f x 在点1x =处不连续.2.讨论下列函数的连续性,若有间断点,指出其类型:解 (1)()f x 为初等函数,其定义域为(,1)(1,2)(2,)-∞+∞ .由初等函数的连续性知,函数()f x 在其定义区间(,1),(1,2),(2,)-∞+∞内连续,而点1x =及2x =为间断点.因为2211111lim ()lim lim 2322x x x x x f x x x x →→→-+===--+-, 所以1x =是)(x f 的第一类间断点,且是可去间断点.因为22221lim ()lim 32x x x f x x x →→-==∞-+, 所以2x =是)(x f 的第二类间断点,且是无穷间断点.(2)()f x 为初等函数,其定义域为(,1)(1,0)(0,)-∞--+∞ .由初等函数的连续性知,函数()f x 在其定义区间(,1),(1,0),(0,)-∞--+∞内连续,而点1x =-及0x =为间断点.因为11lim ()lim(1)x x xf x x x →-→-==∞+,所以1x =-是)(x f 的第二类间断点,且是无穷间断点.因为01lim ()lim lim 1(1)(1)x x x x f x x x x ---→→→===-+-+,01lim ()lim lim 1(1)1x x x x f x x x x +++→→→===++,所以2x =是)(x f 的第一类间断点,且是跳跃间断点.(3)()f x 为初等函数,其定义域为(,0)(0,)-∞+∞ .由初等函数的连续性知,函数()f x 在其定义区间(,0),(0,)-∞+∞内连续,而点0x =为间断点.因为21lim ()lim sin x x f x x --→→=不存在(2001lim ()lim sin x x f x x++→→=也不存在),所以0x =是)(x f 的第二类间断点.(4)()f x 为分段函数.显然()f x 在区间(,1),(1,1),(1,)-∞--+∞内连续. 因为11lim ()lim (3)4x x f x x --→-→-=-=-,11lim ()lim (1)0x x f x x ++→-→-=+=,所以1x =-是)(x f 的第一类间断点,且是跳跃间断点.因为11lim ()lim(1)2x x f x x --→→=+=, 11lim ()lim(3)2x x f x x ++→→=-=-, 所以1x =是)(x f 的第一类间断点,且是跳跃间断点.3.求函数222()6x x f x x x --=+-的连续区间,并求123lim (),lim (),lim ()x x x f x f x f x →→→-.解 ()f x 为初等函数,其定义域为(,3)(3,2)(2,)-∞--+∞ .由初等函数的连续性知,函数()f x 的连续区间为(,3),(3,2),(2,)-∞--+∞.221121lim ()lim 62x x x x f x x x →→--==+-. 22222213lim ()lim lim 635x x x x x x f x x x x →→→--+===+-+.223332(1)(2)lim ()lim lim 6(3)(2)x x x x x x x f x x x x x →-→-→---+-===∞+-+-. 4.求下列极限: ;(5) 1lim(cos )x x x →.解 (1) 336π1lim cos 2cos38x x π→==. (2) 1lim ln(sin )ln(1sin π)=0x x x π→+=+.(3) 2x →===.(4) ()[]00tan 1limlimcot 2cot 2tan 222lim 1tan lim 1(tan )eee x x xx xxx x x x x x →→---→→-=+-===.(5) []22220211cos 1121limlim 200lim(cos )lim 1(cos 1)e ee x x x x x xx x x x x x →→---→→=+-===.5.求常数a 的值,使函数ln(1),0,()23,ax x f x xx x +⎧<⎪=⎨⎪-≥⎩在点0x =处连续.解 00ln(1)lim ()lim lim x x x ax ax f x a xx ---→→→+===, 00lim ()lim (23)3(0)x x f x x f ++→→=-=-=, 要使()f x 在点0x =处连续,只要0lim ()lim ()(0)x x f x f x f -+→→==,所以3a =-. 6.解 ()21220lim ()lim 12e x x x f x x→→=+=,(0)f k =.由于()f x 在(,0),(0,)-∞+∞内显然连续,故要使()f x 在点(,)-∞+∞内连续,只要使()f x 在点0x =处连续,即使得0lim ()(0)x f x f →=,所以2e k =.习题1.91.证明方程53310x x --=至少有一个介于1与2之间的实根. 证 令53()31f x x x =--,则()f x 在[1,2]上连续,且(1)(2)(3)7210f f ⋅=-⨯=-<,故据零点定理,函数()f x 在开区间(1,2)内至少有一个零点,即方程53310x x --=至少有一个介于1与2之间的实根.2.证明方程32310x x -+=至少有一个小于1的正根. 证 令32()31f x x x =-+,则()f x 在[0,1]上连续,且(0)(1)1(1)10f f ⋅=⨯-=-<,据零点定理,函数()f x 在开区间(0,1)内至少有一个零点,即方程32310x x -+=至少有一个小于1的正根.3.证明方程sin x a x b =+ (0,0a b >>)至少有一个不超过a b +的正根. 证 令()sin f x x a x b =--,则()f x 在[0,]a b +上连续,且(0)0f b =-<,()sin()0f a b a a a b +=-+≥,据零点定理,函数()f x 在区间(0,]a b +内至少有一个零点,即方程sin x a x b =+ (0,0a b >>)至少有一个不超过a b +的正根.4.设函数()f x 在闭区间[,]a b 上连续,且12a x x b <<<,证明:至少存在一点12[,]x x ξ∈,使得12()()()2f x f x f ξ+=.证 因为函数()f x 在闭区间[,]a b 上连续,且12a x x b <<<,所以()f x 在闭区间12[,]x x 上连续.于是,据最值定理得,()f x 在12[,]x x 上取得最大值M 与最小值m ,从而12()()2f x f x m M +≤≤.再据介值定理得,至少存在一点12[,]x x ξ∈,使得12()()()2f x f x f ξ+=.总习题11.选择题解 (1) 应选D.例如:1()y f u u ==与1u x=均为单调减少函数,但它们的复合函数1()y f x x==是单调增加函数.(2) 应选C .[]0lim ()()x x f x g x →+必不存在.因为如果[]0lim ()()x x f x g x →+存在,则由()0lim ()lim ()()()x x x x g x f x g x f x →→=+-⎡⎤⎣⎦及0lim ()x x f x →存在,得0lim ()x x g x →存在.这与题设矛盾.当0lim ()0x x f x →=,0lim ()x x g x →=∞时, 0lim ()x x f x →存在,0l i m ()x x g x→不存在,而[]0l i m ()()x x f xg x →⋅是未定式,可能存在. (3) 应选A .因为当0x →时,2411cos ~2x x -, 221~x e x -,211~2x , 31sin tan tan (cos 1)~2x x x x x -=⋅--,所以当0x →时,与其它三个无穷小相比,无穷小21cos x -的阶最高.(4) 应选D .因为函数()f x 在(,)-∞+∞上连续,如果函数()()x f x ϕ在(,)-∞+∞上连续,则函数()()()()x x f x f x ϕϕ=也在(,)-∞+∞上连续,与题设矛盾.(5) 应选B .因为()f x 为初等函数,其定义域为[2,1)(1,2]-- .由初等函数的连续性知,函数()f x 的连续区间为[2,1),(1,2]--.2.填空题解 (1) 应填13,5-.因为311lim 02x x b x x a →-=≠++,所以31lim(2)x x x a →++=0,从而3a =-.于是,3221111111limlim lim 23(1)(3)35x x x x x b x x x x x x x →→→--====+--++++. (2) 应填1,1-.因为由题设得221(1)()lim ()lim lim 011x x x x a x a b x bf x ax b x x →∞→∞→∞⎛⎫+++++=++== ⎪++⎝⎭, 所以,100a a b +=⎧⎨+=⎩,即1a =-,1b =.(3) 应填9,3.因为由题设得222211(2)ln (1)(2)ln[1(1)]lim lim (1)(1)n n x x x x x x x x a x a x →→+--++-=-- 321(1)(2)lim(1)nx x x a x →-+=-319(1)lim 1(1)n x x a x →-==-, 所以,9a =,3n =.3.求下列极限: .解(1) lim limx x x →+∞⎤=⎦lim2x pqp q p q +++==. (2) 2211sin sin lim lim 11cos 1cos x x xx x x x x x x x x→∞→∞++==--. (3) 2210lim 521245lim lim 1e e 2121x xxx x x x x x x →∞--+→∞→∞--⎛⎫⎛⎫=+== ⎪ ⎪++⎝⎭⎝⎭.(4) 2200112lim 2x x xx →→==.(5) 22200cos lim lim 1sec cos sin x x x x x x x x→→==-.(6) e e e ln 11ln 1e ln 11e e lim lim lim lim e e e e ex x e x x x x x x x x x x →→→→⎡⎤⎛⎫+- ⎪-⎢⎥-⎝⎭⎣⎦====----. 4.设21cos ,0,(),0,0xx x f x b x x x ⎧-<⎪⎪⎪==⎨>⎪⎩(0)a >,当常数,a b 为何值时,(1) 0x =是函数()f x 的连续点? (2) 0x =是函数()f x 的可去间断点? (3) 0x =是函数()f x 的跳跃间断点?解 22200011cos 12lim ()lim lim 2x x x xx f x x x ---→→→-===,lim ()lim lim lim x x x x f x x ++++→→→→====, (0)f b =,(1) 当0lim ()lim ()(0)x x f x f x f -+→→==,即1a =,12b =时,0x =是函数()f x 的连续点.(2) 当0lim ()lim ()(0)x x f x f x f -+→→=≠,即1a =,12b ≠时,0x =是函数()f x 的可去间断点.(3) 当0lim ()lim ()x x f x f x -+→→≠,即1a ≠,b 为任意实数时,0x =是函数()f x 的跳跃间断点.5.解 212,1,()lim0,1,1, 1.n nn x x x x f x x x x x +→∞⎧->-⎪===⎨+⎪<⎩显然,()f x 在(,1),(1,1),(1,)-∞--+∞内连续.因为11lim ()lim ()1x x f x x --→-→-=-=,11lim ()lim 1x x f x x ++→-→-==-;因为11lim ()lim 1x x f x x --→→==,11lim ()lim()1x x f x x ++→→=-=-, 所以1x =-与1x =均为()f x 的第一类间断点,且为跳跃间断点. 6.解 令3()62f x x x =-+,则()f x 在(,)-∞+∞上连续,且(3)70f -=-<,511()028f -=>,(0)20f =>,17()028f =-<,(2)20f =-<,521()028f =>,据零点定理,函数()f x 在开区间5(3,)2--,1(0,)2,5(2,)2内分别至少有一个零点,即方程3620x x -+=在开区间5(3,)2--,1(0,)2,5(2,)2内分别至少有一个实根.又方程3620x x -+=有三个实根,故这三个实根所在的区间分别为5(3,)2--,1(0,)2,5(2,)2.。
