最新八年级(上)月考数学试卷(10月份)共3份

合集下载

2024-2025学年江苏省连云港市灌云县西片八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年江苏省连云港市灌云县西片八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年江苏省连云港市灌云县西片八年级(上)月考数学试卷(10月份)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组中的两个图形属于全等图形的是( )A. B.C. D.2.已知图中的两个三角形全等,则∠1等于( )A. 50°B. 58°C. 60°D. 72°3.如图,已知AB=AD,那么添加下列一个条件后,不能判定△ABC≌△ADC的是( )A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的个数为( )A. 2个B. 3个C. 4个D. 5个5.有一些含有特殊数学规律的车牌号码,如:皖C80808、皖C22222、皖C12321等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给人以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照.如果让你负责制作只以8或9开头且有五个数字的“数字对称”牌照,那么最多可制作( )A. 200个B. 400个C. 1000个D. 2000个6.数学课上,同学们用△ABC纸片进行折纸操作.按照下列各图所示的折叠过程和简要的文字说明,线段AD是△ABC中线的是( )A. 沿AD折叠,点C落在BC边上的点E处B. 沿AD折叠,点C落在AB边上的点E处C. 沿DE折叠,使点C与点B重合D. 沿AD折叠,点C落在三角形外的点E处7.如图,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,则△ABC的面积为( )A. 14B. 12C. 10D. 78.如图,点E、F是∠BAC的边AB上的两点,线段EF的垂直平分线交AC于D,AD的垂直平分线恰好经过E 点,连接DE、DF,若∠CDF=α,则∠EDF的度数为( )A. ααB. 43αC. 180°−23αD. 180°−43二、填空题:本题共8小题,每小题3分,共24分。