北大版高等数学(第二版)习题答案1.1
北京大学出版社高等数学(第二版)习题1.11证明√3为无理数.证明:假设√3是有理数,存在两个正整数m及n,使得(m,n)=1,且√3=m n所以√3n=m ⟹3n2=m2所以3整除m2,即3整除m。
设m=3p,代入3n2=m2得:3n2=9p2⟹n2=3p2所以3整除n2,即3整除n。
由于3能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√3是无理数。
证毕。
2设p是正的素数,证明√p是无理数.证明:假设√p是有理数,存在两个正整数m及n,使得(m,n)=1,且因为p>0,有√p=m n所以√pn=m ⟹pn2=m2所以p整除m2,即p整除m。
设m=pq,代入pn2=m2得:pn2=p2q2⟹n2=pq2所以p整除n2,即p整除n。
由于p能整除m及n,与(m,n)=1矛盾,假设不成立。
因此√p是无理数。
证毕。
3解下列不等式:(1)|x|+|x−1|<3解:依[命题2]有|x+y|≤|x|+|y|,且原式|x|+|x−1|<3所以|x+x−1|≤|x|+|x−1|<3所以|2x−1|<3所以(依[命题4])−3<2x−1<3 ⟹−1<x<2(2)|x2−3|<2解:|x2−3|<2 ⟹−2<x2−3<2 ⟹1<x2<5①考虑x2>1时,有x>1或x<−1②考虑x2<5时,有−√5<x<√5综合①和②,有−√5<x<−1或1<x<√54设a与b为任意实数.(1)证明:|a+b|≥|a|−|b|证明:|a|=|a+b+(−b)|≤|a+b|+|−b|=|a+b|+|b|所以|a|≤|a+b|+|b|所以|a+b|≥|a|−|b|。
证毕。
(2)设|a−b|<1,证明|a|<|b|+1证明:因为|a−b|=|a+(−b)|≥|a|−|−b|=|a|−|b|且因为|a−b|<1所以|a|−|b|<1有|a|<|b|+1。
扬州大学高等数学教材答案
扬州大学高等数学教材答案本文将为您提供扬州大学高等数学教材的答案,帮助您更好地理解和掌握相关知识。
下面我们将按照教材的章节顺序逐一给出答案,并逐步解析,希望对您的学习有所帮助。
第一章:函数与极限1.1 题目:求函数f(x) = 2x^2 - 3x + 1的极限Lim[x->2]f(x)。
答案:将x带入函数,得到f(2) = 2*(2^2) - 3*2 + 1 = 6,故极限为Lim[x->2]f(x) = 6。
1.2 题目:求函数g(x) = (3x + 2)/(x - 1)的极限Lim[x->1]g(x)。
答案:将x带入函数,得到g(1) = (3*1 + 2)/(1 - 1) = 5/0,在x趋近于1时,分母趋于0,故该极限不存在。
第二章:导数与微分2.1 题目:求函数y = 2x^3 + x^2 - 3x + 4的导数dy/dx。
答案:对函数进行求导,得到dy/dx = 6x^2 + 2x - 3。
2.2 题目:已知函数y = e^x,求其在点x = 0处的导数dy/dx。
答案:对函数进行求导,得到dy/dx = e^(0) = 1。
第三章:微分中值定理与函数的应用3.1 题目:证明函数f(x) = x^3在区间[0, 1]上满足罗尔定理的条件。
答案:根据罗尔定理,函数在区间的两个端点处取相等的函数值,且在区间内可导。
对于f(x) = x^3,在区间[0, 1]上满足这两个条件,故满足罗尔定理。
3.2 题目:证明函数g(x) = sin(x)在区间[0, π]上满足拉格朗日定理的条件。
答案:根据拉格朗日定理,函数在区间内连续且可导,则存在一个介于两个端点间的点c,使得函数在该点的导数等于函数在区间的斜率。
对于g(x) = sin(x),在区间[0, π]上满足这两个条件,故满足拉格朗日定理。
第四章:定积分与不定积分4.1 题目:求函数f(x) = 2x的不定积分∫f(x)dx。
高等数学重大版教材答案
高等数学重大版教材答案**注意:本文仅提供高等数学重大版教材答案,不含任何解题思路和详细解释。
**第一章:函数与极限1.1 函数概念及表示法1.2 映射与初等函数1.3 函数的极限与连续第二章:导数与微分2.1 导数的概念2.2 基本微分法与常见初等函数的导数2.3 高阶导数与隐函数及参数方程的导数2.4 微分中值定理与导数的应用第三章:不定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分法3.3 有理函数的积分法3.4 特殊函数的积分法第四章:定积分4.1 定积分的概念与性质4.2 牛顿-莱布尼茨公式4.3 定积分的计算方法4.4 定积分的应用第五章:定积分的应用5.1 几何应用5.2 物理应用5.3 统计应用第六章:多元函数微分学6.1 二元函数及其表示6.2 偏导数与全微分6.3 隐函数及参数方程的偏导数6.4 多元函数的极值与最值第七章:多元函数积分学7.1 二重积分的概念与性质7.2 二重积分的计算方法7.3 三重积分的概念与性质7.4 三重积分的计算方法第八章:无穷级数8.1 无穷数列8.2 无穷级数8.3 幂级数8.4 函数项级数第九章:常微分方程9.1 一阶微分方程9.2 高阶微分方程9.3 变量可分离的方程9.4 齐次方程第十章:向量代数与空间解析几何10.1 向量的表示与运算10.2 空间直线与平面的方程10.3 空间曲线与曲面的方程10.4 空间曲线与曲面的切线与法线第十一章:多元函数积分学的应用11.1 二重积分的应用11.2 三重积分的应用第十二章:常系数线性微分方程12.1 齐次线性微分方程12.2 非齐次线性微分方程12.3 常系数高阶线性微分方程第十三章:傅里叶级数13.1 傅里叶级数的定义与性质13.2 傅里叶级数的计算13.3 奇偶函数的傅里叶级数13.4 周期函数的傅里叶级数第十四章:拉普拉斯变换14.1 拉普拉斯变换的定义与性质14.2 拉普拉斯变换的计算14.3 拉普拉斯逆变换与初值问题14.4 拉普拉斯变换的应用第十五章:曲线积分与曲面积分15.1 曲线积分15.2 曲面积分第十六章:无穷级数的收敛与发散16.1 正项级数与一般级数16.2 收敛级数的性质16.3 判别级数敛散的方法总结- 文章连接思路清晰,按照教材章节顺序排布,每章标题精确对应教材内容。
大一高等数学a教材答案详解
大一高等数学a教材答案详解Chapter 1: Functions and Limits1.1 Introduction to FunctionsIn this chapter, we will explore the concept of functions and their properties. A function is a rule that assigns each element from one set to another set. It is represented by f(x), where x is an element from the domain and f(x) is the output value. Functions can be represented graphically, algebraically, or numerically.1.2 Limits and ContinuityLimits are used to describe the behavior of a function as x approaches a certain value. The limit of a function f(x) as x approaches a can be denoted as limₓ→a f(x). Continuity of a function is determined by the existence of a limit at a certain point and the value of the function at that point.1.3 DifferentiationDifferentiation is the process of finding the derivative of a function. The derivative represents the rate of change of a function at a particular point. It is denoted as f'(x) or dy/dx. The derivative can be used to find the slope of a tangent line, determine critical points, and analyze the behavior of functions.Chapter 2: Derivatives2.1 Basic Rules of DifferentiationIn this chapter, we will discuss the basic rules of differentiation. These rules include the power rule, product rule, quotient rule, and chain rule.These rules allow us to find the derivative of various functions by applying specific formulas and techniques.2.2 Applications of DerivativesDerivatives have various applications in real-life situations. They can be used to find maximum and minimum values, solve optimization problems, determine velocity and acceleration, and analyze growth and decay models. This chapter will address these applications and provide practical examples.2.3 Higher Order DerivativesHigher order derivatives refer to derivatives of derivatives. The second derivative represents the rate of change of the first derivative, while the third derivative represents the rate of change of the second derivative, and so on. Higher order derivatives can provide information about the curvature and concavity of a function.Chapter 3: Integration3.1 Antiderivatives and Indefinite IntegralsAntiderivatives are the opposite of derivatives. They represent the original function whose derivative is equal to a given function. The process of finding antiderivatives is called integration. The indefinite integral represents a family of functions, with the constant of integration accounting for the infinite number of antiderivatives.3.2 Definite IntegralsDefinite integrals are used to calculate the accumulated change of a function over a specific interval. The definite integral of a function f(x) froma tob is denoted as ∫[a, b] f(x) dx. It represents the area under the curve of the function between the limits a and b. This chapter will discuss the properties and techniques of definite integration.3.3 Applications of IntegrationIntegration has various applications, including calculating areas and volumes, solving differential equations, determining average values, and analyzing accumulation problems. These applications will be explored in this chapter, along with practical examples.Chapter 4: Techniques of Integration4.1 Integration by SubstitutionIntegration by substitution is a technique used to simplify integrals by replacing variables or functions. It involves choosing an appropriate substitution and applying the chain rule in reverse. This method can be used to solve complex integrals and make them more manageable.4.2 Integration by PartsIntegration by parts is another integration technique that allows us to find the integral of a product of two functions. It involves choosing one function to differentiate and the other function to integrate. This method is useful for integrating products of functions such as polynomials, exponentials, logarithms, and trigonometric functions.4.3 Trigonometric IntegralsTrigonometric integrals involve integrating functions that contain trigonometric functions like sine, cosine, tangent, secant, etc. These integralscan be solved using trigonometric identities and substitution techniques specific to trigonometric functions.In conclusion, the first-year high school mathematics A textbook provides a comprehensive introduction to functions, limits, derivatives, and integration. It covers the fundamental concepts and techniques necessary for further study in advanced mathematics. By understanding and applying the principles discussed in this textbook, students will acquire a solid foundation in calculus and its applications.。
高等数学习题册参考答案
《高等数学》习题册参考答案说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错.第一册参考答案第一章 §1.11.⎪⎪⎩⎪⎪⎨⎧+≤≤--<≤<≤+=--. ),(2, , ,0 , 211010101T t T T t a v T t v t at v v a va vv a v v 图形为:2.B.3.)]()([)]()([)(2121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(21x f x f x G --=为奇函数. 4.⎪⎪⎩⎪⎪⎨⎧=<≤-<≤-<≤=.6 ,0,64 ,)4(,42 ,)2(,20 ,)(222x x x x x x x x f 5.⎩⎨⎧.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f6.无界.7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同.§1.21.(1))1 ,0()0 ,1(⋃-=D ;(2)} , ,{2Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.⎪⎩⎪⎨⎧>-=<=,0 ,1,0 ,0 ,0 ,1 )]([x x x x g f ⎪⎪⎩⎪⎪⎨⎧>=<=-.1 ,,1 ,1 ,1 , )]([1x e x x e x f g4.(1)]2 ,0[,)1arcsin(2=-=D x y ; (2)Y ∞=+=+=022),( , )(tan log 1k a k k Dx y πππ. 5.(1)xx x f f 1)]([-=; (2)xx f f 1)(1][=. 6.+∞<<=-h r V rh hr 2 ,23122π.7.(1)a x =)(ϕ; (2)h x x +=2)(ϕ; (3)ha a h x x )1()(-=ϕ.§1.91.1-=e a .2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类);(2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类)(注意:+∞==∞+-→-ee xx x 11lim ,而0lim 11==∞--→+e e xx x );(4))( 2Z ∈+=k k x ππ为无穷间断点(属第Ⅱ类); (5)⎩⎨⎧=≠=+=∞→,0 ,0,0 ,1lim )(12x x nx nx x f xn ∴ 0=x 为无穷间断点(属第Ⅱ类); (6)∵ )(lim , 0)(lim 11+∞==+-→→x f x f x x , ∴ 1=x 为第Ⅱ类间断点,(注意:这类间断点既不叫无穷间断点,也不叫跳跃间断点,不要乱叫); ∵ 1)(lim , 0)(lim -→→==+-e x f x f x x , ∴ 0=x 为跳跃间断点(属第Ⅰ类).3.(1)1 ,0≠=b a ; (2)1 ,≠=a e b .4.(1)21)0(=f ; (2)0)0(=f .5.证:由)()0()0(22x f f x f +=+,得0)0(=f ,于是,再由0)0()(lim )]()()([lim )]()([lim 0==∆=-∆+=-∆+→∆→∆→∆f x f x f x f x f x f x x f x x x ,∴ )(x f 在x 点连续.§1.101.)(x f 在),(+∞-∞内连续,则0≥a ;又0)(lim =-∞→x f x ,则0<b ,故选D.2.) ,2()2 ,3()3 ,(∞+⋃-⋃--∞; 210)0()(lim ==→f x f x (0是连续点), 5858213)2)(3()3()3(3322limlim)(lim -====----→-++-+-→-→x x x x x x x x x x x f (-3是可去间断点), ∞==-++-+→→)2)(3()3()3(222lim )(lim x x x x x x x x f (2是无穷间断点).3.(1)a1; (2)0; (3)2e (提示:原极限x e x xe x x x x x e e )ln(lim)ln(00lim ++→→==,而=+→110 )ln(lim 加分子减x e x x x 2)1(lim )]1(1ln[lim 00==-+-++→→拆分分子等价无穷小代换x e x x e x x x x x ); (4)21-e(提示:原极限xxx e 2sin cos ln 0lim→=,而21cos 11cos 11cos 0cos 1)]1(cos 1ln[0sin cos ln 0lim lim lim lim222-====+-→--→--+→→x x xx x x x x xxx ); 注意:(3)和(4)都用到了等价无穷小代换:□0→时,ln (1+□)~□. (5)1; (6)不存在(左极限2-,右极限2).4.(1)0=a ,e b =; (2)a 任意,1=b .§1.111.令)sin ()(b x a x x f +-=,则)(x f 在] ,0[b a +上连续,且0)0(<-=b f ,=+)(b a f 0)]sin(1[)sin(≥+-=-+-+b a a b b a a b a .若0)(=+b a f ,则b a +就是一个正根;若0)(>+b a f ,则由零点定理,)(x f 在) ,0(b a +内有一正根.总之,)(x f 在],0[b a +内有一正根.2.作辅助函数x x f x F -=)()(,则)(x F 在] ,[b a 上连续,且0)()(<-=a a f a F ,)(b F0)(>-=b b f ,由零点定理,) ,(b a ∈∃ξ,使得0)(=ξF ,即ξξ=)(f .3.由题设:)(x f 在] ,[1n x x 上连续,设m M 、分别为)(x f 在] ,[1n x x 上的最大值和最小值,则M x f x f x f c m n n≤+++=≤)]()()([211Λ,于是,由介值定理可知:) ,() ,(1b a x x n ⊂∈∃ξ,使得c f =)(ξ,即)]()()([)(211n nx f x f x f f +++=Λξ. 4.令)()()(a x f x f x F +-=,则)(x F 在] ,0[a 上连续.若)()0()0(a f a f f =+=,则取 00=x ,命题成立;设)()0(a f f ≠,则由)()0()0(a f f F -=,而)2()()(a f a f a F -= )]()0([)0()(a f f f a f --=-=,所以,)0(F 与)(a F 异号,于是,由零点定理可知:) ,0(a ∈∃ξ,使得0)(=ξF ,即)()(a f f +=ξξ,命题成立.第一章 总复习题1.⎪⎩⎪⎨⎧>≤=+.0,1 ,0 ,)]([211x x x f x ϕ 2.22sin 2x. 3.) ,(∞+e .4.