【人教版】八年级(上)月考数学试卷(10月份)(1)共3份

【人教版】八年级(上)月考数学试卷(10月份)(1)共3份

2020-2021学年广东省广州市越秀区侨外中学八年级上学期10月考试数学试卷(无答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列各组线段的长为边,能组成三角形的是()A. 2cm, 3cm, 4cmB. 2cm, 3cm, 5cmC. 2cm, 5cm, 10cmD. 8cm, 4cm, 4cm2. 已知图中的两个三角形全等,则等于()A. 72B. 60C. 58D. 503. 一个正多边形的内角和为540,则这个正多边形的每一个外角等于()A. 108B. 90C.72D. 604. 如图,CE是△ABC的外角的平分线,若,,则=()A. 35B. 95C. 85D. 75第2题图第4题图5. 一个三角形三个内角度数之比是2:3:5,这个三角形是()A. 钝角三角形B. 锐角三角形C.直角三角形D.等腰三角形6. 根据下列条件,能画出唯一△ABC的是()A. AB=1,BC=4,AC=8B. ,,AB=4C.,AB=6D. AB=4,BC=3,7. 用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. S.S.SB. S.A.SC. A.S.AD.A.A.S8. 点P在的平分线上,点P到OA边的距离等于3,点Q是OB边上任意一点,下列关于线段PQ长度的描述正确的是()A.PQ>3B.PQ 3C. PQ<3D.PQ 39. 如图,若AC=BC,AD=BE,,,则的度数为()A. 95B.100C. 105D.11510. 如图,在△ABC 中,AB=8,AC=5,AD是△ABC的中线,则AD的取值范围是()A. 3<AD<13B. 1.5<AD<6.5C. 2.5<AD<7.5D. 10<AD<16第7题图第9题图第10题图二、填空题(本大题共6小题,每小题3分,共18分)11. 若直角三角形中两个锐角的差为20,则两个锐角的度数分别是________.12. 已知一个等腰三角形的两边长分别为3和6,则等腰三角形的周长是_____.13. 如果一个正多边形每一个内角都等于144,那么这个正多边形的边数是_____.14. 如图,在△ABC中,三角形的外角和的平分线交于点E,若,则=______.15. 已知,如图,△OAD≌△OBC,且,,则_____度.16. 如图,在△ABC中,,AD平分,DE AB于E,有下列结论:○1CD=ED;○2AC+BE=AB;○3;○4AD平分;其中正确的序号是______.第14题图第15题图第16题图三、解答题(本大题共5题,共52分,解答应写出文字说明、证明过程或演算步骤.)17,(10分)如图,AB//CD,,,求的度数.18.(10分)如图,在△ABC中,.(1)尺规作图:作的平分线交BC于点D.(不写作法,保留作图痕迹);(2)已知,求的度数.19.(10分)如图,已知点A、E、F、C在同一直线上,,AE=CF,AD=CB. 请你判断BE和DF的关系,并证明你的结论.20.(10分)如图,已知AD//BC,点E为CD上一点,AE,BE分别平分,.(1)求证:AE BE;(2)求证:DE=CE.21.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,,连结CE.(1)如图1,当点D在线段BC上时,如果,则_______.(2)设,○1如图2,当点D在线段BC上移动时,、之间有怎样的数量关系?请说明理由.○2当点D在直线BC上移动时,、之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.2020~2021学年度第一学期阶段调研试卷初二年级数学试卷(无答案)编制人:邱小兰 审核人:宋海琴一、选择题(在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.在下列绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.5a 可以等于( )A .()()23a a -⋅- B .()()4a a -⋅- C .()23a a -⋅D .()()32a a -⋅-3.计算()32a-的结果是( )A .5a B .5a - C .6a D .6a -4.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或155.下列计算正确的是( ) A .2242x x x ⋅= B .()3328a a -=-C .()235aa = D .33m m m ÷=6.如图,在ABC △中,AB AC =,30A ∠=︒,以B 为圆心,BC 的长为半径画弧,交AC 于点D ,连接BD ,则DBC ∠等于( )A .75︒B .60︒C .45︒D .30︒7.如图,已知ABC △,求作一点P ,使P 到A ∠的两边的距离相等,且PA PB =.则对点P 位置的判断,正确的是( )A .P 为A ∠、B ∠两角平分线的交点B .P 为A ∠的角平分线与AB 的垂直平分线的交点C .P 为AC 、AB 两边上的高的交点D .P 为AC 、AB 两边的垂直平分线的交点8.若点()2,3A m +与点()4,5B n -+关于x 轴对称,则m n +的值为( ) A .3B .14-C .7D .8-9.如图,在ABC △中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一点,则CDM △周长的最小值为( )A .6B .8C .10D .1210.如图,四边形ABCD 中,AB AD =,点B 关于AC 的对称点B '恰好落在CD 上,若BAD α∠=,则ACB ∠的度数为( )A .45︒B .45α-︒C .12αD .1902α︒-二、填空题(不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11.点P 关于y 轴的对称点P '的坐标是()5,2-,则点P 的坐标______. 12.若()3915n ma b ba b ⋅⋅=.则mn 的值是______.ABC △15B C ∠=∠=︒2cm AB =CD AB ⊥BA D CD14.等腰三角形的一个外角是80︒,它的底角的度数是______.15.等腰三角形的两个内角度数之比是1:4,则这个三角形的顶角的度数是______.16.如图,60AOB ∠=︒,OC 平分AOB ∠,P 为射线OC 上一点,如果射线OA 上的点D ,满足OPD △是等腰三角形,那么ODP ∠的度数______.17.如图,ABC △中,BC 的垂直平分线DP 与BAC ∠的角平分线相交于点D ,垂足为点P ,若85BAC ∠=︒,则BDC ∠=______︒.18.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①AD 平分CDE ∠;②BAC BDE ∠=∠;③DE 平分ADB ∠,④BE AC AB +=,其中正确的有______.三、解答题(请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.如图所示,12∠=∠,BD CD =, 证明:ABC △是等腰三角形.20.已知2ma =,3na =,求下列各式的值.(1)23m na+ (2)4n ma+21.计算(1)()20152016201651 1.26⎛⎫-⨯-⨯ ⎪⎝⎭; (2)()()()()24522322222x x x x -⋅+⋅;22.如图,在ABC △中,90C ∠=︒,BD 平分ABC ∠,且交AC 于点D ,DE 垂直平分AB 于点E ,3cm DE =.求线段AC 的长.23.如图,在ABC △中,AB AC =,AD DE EB ==,BD BC =. 试求A ∠的度数.24.如图,在平面直角坐标系中,ABC △的顶点A 的坐标为()3,5-,顶点B 的坐标为()4,2-,顶点C 的坐标为()1,3-.(1)请你在所给的平面直角坐标系中,画出ABC △关于y 轴对称的111A B C △; (2)将(1)中得到的111A B C △向下平移4个单位得到222A B C △,画出222A B C △;(3)在ABC △中有一点(),P a b ,直接写出经过以上两次图形变换后222A B C △中对应点2P 的坐标.25.如图,等边ABC △中,点D 在BC 延长线上,CE 平分ACD ∠,且CE BD =. 求证:ADE △是等边三角形.26.如图,在Rt ABC △中,AB AC =,90A ∠=︒,点D 为BC 中点,过点D 作DM DN ⊥,分别交BA ,AC 延长线于点M 、N ,求证:DM DN =.27.如图,在等边ABC △中,点D 在BC 边上,点E 在AC 延长线上,DE DA =. (1)求证:BAD EDC ∠=∠;(2)作出点E 关于直线BC 的对称点M ,连接DM 、AM ,猜想DM 与AM 的数量关系,并说明理由.28.如图1,ABC △和CEF △都是等边三角形,且点E 在线段AB 上 求证:(1)//BF AC ;(2)如图2,点D 在直线AC 上,且ED EC =,求证:AB AD BF =+;(3)在第二问的条件下若点E 改为在线段AB 的延长线上,其余条件不变,请写出AB ,AD ,BF 之间的数量关系.2019级八年级(上)数学第一学月月考试题总分 150分 时间 120分钟(无答案)温馨提示:请将所有答案写在答题卷上,只交答题卷...... A 卷(共100分) 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1. 实数4-,0,722,3125-,0.1010010001…(每两个1之间依次多一个0),3.0,2π中,无理数有( )A .4个B .3个C .2个D .1个 2.下列计算结果正确的是( )A .636±=B .6.3)6.3(2-=-C .2)3(3-=- D .3355-=-3. 已知一个三角形三边之比为3:4:5,则这个三角形三边上的高之比为( )A . 3∶4∶5B .5∶4∶3C .20∶15∶12D .10∶8∶2 4. △ABC 在下列条件下不是..直角三角形的是( ) A. ∠A=∠B -∠C B. 222c a b -= C. ∠A︰∠B︰∠C=3︰4︰5 D. 2:3:1::222=c b a 5.若一个正数的两个平方根分别为632-+a a 与,则a 为( ) A .36 B .9 C .4 D .1 6.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形. 7.下列各组数中互为相反数的是( )A.2)2(2--与 B.382--与 C.2)2(2-与 D.22与-8.如图,已知矩形ABCD 中,BD 是对角线,∠ABD=30°,将ΔABD 沿BD 折叠,使点A 落在E 处,则∠CDE=( )A .30°B .60°C .45°D .75° 9.已知a >1,下列各式中,正确的是( )(8题图)A DCBA . a >aB .a 1>a C . a 1<a 1 D .a <a 10.如右图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). A .12 B .7 C .5 D .13第Ⅱ卷 (非选择题 共70分)二、填空题(每题4分,共16分)1136的平方根是 ,-8的立方根是 . 12.2-的倒数是 ,3 2(比较大小).13.如图,一圆柱高8cm,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是________________cm 。