证:∵A x f x x =→)(lim 0,∴对于事先给定的无论多么小的正数ε,都存在正数δ,只要δ<-<00x x ,就必有ε<-A x f )(成立①(这就是函数极限的“δε-定义”); 又∵)( lim 00x x x x n n n ≠=∞→,∴对①中的正数δ(因这样的正数是任意的),必存在自然数N ,只要N n >,就必有δ<-0x x n 成立(这就是数列极限的“N -ε定义”).但对任何n ,0x x n ≠,所以这时也就有δ<-<00x x n 成立②.把①②两步结合起来就是(从②推回到①):对于事先给定的无论多么小的正数ε,(由①,0>∃δ,从而由②)必存在自然数N ,只要N n >,(①②同时成立)就必有 ε<-A x f n )( 成立. 故由极限的定义可知:A x f n n =∞→)(lim .附注:本题是函数极限与数列极限相结合的题目,抽象且有点难,但提供了一个重要的求极限的方法,即数列极限可作为函数极限的特殊情况来处理,比如下面:∵a xa x x e x a x a x x x x ln ln lim 1lim 1lim0ln 00==-=-→→→(用到了□→0时,e □-1~□), ∴a xa naa n x x nn nn ln 1lim 11lim)1(lim 01=-=-=-+→∞→∞→. 5.(1)23-; (2)2011 ,20111; (3)5,531. 6.提示:因)(x f 在],[b a 上连续,而 )(m ax )(m in ],[2)()(2],[x f M m x f b a x d f c f kb a x ∈+∈=≤=≤=,对)(x f 在],[b a 上用介值定理.7.(1)21(提示:每个括号通分,分子因式分解,并与分母约分,再整理得n n 21+); (2)a-11(提示:给极限式子乘)1(a -,打开括号得)1(4na -,并利用一个重要结果)1( 0lim <=∞→q q n n );(3)ab--11(提示:分子、分母都利用等比数列前n 项和公式:1减公比分之首项减去末项乘公比,再利用(2)中的重要结果);(4)21(提示:有理化,分子、分母再同除以n 或利用重要结果:当0 ,000≠≠b a 时,⎪⎩⎪⎨⎧>>∞>=<<==++++++++∞→----∞→.0 ,,0 ,,0 ,0 lim lim 00002211022110m k m k m k n b na b n b n b n b a n a n a n a b a mkn m m m m n k k kn ΛΛ ); (5)t (提示:利用重要极限);(6)2-(提示:分母就是x 2sin -~2x -,再拆分);(7)2b a +(提示:有理化,再利用(4)中重要结果); (8)4(提示:分子减1加1并拆分,再利用等价无穷小代换:□→0时,cos 1-□~21□2); (9)e (提示:原极限e e e x x x x x x ==→+→=22220tan )1ln(0lim lim 等价无穷小代换); (10)2)1(+n n (提示:分子因式分解,先分出个因式)1(-x 并与分母约简,再分出个因式)1(-x 仍可与分母约简,聪明的人一下子就可分出因式2)1(-x ); (11)π2(提示:令x t -=1,则原极限]2 cos sin [lim 20t t t t ππ→=,再利用重要极限). 8.提示:把根号进行放缩得不等式:n n n n n n n n n A nA a a a A ⋅=<+++<Λ21,并注意:1lim=∞→nn n (会推证吗?),再用夹逼定理(或叫夹挤准则,俗称“两头夹”).第二章 §2.61.(1))cos(21sin )cos(2xy x x xy y --; (2))1(2xy e e e e y xyy xxy +-+; (3)y x y x -+; (4)22ln ln xx xy y y xy --(两端取对数);(5)]111[ln )1(x x x x x x ++++(两端取对数或利用一个重要公式:若)()]([x g x f y =,则])()(ln )([)]([)()()(x f x f x g x g x f x g x f y '⋅+'⋅=');(6)])1)(1(2)2()1(2[111222x x x x x x x x x x x x x ++++-+--+++-(利用对数求导法). 2.(1)3222)1(])1()1[(--+--y x x y y ; (2)])1()1(213[2322422+-++y y x y y x . 3.])(arctan )()(arctan )([2222x y x y f y x f y x x y '-+'++-(提示:令xyv v u == ,arctan 而,则原方程变为 y x u f =)(,两端对x 求导得 y x y u f x y x y v '+=⋅⋅'⋅-⋅'+22111)(,再解出y ').4.提示:求出一、二、三阶导数,代入左端化简.5.切线方程:)1(152-=-x y ; 法线方程:)1(125--=-x y . 6.(1)2t; (2)23-. 7.(1)21)1(cos ----t a ; (2)1)]([-'t f .8.)2)(1(1e e t t-+(提示:第二个方程两端对t 求导,得0d d =+t y e e y t ,解出y t e e t y -=d dee e e e e t t t t 22-=--=,并代入 t x t y x y d d d d d d = 之中再约简).9.在时刻t ,甲船所走路程t t s 40)(1=,乙船所走路程t t s 30)(2=,两船间的距离为 t t t t d 50)30()40()(22=+=,两船间的距离增加的速度为50)(='t d .10.设y OP x ON == ,,则由木杆匀速前移知:c tx=d d (为常数), 由题图知:OA MN y x y =-,即 x MN OA OA y -=,从而 txMN OA OA t y d d d d -=. 可见tyd d 为常量,即P 点前移的速度是匀速的.§2.71.(1)增量为-0.09,微分为-0.1;(2)增量为-0.0099,微分为-0.01.评注:①结果表明:x ∆愈小,则y y d 与∆愈接近,这就是微分的数量特征;②微分的几何特征是“以直代曲”.2.(1)C x x ++3; (2)C x +-2cos 21; (3)C e x +--; (4)C x +2arctan 21. 3.(1)x d 2; (2)x a d ; (3)x d 42; (4)x d .4.(1)x x x d 13)]13ln(2sin[3++; (2)t t t t e t t d )52(2)23(332)52ln(323+--⋅+-;(3)x x x x d )21(sec )21tan(8222++. 5.150110+. 第二章 总复习题1.A 、E .2.)(x f 在0=x 处可导必连续.由连续有:)0()2sin (lim lim 0f x b e x ax x =+=+-→→,求极限得:1=b ;由可导有:⎪⎩⎪⎨⎧=='=--=''='--+→+→-+-+-,2lim )0(,01lim )0( , )0()0(01)2sin 1(00x x x ax x f a x e f f f 而 所以,2=a . 3.由)0(f '存在,则)0()0(+-''f f 、存在且相等. 而x f x f x x f x f x f )0()(00)0()(0lim lim )0(-→--→+++==', )0(lim lim lim )0()0()(0)0()(0)0()(0+-→----→--→-'-=-==='++-f f xf x f x x f x f x x f x f x , 要使)0()0(+-'='f f ,只有0)0()0()0(='='='+-f f f . 4.(1)222211))((x a x ax axa +++-+; (2)]ln [ln 12xx x x x x x x ++(提示:===xx x x xexy lnxexx e ln ln ⋅,再利用指数复合函数求导;或者利用取对数求导法);(3)⎪⎩⎪⎨⎧≥<=--,1 ,,1 ,)(11x e x e x f x x 则 1<x 时,x e x f --='1)(; 1>x 时,1)(-='x e x f ;1=x 时,)1(lim 11lim )1(11111111+--→--→-'==≠-=='-+--f f x e x x e x x x ,则在1=x 处不可导.(4)4 ,1--; (5)tet t t t t t t t 22222)2sin cos 2()2cos 2(sin 4 , 2sin cos 22sin sin 2-+-+; (6)])6(1)5(1[!100101101+-+x x (提示:分母因式分解,并拆分,再求导). 5.1)0(=g ,11)sin 1(lim 0)0()(lim)0(1200=-++=--='→→xx x x g x g g x x x , 0≠x 时,x x x x x x x g 1112cos sin 21)sin 1()(-+='++='. 6.)0(lim 1lim )0( ,0)0(00)11(000)1ln(0+----+→--+→-'===='=+-f f f x x x x x x x , 所以,函数)(x f 在点0=x 处可导,且1)0(='f ,从而必在0=x 处连续.评注:2、3、4(3)、5、6都涉及函数在一点处的导数,特别是分段函数在分界点处的导数,导数的定义以及左右导数的概念起到关键的作用,务必要高度注意.7.(1)由xy y f x f y x f 2)()()(++=+,得0)0(=f .当0≠y 时,x y y f y x f y x f 2)()()(+=-+. 由已知并由导数定义,得 y y f y y f y f y f k )(0)0()(0lim lim )0(→-→=='=, k x x f y x f y x f y +=='-+→2lim )()()(0.故对一切) ,(∞+-∞∈x ,)(x f 皆可导,且 k x x f +='2)(.(2)由k x x f +='2)(,知C kx x x f ++=2)(,再由0)0(=f ,得kx x x f +=2)(.第三章 §3.31.)0( !2)(32之间与介于x x e x x x f ξξ++=. 2.) 1( )1()1(])1()()(1[)(1212之间与介于x x x x x x f n n n n-+-++++++++-=+++ξξΛ.3.2)1(2)1(76)(-+-+=x x x f .4.(1)61-(提示:分母的x sin ~x ,从而只需把分子的x sin 展开到3x 阶); (2)121-(提示:把分子的x cos 和22xe-都展开到4x 阶).§3.41.(1)) ,0(21∈x 单减,),(21+∞∈x 单增;(2)),(4 3a x -∞∈单增,),(4 3+∞∈a x 单减. 2.(1)证①:利用拉格朗日中值定理.令xe xf =)(,则x x e x f e e f x f x >⋅=-'=-=-ξξ)0)(()0()(0.证②:利用单调性.令1)(--=x e x f x ,则1)(-='xe xf .当0<x 时,0)(<'x f ,从而)(x f 单调减;而当0>x 时,0)(>'x f ,从而)(x f 单调增.故对一切0≠x ,0)0()(=>f x f ,即要证的不等式成立.评注:①虽抽象,但更简洁;②虽通俗,但稍显麻烦.(2)令)1sec 2(sin )( ,2sec cos )( ,2tan sin )(22-=''-+='-+=x x x f x x x f x x x x f .当20π<<x 时,)(0)(x f x f '⇒>''单调增0)0()(='>'⇒f x f )(x f ⇒单调增, 故当20π<<x 时,0)0()(=>f x f ,即要证的不等式成立(好好体会推理过程). 评注:本题与(1)和下面的(3)的不同之处在于:需两次利用单调性.(3)参考上题方法或用泰勒公式:①利用单调性方法:令331tan )(x x x x f --=,则 ))(tan (tan tan 1sec )(2222x x x x x x x x x f -+=-=--=', 当20π<<x 时,0)(>'x f ,所以,)(x f 单调增,故当20π<<x 时,0)0()(=>f x f . ②利用泰勒公式:令x x f tan )(=,则x x f 2sec )(=',x x x x f tan sec sec 2)(='', )1tan 4tan 3(2)sec sec tan 3(2)(24222++=+='''x x x x x x f ,x x x x x x x x f23223)4(sec )tan 2tan 3(8)sec tan 8sec tan 12(2)(+=+=(很麻烦),,之间与介于其中) 0 ( )( !4)(!3)0(!2)0()0()0()(tan 43314)4(32x x R x x x f x f x f x f f x f x ξξ++=+'''+''+'+== 当20π<<x 时,0)(4!4)(4)4(>=x x R f ξ,故 331tan x x x +> 成立. 评注:对本题而言,①似乎简单一些,但对②而言,得到泰勒公式(实际上是麦克劳林公式)后,其结果却更显而易见.擅长泰勒公式(或麦克劳林公式)的同学建议用②,其它几个题目也有类似的情况.总之,此类方法要好好掌握.(4)参考(1)题方法或用泰勒公式:4)1(14132432)1ln(x x x x x ξ+⋅-+-=+,而 0)(4)1(14134>⋅=+x x R ξ(ξ介于0与x 之间),故 3232)1ln(x x x x +-<+. 3.原不等式化为a a x a x a ln )ln(<++,设x xx f ln )(=,则2ln 1)(xx x f -='.所以,当e x >时, 0)(<'x f ,从而)(x f 单调减,故aax a x a ln )ln(<++,即原不等式成立. 评注:把要证的不等式先等价转化再利用单调性的方法会大大简化.4.不一定,例如,x x x f sin )(+=在) ,(∞+-∞内单增,但x x f cos 1)(+='在) ,(∞+-∞内不单调.5.) ,(512-∞∈x 单增,),(512+∞∈x 单减;10205205241m ax 512)(===f f ,无极小. 6.函数)(x f y =处处连续,322232a x x y -⋅=',有一个驻点0=x 和两个不可导点a x ±=;0)(=±a f 为极小值,也是最小值;34)0(a f = 为极大值,但无最大值.7.在]1 ,0[上函数单减,故4)0(π=f 最大,0)1(=f 最小. 8.令x bx x a x f ++=2ln )(,则应有 012)1(=++='b a f ,014)2(2=++='b f a , 求得 32-=a ,61-=b ;而)1(f 极小,)2(f 极大. 9.提示:因函数处处可导,而可导的极值点必为驻点. 但 c bx ax x f ++='23)(2 当0)3(434)2(22<-=⋅⋅-≡∆ac b c a b ,即 032<-ac b 时无零点.§3.51.)1 ,0(∈x 时,凸;) ,1(∞+∈x 时,凹;拐点)7 ,1(-.2.82±=k ,各有两个拐点) ,1(22±±. 3.3 ,0 ,1-===c b a .4.tt y 1143)1(2⋅-='',0=''y 的点 1±=t ,y '' 不存在的点 0=t ;有三个拐点:)2 ,1(11-↔-=t ,)0 ,0(02↔=t ,)4 ,1(13↔=t .§3.61.其图形如下所示:2.点) ,(22ln 22-处曲率半径有最小值233. 4.(1)铅锤渐近线两条:2=x 和3 -=x ;水平渐近线一条:1=y ;(2)铅锤渐近线:ex 1-=;斜渐近线:x y =.第四章 §4.11.(1)x e x 2cos 233+--; (2)C x x x +--33222 ,22; (3)C x x ++441221; (4)1ln +=x y .2.(1)C x x x x ++++22123232;(2)C x x ++-4147474;(3)C x x x ++-arctan 331; (4)C x +7272ln 121; (5)C x x +-arcsin 2arctan 3; (6)C e xxe ++1)5ln(1)5(; (7)C x +-cot 21;(8)C x x +-sec tan ;(9)C x x ++cos sin ;(10)C x x +-cot tan . §4.21.(1)C x x ++++])1[ln(411441; (2)C b ax nn n a n++++1)(2)1(2;(3)C x +)arcsin(tan ; (4)C x x +-ln 1; (5)C x+-10ln 1arccos 22110;(6)C x +2)(arctan; (7)C x+2sin 2212arctan ; (8)C x xe e ++1ln . 2.(1)C x x ++21; (2)C x x+--32arccos 39; (3)C xx +-442;(4)C x x x +++-)21ln()2()2(32323433132; (5)C x x x x +---)1(4arcsin 2222122; (6)提示:令 sin t x =(只需 20π<<t 即可),则 原式]d [d d cos sin )sin (cos d 21cos sin cos sin sin cos 21cos sin cos ⎰⎰⎰⎰++++-+++===t t t t tt tt t t tt tt t t (很巧妙)C x x x Ct t t t +-+++++==]1ln [arcsin ]cos sin ln [22121回代把.第五章 §5.11.提示:把区间n ]1 ,0[等份,每份长都是n1,每个小区间),,2,1( ],[1n i n in i Λ=-都取右端点,则a a a n a a an a a ax a nn n n n n n n ni ninn x ln 1)ln (]1[lim )1(])(1[limlimd 11111111-=--=--==∞→∞→=∞→∑⎰. 附注:其中①利用了分解式 )1)(1(112-++++-=-n n b b b b b Λ(上式中n ab 1=);②利用了等价无穷小代换:□→0时,1-a □~-□ln a .2.(1)极限中的和式相当于:把区间n ]1 ,0[等份,每份长都是n1,每个小区间 ],[1n in i - ),,2,1( n i Λ=都取右端点,函数x x f +=1)(在所取点处的值再乘以小区间的长度并把它们加起来的结果(这种和有个名称,叫“积分和”),于是,按定义:原极限=⎰+1d 1x x ;(2)同理,极限中的和式是函数x x f πsin )(=在区间]1 ,0[上的积分和,于是,按定义: 原极限=⎰1d sin x x π.另外,该极限式子又可变为 ∑=∞→ni n ni n11sinlimπππ,暂不管π1,而这极限中的和式是函数 x x f sin )(= 在区间] ,0[π上的积分和,所以,仍按定义:又有 原极限⎰=ππ 01d sin x x .(同一式子导致两种不同的表示说明:“会看看门道”的道理)3.(1)不可积,无界;(2)可积,连续.4.(1)⎰πd sin x x ; (2)⎰-112d x x .§5.21.(1)2110 152d 2≤≤⎰+x xx (提示:在]1 ,0[上,211522≤≤+x x ,再利用定积分的估值不等式性质); (2)412222d 2---≤≤-⎰e x e e xx(提示:在]2 ,0[上,2241e e e x x ≤≤--,再利用定积分的估值不等式性质,注意:下限大,而上限小).2.(1)反证法:若存在一点] ,[0b a x ∈,使0)(0≠x f ,则由题设可知,必有0)(0>x f ,又因)(x f 连续,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00>⎰+-δδx x x x f ;但另一方面,又由题设可知0d )(d )( 00=≤⎰⎰+-bax x x x f x x f δδ,矛盾. 故对一切] ,[b a x ∈,都有0)(=x f ,即在] ,[b a 上,0)(≡x f .(2)证:由题设可知:存在一点] ,[0b a x ∈,使0)(0>x f ,从而存在0x 的一个邻域) ,(00δδ+-x x ,在这邻域内0)(>x f .于是,就有0d )(00 >⎰+-δδx x x x f ,故0d )(d )(00 >≥⎰⎰+-δδx x bax x f x x f .(3)这是(1)的直接推论. 3.提示:①先对定积分用“积分中值定理”再取极限.②也可以“两头夹”:01sin d sin 01sin sin 01−−→−≤≤⇒≤≤∞→⎰n n n nnx x x .§5.31.(1)0; (2)⎰-xt t e 0 d 2; (3))0()(f x f -; (4)0 ,0 ,0 ,2x xe -; (5)x e ycos --.2.(1)81221213x x x x ++-; (2)x x x x cos )sin cos()sin ()cos cos(22⋅--⋅ππ.3.(1)2(连续用两次洛必达法则,还可先把分母等价无穷小代换后再用洛必达法则);(2)提示:0→x 时,2sin x ~2x ,12-x e ~x 21,x arctan ~x ,所以,原极限=01)1ln(lim 22lim d lim2201)1ln(0221 01)1ln(022002=++⋅→++→++→==⎰x x xx x tx x x x x t t x 约简型洛; (3)原极限21lim 2]1d [lim 2d 2lim202222200 02 0=⋅⋅→→→=⎰=⎰=xx x x t x xx x t x e e xte xe et e 型洛约简型洛; 注意:在极限的运算过程中,极限为1的变量式子21xe 直接“抹掉了”(想想合法吗 ?).(4)原极限)(lim 1)(d )(1 0a f a x f x t t f ax xa=⎰⋅+⋅→=型洛.4.(1)原式4d sin 42 0==⎰πx x ; (2)原式1d )1(210 =-=⎰x x ;(3)原式⎰-++=+=0141121d )3(2πx x x ; (4)原式3821 2211 0d d )1(=++=⎰⎰x x x x . 5.当)1 ,0[∈x 时,231 02d )(x t t x x==Φ⎰; 当]2 ,1[∈x 时,=+=Φ⎰⎰xt t t t x 11 02d d )(61221-x (这一步是关键). 故 ⎪⎩⎪⎨⎧≤≤-≤≤=Φ,21,,10 , )(61221331x x x x x 显然,)(x Φ在]2 ,0[内连续(显然吗?).6.当)0 ,(-∞∈x 时,0d 0 d )()(00 =-==Φ⎰⎰xx t t t f x ;当] ,0[π∈x 时,=Φ)(x )cos 1(d sin 2121x t t x-=⎰; 当) ,(∞+∈πx 时,⎰⎰⎰+==Φxx t t t t t f x 0 210 d 0d sin d )()(ππ1=.故 ⎪⎩⎪⎨⎧>≤≤-<=Φ. , 1 , 0 , )cos 1(,0 , 0 )(21ππx x x x x 7.先用一次洛必达法则得 xb xa x x cos lim120-=+→,因分子极限为0,所以分母极限也一定是0(想想为什么?),从而 1=b ;这时分母 x cos 1-~221x ,再一次取极限得 4=a . 8.提示:当) ,(b a x ∈时,2)(d )())(()(a x tt f a x x f xax F ---⎰=',只需证分子 0≤ 即可.于是,若令⎰--=x at t f x f a x x g d )()()()(,则)()()()()()()(x f a x x f x f a x x f x g '-=-'-+=',因在),(b a 内0)(≤'x f ,所以,在),(b a 内0)(≤'x g ,从而在),(b a 内0)()(=<a g x g .§5.71.