2024-2025学年北京市第一六六中学八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年北京市第一六六中学八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年北京166中八年级(上)月考数学试卷(10月份)一、选择题:本题共12小题,每小题2分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录.下列四幅作品分别代表“立春”、“谷雨”、“立夏”、“小满”,其中是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段,能组成三角形的是( )A. 3,4,5B. 2,5,8C. 5,5,10D. 1,6,73.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是( )A. SSSB. SASC. ASAD. AAS4.如图所示,两个三角形全等,则∠α等于( )A. 72°B. 60°C. 58°D. 50°5.若一个多边形的内角和等于1800°,这个多边形的边数是( )A. 6B. 8C. 10D. 126.用一条长为18cm的细绳围成一个等腰三角形,若其中有一边的长为5cm,则该等腰三角形的腰长为( )cm.A. 5B. 6.5C. 5或6.5D. 6.5或87.如图,DE是△ABC中AC边的垂直平分线,若BC=6厘米,AB=10厘米,则△EBC的周长为( )A. 14厘米B. 16厘米C. 24厘米D. 26厘米8.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,若∠B=36°,∠E=20°,则∠BAC的角度是( )A. 76°B. 56°C. 52°D. 90°9.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为( )A. 5cmB. 3cmC. 2cmD. 不能确定10.如图AB=AC,下列条件①∠B=∠C;②∠AEB=∠ADC;③AE=AD;④BE=CD中,若只添加一个条件就可以证明△ABE≌△ACD,则所有正确条件的序号是( )A. ①②B. ①③C. ①②③D. ②③④11.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于( )A. 42°B. 48°C. 52°D. 58°12.已知∠AOB为一锐角,如图,按下列步骤作图:①在OA边上取一点D,以O为圆心,OD长为半径画MN,交OB于点C,连接CD.②以D为圆心,DO长为半径画GH,交OB于点E,连接DE,此时有∠CDE=30°.则∠AOB的度数为( )A. 20°B. 30°C. 40°D. 50°二、填空题:本题共8小题,每小题3分,共24分。