(1)22ωω+p (连续两次分部积分,并注意会出现循环现象,再移项求解); (2)2π. 2.1>k 收敛;1≤k 发散; 当1>k 时,11)2(ln 1112)(ln 1112)(ln 1d --⋅=⋅=-∞+-∞+⎰k k kk x k x x x ,而函数 )0( )()2(ln 1>=x x f xx 当 2ln ln 1-=x 时取得它在) ,0(∞+内的最小值=m in f 12ln ln 1)2ln (ln +-,所以,当2ln ln 11-=-=k x ,即 2ln ln 11-=k 时广义积分的值最小.3.左c x cx c x e 22)1(lim =+=-∞→, 右⎰⎰∞-∞-∞--==ct ctct t e te e t 221221 221d )(dc c c tc c e e e 241224122)(-=-=∞-, 应有 1412=-c ,所以 25=c . 第五章 总复习题1.(1)A ; (2)C ;(3)提示:0=M 是奇函数在对称区间上的积分;P 的第一部分积分为0,第二部分积分为负,所以,0<P ;而N 的第一部分积分为0,第二部分积分为正(很容易算出,等于几呢?),所以,0>N ,故选D ;(4)提示:⎰⎰-=x xt t f t t t f xx F 02 02d )(d )()(,则⎰='xt t f x x F 0d )(2)(,而极限10 0 00d )(2lim d )(2lim )(lim -→→→⎰⎰=='k xx k x x k x x t t f x t t f x x x F 2000)1()(2lim-→-=k x x k x f 型洛0)0()(lim0 3 ≠'=→==f x x f x k 时当才会存在,故选C ;(5)提示:如图所示,由题设可知:)(x f 的图形在x 轴的上方单调下降且是凹的,2S 是下边小矩形的面积,最小;3S 是梯形的面积,最大;而1S 是阴影的面积,介于其间,故选B ;(6)提示:利用周期函数的积分性质:若)()(t f T t f =+,则对任意的常数a ,积分⎰⎰=+TTa at t f t t f 0 d )(d )( 与a 无关,现在t e t f t sin )(sin = 的 π2=T ,可知:⎰⎰⎰⎰+===πππππ2 sin 0sin 2 0sin 2 0d sin d sin d sin d )()(t te t t et t et t f x F t tt,对第二个积分令 π+=u t 换元而化为 ⎰⎰-=--ππsin 0sin d sin d )sin (t etu u e t u , 故可知:0d sin ]1[)( 0sin sin >-=⎰πt t ee x F tt 为正常数,故选A ;(7)提示:先通过换元把被积函数符号)(22t x f -中的x “拿出来”,再求导.=⎰=⎰-=-⋅---换凑22)()(d )( d )( 21 02222 0 22t x u xxtx t x f t t xf t⎰⎰=-=2221021d )(d )(x x u u f u u f ,故选A. (评注:本题的关键是换元)2.(1)0; (2)a 2sec ; (3)0; (4)0; (5)0;(6)x x f 3sin )3(cos 3-; (7)2sin x ; (8)8π; (9)3ln ; (10)π1231+. 3.(1)证①:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f (积分中值定理))10( 0)]()()[1()1)(()()1(≤≤≤≤≥--=--⋅-=ηλξηξλλληλλξλf f f f .证②:⎰⎰⎰⎰--=-11 0d )(d )()1(d )(d )(λλλλλλx x f x x f x x f x x f0)()1()()1(=---≥λλλλλλf f .评注:两种证法仅是考虑问题出发点不同:①的核心是积分中值定理与单调性的结合;②的核心是积分的不等式性质与单调性的结合.(2)提示:分部积分,得原式⎰⎰----+=⋅-=πππππππππ 0)( 0sin 0d sin )( d )(x x f x x x xf xx x x2)( d sin )( d d sin )( 00 sin 0=-+=-+=⎰⎰⎰-πππππππππππf x x f x x x f xx ;评注:本题的特点是含有“积不出”的积分 ⎰-xt tt 0 sin d π,但并不影响要求的定积分. (3))32ln(23++-(提示:令xet 21--=,则原积分⎰-=231d 22t t t ,再拆分); (4))()](2)([42222t f t f t t f ''+'(特点是参数方程,但含有变限积分);(5)令xt u =,则u t xd d 1=,xu t 010↔,⎰=x x u u f x 01d )()(ϕ,由A xx f x =→)(0lim及)(x f连续知:0)0(=f ,A f =')0(;由 ===→⎰→→=)0(limlim)(lim 1)(0d )(00 0f x x f x xt t f x x x型洛ϕ0)0(d )0(1==⎰ϕt f ,知)(x ϕ在点0=x 处连续;==='→--→xx x x x x )(00)0()(0lim lim )0(ϕϕϕϕ 22)(0d )(0lim lim 02 0 Ax x f x x tt f x x=→⎰→=型洛; 0≠x 时,20 d )()()(x tt f x f x x x ⎰-='ϕ,且因)0(][lim lim)(lim 22d )()(0d )()(02 0 2ϕϕ'==-=⎰-⎰='→-→→=A A x tt f x x f x x t t f x f x x x A x xx拆分,故可知)(x ϕ'在点0=x 处连续,从而处处连续.评注:本题是属于对变限积分所定义的函数的可导性的研究的题目.核心是导数的定义.(6)π2(提示:先放缩分母得不等式 ∑∑∑===+<+<ni n n i i n i ni n ni n n i 1111111sinsin sin πππ, 而左端的极限(利用定积分)πππππ2111 0 111111d sin sin lim ]sin [lim sin lim ===⋅=∑∑⎰∑==∞→+∞→=+∞→n i n i n n n n n n ni n n x x n i n i n i , 右端的极限(利用定积分)πππ21 0 11d sin sin lim ==⎰∑=∞→x x n i ni nn ,再利用夹逼定理); 评注:本题是利用夹逼准则和定积分相结合的方法而求和式极限的题目,加大了难度. (7)首先,因分子极限为0,所以,分母极限也一定是0,于是得0=b ;由洛必达法则得 20)1ln(0cos limcos lim 3x x a xa c x x x x --=→+→=分母等价无穷小代换,可知 1=a ;进而知21=c ; (8)原式⎰⎰--+=23 1)1(1121 )1(1d d x x x x x x ,第一个积分令2x x t -=,则012121t x ↔, )411(221t x -+=,所以,221)2(110214121 21)1(1)d(2d d 22π===⎰⎰⎰----t t x t tx x ;而对第二个积分令x x t -=2,则2323tx ↔,)411(221t x ++=,所以, ⎰⎰+-=23412231)1(1d d 2t x t x x 2320223)2(11))2(12ln()d(2t t t t ++==⎰+)32ln(+=, 故原式)32ln(2++=π.评注:本题中所作的两个换元虽有相似,但却本质不同,因此,相当于两个不同的积分. (9)提示:⎰∑⎰⎰∑--=-=-+-=-=nn n k n nnk n x x f n f x x f k f x x f k f a 1111111d )()(]d )()([d )()()](d )([ 11n f x x f a nn n --=⎰--,因)(x f 单调减,则)1(d )()( 1-≤≤⎰-n f x x f n f n n ,从而 0)](d )([1 ≥-⎰-n f x x f nn ,所以 1-≤n n a a ,即n a 单调减;另一方面,对一切n ,)(]d )()([d )()(11111n f x x f k f x x f k f a n k k knnk n +-=-=∑⎰⎰∑-=+=0)()()]()([11>=+-≥∑-=n f n f k f k f n k ,即n a 有下界. 综上:n a 单调递减有下界,故由单调有界准则(或原理)可知:A a n n =∞→lim 存在. 评注:上述分析推到过程中,积分的不等式性质起到关键作用. (10)] )( )([ )( )(22222222d 1d 21 12d 1d 2⎰⎰⎰=⎰+++=++=a auuu a auuu a a uuu a u x axxx a u f u f u f x f 令 而上式右端第二个积分⎰=⎰-⋅++=1d )d ()( )(2222222a t a a t ta u a au u ua t t f u f ta 令⎰⎰+=+=au u u a a t t t a u f t f 1d 1 d )( )(22(恰与第一个积分相等). ∴ ⎰+a x x x ax f 1 d 2 )(22⎰+=a u uu a u f 1 d )(2⎰+=a x x x a x f 1d )(2. 评注:通过两次不同的换元才最终达到目的是本题的特点.第六章 §6.51.由虎克定律:kx x F =)((x 为弹簧伸长厘米数),由5=x 时,100=F ,即k 5100=,得 20=k ,于是,x x F 20)(=,故 2250d 20d )(150 15===⎰⎰x x x x F W (克厘米).2.如图所示,沙堆母线AB 的方程为 1=+hyr x ,即)1(h yr x -=.沙的比重2000=ρ公斤/米3.对应于薄层]d ,[y y y +,则y yr y x y V y W h y d )1( d d d 222-===πρρπρ,故 22350022 d )1( h r y yr W hh y ππρ=-=⎰. 3.(1)660d )8(10 ,d )8(10d 6=+=+=⎰x x F x x F (吨);(2)设应升h 米,则 )11(60d )8(10 2 ,d )8(10d 60 +=++=++=⎰h x h x F x h x F ,于是,应有 )11(606602+=⋅h ,故 11=h (米).4.(1)AB 的线密度为l M,)(d )( 0 2a l a kmM x a x l kmM F l +=+=⎰(k 为引力常数); (2)引力分解为两个分力,由对称性,x x a l kmMF F x d )(d ,022+==,x x a l kmMax x a l kmM F y d )(cos d )(d 232222+=⋅+=ϕ, 222 2 232242d )(la a kmMx x a l kmMa F l l y +=+=⎰-. §6.61.232211d 2 e x x xe y -==⎰-. 2.12d )23( 3231=+=⎰t t t v (m/s ).3.mT T I t t i 21 021d )(I ==⎰. 第六章 总复习题1.23+-=x y ; )3 ,( , )1 ,(2921-; 31613 22123d ])[(=--=⎰-y y y A . 2.) , 2(4πa ;⎰⎰+2 42214 0221d )cos 2( d )sin 2( πππθθθθa a ; 22)1(a -π. 3.4ln 141+-=x y (提示:曲线]6 ,2[ ln ∈=t x y 在处的切线 方程为)(ln 1t x t y t -=-,即1ln 1-+=t x y t.题设中所指的 面积为⎰--+=-=62 8d ln )2ln 2(2)(x x t S S t S t曲边梯形梯形6ln 62ln 2ln 416-++=t t. 令0)(4162=+-='ttt S ,求得唯一驻点为]6 ,2[4∈=t ,从而曲线上的点为)4ln ,4().4.)32ln(6++(提示:抛物线221x y =与圆322=+y x 的右交点为)1 ,2(A ,如图:由对称性,所求的弧长为⎰⎰⎰+='+==2220 2 d 12d 12d 2x x x y s l OA).5.222342 , ab ab ππ(提示:椭圆绕直线b y =旋转所得的 立体与把椭圆向上平移b 个单位再绕x 轴旋转所得的立体一样大小.如图所示:所求的体积为⎰--=aax y y V 2221d ])()[(π⎰-----+=aaa x a x xb b b b 22d ])1()1[(2222π⎰⎰-⋅⋅=-=-aabaa a x x x a xb 022 2d 42d 14222ππ 2 8 222412ab a a b πππ=⋅⋅=). 6.0 , 2 , 35==-=c b a (提示:因抛物线过原点,∴0=c .如图:由题意,得图中阴影的面积为231 0294d )(ba x bx ax +=+=⎰ ①;此阴影绕x 轴旋转所得的立体的体积为)(d )(23121251122b ab a x bx ax V ++=+=⎰ππ.由①得)(2394a b -=,并代入V 的表达式而转化为求)(a V 的最小值问题,令0)(='a V ,可得唯一驻点35-=a ,从而2=b ). 7.提示:与曲线221-+=x x y 关于点)2 ,(p p 对称的曲线方程,是从21211-+=x x y 以及p x x =+)(121 和p y y 2)( 121=+中消去1y 和1x 而得到的,即 224)14(222++-++-=p p x p x y .设1y 与2y 的交点横坐标为)( βαβα<、,则所围面积为33112)(d )()(αββα-=-=⎰x y y p S .令21y y 、右端相等,得022222=--+-p p px x ,解之得βα、,并令判别式大于0解得 21<<-p ,23231])12(9[)(--=p p S ,21=p 时,)(p S 取最大值9.8.如图所示,设球的比重1≡ρ,半径为r ,则对应于 薄层]d ,[x x x +上的体积微元V d 上的功的微元为,d ])([1d d d 222x r x r gx x g x y x g V W --=⋅⋅⋅=⋅⋅=ππρ∴=-=⎰r x x rx x g W 2 02d )2(π)s /m 8.9( 2434=g g r π. 9.如图所示,水深x 处宽为x d 的面积微元x y A d 2d =上所受的压力微元为 x x gxA gx F d 2d d 22ρρ==,∴ ===⎰g x x x g F ρρ5162 0d 2N 31360; 设压力加倍时闸门下降m h , 则⎰+=2d )(22x x h x g F ρh g F ρ38+=,即 51638=h ,∴ =h m 2.1.其中ρ为水的比重. 定积分应用总评住:对所有专业而言,面积、体积和弧长应是最基本的;力学、物理方面的应用因专业而异;限于篇幅,未涉及经济和其它方面的应用.第二册参考答案第一章 §1.31.(1)B ;(2)C ;(3)C ;(4)A .2.(1)证:∵a x n n =∞→lim ,∴对于事先给定的无论多么小的正数ε(简记为0>∀ε),都存在自然数N (记为N ∃),只要N n >,就必有不等式ε<-a x n 成立,从而对任一自然数k ,当N k n >+(即k N n ->)时,不等式ε<-+a x k n 仍成立,故由数列极限的定义可知:a x k n n =+∞→lim .(2)证:∵a a n n =∞→lim ,∴N n N >∃>∀ , , 0ε时,ε<-a a n ,这时也必有ε<-≤-a a a a n n ,故a a n n =∞→lim .反例:n n a )1(-=,则1)1(lim lim =-=∞→∞→n n n n a 存在,但nn n n a )1(lim lim -=∞→∞→不存在(即n n a )1(-=发散).(3)证:∵0lim =∞→n n x ,∴N n N >∃>∀ , , 0ε时,ε<-0n x ε<-⇔0n x 成立,故0lim =∞→n n x .(4)证:∵)2( 112)12(232231232223222>=<==--+-+-+n nn n nn n n n nn ,∴][ , 01εε=∃>∀N (取整)只要N n > (从而ε1>n ),必有ε<><--+)2( 12312322n n n nn 成立,故2312322lim =-+∞→n n n n . 3.证:∵数列}{n x 有界,∴0>∃M ,使得对一切N ∈n ,都有M x n ≤成立①;又∵0lim =∞→n n y ,∴N n N >∃>∀ , ,0ε时,Mn n y y ε<=-0②. 于是,0>∀ε,对②中的N ,当N n >时,①②同时成立,所以这时εε=⋅<⋅<=-M n n n n n n M y x y x y x 0,故 0lim =∞→n n n y x .§1.41.(1)分析:因为22)2)(2(42-+=-+=-x x x x x ,而2→x ,所以可设31<<x ,于是,252242-<-+=-x x x x ,对于给定的0>ε,为了ε<-42x ,则只要δε=<-52x 即可,于是有如下的证明: 证:对于事先给定的无论多么小的正数ε,取5εδ=,只要δ<-<20x ,就必有 ε<-42x 成立,所以,4lim 22=→x x .(2)分析:因为)4)(2(2)106(2--=-+-x x x x ,而2→x ,所以可设31<<x ,于是,234)2(2)106(2-<--=-+-x x x x x ,对0>∀ε,为了ε<-+-2)106(2x x ,只要δε=<-32x 即可,从而证明如下:证:0>∀ε,03>=∃εδ,只要δ<-<20x ,就必有ε<-+-2)106(2x x成立,故 2)106(lim 22=+-→x x x .评注:以上的证法就是函数极限的“δε-论证法”,虽然抽象,但很严密,望认真体会.2.(1)证:∵21211212222x xxx x ≤=-++-,∴0>∀ε,取2εδ=,只要δ<-<00x ,就必有ε<≤=-++-21211212222x xxx x 成立,故 1lim 22110=+-→x x x . (2)证:∵34312221++-=-x x x ,∴0>∀ε,取34-=εX (10<<ε),则当X x >时,必有ε<=-++-34312221x x x 成立,故 1lim 3122=+-∞→x x x . 当01.0=ε时,397=X .评注:(2)的证法就是函数∞→x x f )(当时极限的“X -ε论证法”,望认真体会.3.(1)1)00( ,1)00(=+-=-f f ,所以,)(lim 0x f x →不存在;(2)0)00( ,1)00(=+=-f f ,所以,)(lim 0x f x →不存在; 而 1)(lim 1=→x f x .4.⎪⎩⎪⎨⎧>-><-=. 0 ,1, 0 ,1 ,0 ,1)(为无理数且为有理数且x x x x x x f。
川大版高等数学(第一册)部分课后题详细答案
高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,)(4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。
最新川大版高等数学(第一册)部分课后题答案[1]
川大版高等数学(第一册)部分课后题答案[1]高数第一册 第一章习题1.1«Skip Record If...»(4)«Skip Record If...»«Skip Record If...»(8)«Skip Record If...»«Skip Record If...»(10)«Skip Record If...»7.«Skip Record If...»(6)«Skip Record If...»(7)«Skip Record If...»)(8)«Skip Record If...»(9)«Skip Record If...»13.(1)«Skip Record If...»(2)«Skip Record If...»(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.«Skip Record If...»习题1.22。
(1) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(2) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(3) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»当«Skip Record If...»时,«Skip Record If...»(4) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»3.证:«Skip Record If...»«Skip Record If...»,有«Skip Record If...»。
高等数学第一章1-3节参考答案
第一章 函数与极限第一节 函数教材习题1-1答案(上册P17) 1. 解:(1)(]2,6x ∈.(2)911,21010x ⎛⎫∈ ⎪⎝⎭. (3). (,100)(100,)x ∈-∞-⋃+∞.(4). (0.99,1)(1,1.01)x ∈⋃.2.解:由2212x x εε-<⇒-<.又因(1,)x U δ∈,即该邻域以1为中心, δ为半径,所以2εδ=.当0.1ε=时, 0.05δ=;当0.01ε=时, 0.005δ=.3.解: (1)不同. ()f x 的定义域为0x ≠,而()g x 的定义域为0x >. (2) 不同.对应法则不同: ()f x x =,而()g x x =. (3)相同. ()()f x g x ==.(4)不同.对应法则不同: ()sin f x x ∈而()sin g x x =.4.解(1) {}110x x x -≤≤≠且 . (2) {}12x x ≠≠且 . (3) {}24x x ≤≤ . (4) {}30x x x ≤≠且. (5) {}1x x >- . (6) {}0x x ≠.5.解: (0)2f ==,(1)f ==(1)f -==1()f a ==0()f x =0()f x h +=6.解: ()sin 66ππϕ==12,()()sin4442πππϕϕ=-==, (2)0ϕ-=.7.证: 2211251()2()5()()11()()f f t ttt tt=+++=.# 8.证:(1)左边=()()()xyx yF x F y e e eF x y +=⋅==+=右边(2)左边= ()()()x x yyF x e e f x y F y e-==-=右边.#9. 证:(1)左边=()()ln ln ln()()G x G y x y xy G xy +=+===右边(2)左边= ()()ln ln ln()()x xG x G y x y G y y-==-===右边.#10.解(1)偶函数 . (2) 既非奇函数又非偶函数 . (3) 奇函数. (4) 偶函数.(5) 既非奇函数又非偶函数. (6) 既非奇函数又非偶函数. 11.证:(1)设12(),()f x f x 都是偶函数, 12(),()g x g x 都是奇函数.令12()()(),F x f x f x =+12()()(),G x g x g x =+则12()()()F x f x f x -=-+-=12()()()f x f x F x +=,所以()F x 为偶函数.12()()()G x g x g x -=-+-=12()(())g x g x -+-=12(()())g x g x -+=()G x -,所以()G x为奇函数. #12.证: ()12,,0,x x l ∀∈- 不妨设12x x <,,则()12,0,,x x l --∈且12x x ->-,因为()()0,f x l 在内单调更加,所以12()()f x f x ->-.又因为()f x 为奇函数,所以12()()f x f x ->-,即12()()f x f x <.所以()(),0f x l -在内单调更加. #13.解:(1) 周期2T π= . (2) 22T ππ== . (3)不是周期函数 . (4) 21cos 2sin 2xy x -==,22T ππ∴==.14.解(1)由11x y x-=+得11y x y-=+,则11x y x -=+的反函数为11x y x-=+.(2) 由2sin 3y x =得1arcsin 32y x =,则2sin 3y x =的反函数为1arcsin 32x y =.(3) 由1ln(2)y x =++得2yex e =-,则所求的反函数为12x y e-=-.(4) 由221xxy =+得2log 1yx y=-,则所求的反函数为2log 1x y x=-.15.解(1)复合函数为2()sin y f x x ==,则1()6y f π=2sin 6π==14,2()3y f π=23sin34π== (2) 复合函数为()y f x ==,则1(1)y f ===,2(2)y f ===(3) 复合函数为2()xy f x e ==,则01(0)1y f e ===,12(1)y f e e ===.(4) 复合函数为22()()x x y f x e e ===,则21(1)y f e ==,22(1)y f e -=-=.16.解:此函数为分段函数: 10.15(50)()0.1550(50)(50)x x y x x x ⎧≤⎪=⎨⨯+->⎪⎩为正整数.图形略.17.解:总数为一年期存款为A 时:一年后连本带息共有0.042(10.042)A A A +=+;将(10.042)A +再存一年即两年后连本带息共有2(10.042)(10.042)(10.042)A A ++=+;半年期存款时:半年后连本带息共有(10.02),A +一年后连本带息共有2(10.02)(10.02)(10.02)A A ++=+,一年半后可取出3(10.02)(10.02)(10.0A A +++=+,两年后可取出4(10.02)(10.02)(10.2)A A ++++=+,所以存一年期的定期收益较多,多了24(10.042)(10.02)0.0033A A A +-+=.第二节 数列的极限教材习题1-2答案(上册P27) 1. 解(1)收敛, 1lim lim02n nn n x →∞→∞==. (2) 收敛, 1lim lim (1)0nn n n x n →∞→∞=-=. (3) 收敛, 21lim lim (2)2n n n x n→∞→∞=+=.(4) 收敛, 12lim limlim (1)111n n n n n x n n →∞→∞→∞-==-=++.(5)发散,因为当n 为偶数时, n x =n ,n →∞时, n x →+∞;当n 为奇数时, n x =-n ,n →∞ 时, n x →-∞. 2. 解:1lim limcos 02n n n n x nπ→∞→∞==. 对0,ε∀>要使11cos02n nnπε-≤<,只需使1n ε>,即取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,有0n x ε-<.所以当0.001ε=时, 110000.001N ⎡⎤==⎢⎥⎣⎦. 3.证:(1) 对0,ε∀>要使221100n a nnε-=-=<,只需使21n ε>,即n >.于是对0,ε∀>取N=,当n N >时,都有2100n a n ε-=-<.由数列极限的定义21lim0n n→∞=.#(2)331311221221n n a n n n+-=-<<++ ,要使313212n n ε+-<+,只需1nε<,即1n ε>.于是对0,ε∀>取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有313212n n ε+-<+, 由313lim212n n n →∞+∴=+.#(3) 2211n aa nn-==<<故对0,ε∀>1ε<,只需2anε<,即2an ε>.于是对0,ε∀>取2a n ε⎡⎤=⎢⎥⎣⎦,当n N >时,1ε<,.lim1n n→∞∴=.#(4) 110.9999110n na -=⋅⋅⋅-=n 个,故对0,ε∀>要使1n a ε-<,只需110nε<,即1lgn ε>.于是对0ε∀>(1)ε<,取 1lg n ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有,10.99991,n a ε-=⋅⋅⋅-<lim 0.99991n →∞∴⋅⋅⋅=n 个. # 4. 证:lim n n u a →∞= ,∴对0ε∀>,,N Z +∃∈当n N >时, n n u a u a ε-≤-<,∴lim n n u a →∞=.#例如: 若()1nn u =-,则1n u =,lim 1n n u →∞=,而数列{}n u 没有极限.第三节 函数的极限教材习题1-3答案(上册P36)1. 证:(1) ()(31)833f x A x x -=--=- ,要想使33x ε-<,即33x ε-<, 0ε∴∀>,取03εδ=>,当03x δ<-<时, 总有(31)8333,x x δε--=-<=由函数极限的定义3lim (31)8x x →-=.#(2)24()(4)24(2)2x f x A x x x --=--=-+=--+ ,要想使24(4)2x x ε---<+,即(2)x ε--<,0ε∴∀>,取0δε=>,当0(2)x δ<--<时, 总有24(4)24(2)2x x x x ε---=-+=--<+,由函数极限的定义224lim42x x x →--=-+. #2. 证:(1) 333111()222x f x A xx+-=-=,要想使331122x xε+-<,即312xε<,亦即 x >0ε∴∀>,取0M =>,当x M >时,总有333311112222x xMxε+-=<=,由函数极限的定义,3311lim22x x x→∞+=. #(2) ()0f x A-=-≤,0ε-<,ε<,亦即21x ε>,0ε∴∀>,取210M ε=>,当x M >时,0ε<,∴sin limx x →+∞=.#3. 解: 222lim 4422x x x x x →=⇔-=+⋅- ,要想使24x ε-<,即2222221144lim11333x x x x x x x→∞--=⇔-=<+++ 22x x ε+⋅-<,(此时13x <<),亦即52x ε-<25x ε⇒-<,0ε∴∀>,取m in(1,)5εδ=,当02x δ<-<时, 总有24225x x x δε-=+⋅-<=.#若取0001ε=⋅,则0001m in(1,)000025δ⋅==⋅.4. 解: 2222221144lim11333x x x x x x x→∞--=⇔-=<+++ ,要想使22113x x ε--<+,即24xε<⇒x >,0ε∴∀>,取X =,当x X >时,222221444133x x x xXε--=<<=++. # 若取001ε=⋅,则20,X ==即当20x >时,就有22110.013x x --<+.5. 证: ()0,f x A x x -=-= 要想使0,x ε-<即,x ε<0ε∴∀>,取0δε=>,当00x δ<-<时,()()00,f x A f x x x δε-=-=-=<=由函数极限的定义 0lim 0x x →=.#6.解: 0lim ()limlim 11x x x x f x x+++→→→=== ,0lim ()lim lim 11x x x x f x x---→→→===,0lim ()1x f x →∴=.而0lim ()lim lim 11,x x x x x xϕ+++→→→===0lim ()lim lim lim (1)1,x x x x x x x xxϕ----→→→→-===-=-由于lim ()lim ()x x x x ϕϕ-+→→≠,所以0lim ()x x ϕ→不存在.。
高等数学 第一章 1.1 作业答案
习题1-1 第34页第4题 求下列函数的自然定义域(1)由题意知:320x +≥,解得23x ≥-. 因此x 的定义域为)2,3⎡-+∞⎢⎣ 备注:偶次根式的被开方数应该大于等于零。
(2)由题意知:210x -≠,解得:1x ≠±.因此x 的定义域为()()(),11,11,-∞-⋃-⋃+∞备注:分式的分母不能为零(3)由题意可知: 2010x x ≠⎧⎨-≥⎩解得 011x x ≠⎧⎨-≤≤⎩ 因此,函数的自然定义域为[)(]1,00,1-⋃备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零(4)由题意可知:224040x x ⎧-≥⎪⎨-≠⎪⎩ 解得:22x -<<因此函数的自然定义域为()2,2-备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零(5)由题意知0x ≥因此函数的自然定义域为[)0,+∞备注:偶次根式的被开方数应该大于等于零(6)由题意可知:12x k ππ+≠+,k Z ∈解得:12x k ππ≠+-因此函数的自然定义域为1,2x x k k Z ππ⎧⎫≠+-∈⎨⎬⎩⎭备注:tan x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭(7)由题意知:131x -≤-≤解得:24x ≤≤因此函数的自然定义域为[]2,4备注:arcsin x 的定义域为[]1,1-(8)由题意可知:300x x -≥⎧⎨≠⎩ 解得:30x x ≤⎧⎨≠⎩ 因此函数的自然定义域为()(],00,3-∞⋃备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零 arctan x 的自然定义域为R(9)由题意知:10x +>解得:1x >-因此函数的自然定义域为()1,-+∞备注:对数函数的真数要大于零(10)由题意知:0x ≠因此函数的自然定义域为()(),00,-∞⋃+∞ 备注:分式的分母不能为零,x e 的定义域为R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1-1 第34页
第4题 求下列函数的自然定义域
(1)由题意知:320x +≥,解得23x ≥-. 因此x 的定义域为)2,3⎡-+∞⎢⎣ 备注:偶次根式的被开方数应该大于等于零。
(2)由题意知:2
10x -≠,解得:1x ≠±.
因此x 的定义域为()()(),11,11,-∞-⋃-⋃+∞
备注:分式的分母不能为零
(3)由题意可知: 2010x x ≠⎧⎨-≥⎩
解得 011
x x ≠⎧⎨-≤≤⎩ 因此,函数的自然定义域为[)(]1,00,1-⋃
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零
(4)由题意可知:
224040
x x ⎧-≥⎪⎨-≠⎪⎩ 解得:22x -<<
因此函数的自然定义域为()2,2-
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零
(5)由题意知
0x ≥
因此函数的自然定义域为[)0,+∞
备注:偶次根式的被开方数应该大于等于零
(6)由题意可知:
12x k π
π+≠+,k Z ∈
解得:12x k π
π≠+-
因此函数的自然定义域为1,2x x k k Z ππ⎧
⎫≠+-∈⎨⎬⎩⎭
备注:tan x 的定义域为,2x x k k Z ππ⎧
⎫≠+∈⎨⎬⎩⎭
(7)由题意知:
131x -≤-≤
解得:24x ≤≤
因此函数的自然定义域为[]2,4
备注:arcsin x 的定义域为[]1,1-
(8)由题意可知:
300
x x -≥⎧⎨≠⎩ 解得:30x x ≤⎧⎨
≠⎩ 因此函数的自然定义域为()(],00,3-∞⋃
备注:偶次根式的被开方数应该大于等于零;分式的分母不能为零 arctan x 的自然定义域为R
(9)由题意知:
10x +>
解得:1x >-
因此函数的自然定义域为()1,-+∞
备注:对数函数的真数要大于零
(10)由题意知:0x ≠
因此函数的自然定义域为()(),00,-∞⋃+∞ 备注:分式的分母不能为零,x e 的定义域为R。