【人教版】八年级(上)月考数学试卷(10月份)共3份

【人教版】八年级(上)月考数学试卷(10月份)共3份

成都南开为明学校20~21学年度9月月考 初二(22届) 数学试题(无答案)(说明:本卷满分150分,其中A 卷100分,B 卷50分,考试时间120分钟)命题人签字: 学科组长签字:A 卷(100分)一、单项选择题 (每小题3分,共30分) 1. 在38-,,711,0.6 ,π,3.10这六个数,无理数有( )个。

A .2个 B .3个 C .4个 D .6个 2.平方根是本身的是( )A .1B .1- C.0 D .2 3. 1x -有意义的x 的取值范围是( )A .1x ≠B .1x >C .1x ≤D .1x ≥ 4.下列根式是最简二次根式是( ) 1320 30 121 5.下列无理数中,在-2与1之间的是( )A .5B .3 3 5 6.下列说法错误的是( )A .3- 是9 的平方根B 5的平方等于5C .1- 的平方根是1±D .9的算术平方根是3 7.下列计算正确的是( ) A.532= B .3523615= C .(2216= D 13= 8.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若()21520a b c -++-= ,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形9.一个正数的两个平方根分别是21a - 与2a -+ ,则a 的值为( )A .1B .-1C .2D .-210.已知2a =,3b = ,5c = ,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 二、填空题:(每空4分,共16分) 11.4的算术平方根为_______;12.比较大小:3 (填“>”“<”或“=”)13. =0,求20042004ab +的值_____. 14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0), 如:3*2=3+23-2=5,那么7*(6*3)=_________. 三.解答题(共54分) 15计算:(每小题5分,20分)④()11152π-⎛⎫-++- ⎪⎝⎭16求下列各式中的x 的值: (每小题5分,10分)(1)()2913x += (2)()32216x -+=-17. (6分) 已知21a - 的平方根是3±,32a b -+的算术平方根是4,求3a b + 的立方根.18. (6分) 若,a b 都是实数,且12b =的值19 (6分) 先化简,再求值:()()()()22323412x x x x x +---+-,其中x =-.20. (6分) 自由下落的物体的高度h(m)与下落时间t(s)的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6 m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗?(声音的速度约为340 m/s)B 卷(50分)一填空题(每题5分,共20分)21.已知913与913的消暑部分分别是a 和b ,求348ab a b -++的值____。

2024-2025学年四川省成都市第十二中学(四川大学附属中学)八年级上学期10月考数学试卷含详解

2024-2025学年四川省成都市第十二中学(四川大学附属中学)八年级上学期10月考数学试卷含详解

八年级(上)10月学情反馈数学试卷注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分,时间120分钟.2.考生使用答题卡作答,保持答题卡清洁,不得折叠,污染,破损等.3.选择题部分必须使用2B 铅笔填涂,非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效.A 卷(100分)一,选择题(共8小题每题4分共32分)1.在下列实数234,π4,134.070070007-⋯(相邻两个7之间依次多一个0)中,无理数有()A.1个 B.2个 C.3个 D.4个2.一个直角三角形的一条直角边和斜边的长分别为3和5,则另一条直角边的长为()A.B. C.4 D.4或3.下列计算正确的是()A.23=B.3=C.4=± D.3=-4.已知12x y =⎧⎨=⎩是关于x ,y 的方程,x +ky =3的一个解,则k 的值为()A.-1 B.1 C.2 D.35.ABC V 的三边长分别为a ,b ,c ,由下列条件不能判断ABC V 为直角三角形的是()A.90B C ∠+∠=︒B.::3:4:5A B C ∠∠∠=C.6a =,8b =,10c = D.222c a b -=6.有意义,则x 的取值范围是()A.1x ≥-B.1x ≤-C.1x >- D.1x <-7.若1a a <<+,则22a -的值为()A.3B.7C.8D.98.如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度h cm ,则h 的取值范围是()A.17cm h ≤B.8cm h ≥C.15cm 16cm h <≤D.7cm 16cmh ≤≤二,填空题(共5小题每题4分共20分)9.若实数x ,y|2|0y +=,则x +y 的值为__________.10.如图,长方形ABCD 的边AB 落在数轴上,A ,B 两点在数轴上对应的数分别为1-和1,1BC =,连接BD ,以B 为圆心,BD 为半径画弧交数轴于点E ,则点E 在数轴上所表示的数为_________.11.下列几组数:①8,15,17,②1,20.3,0.4,0.5,④16,18,110,⑤12,16,20.其中是勾股数的有______.(填序号)12.若2325m n m n +=⎧⎨+=⎩.则m n +的值为______.13.如图,在ABC V 中,90ACB ∠=︒,34AC BC ==,,点D 在边AB 上,AD AC AE CD =⊥,,垂足为F ,与BC 交于点E ,则BE 的长是___________.三,解答题(共5小题14题10分,15题12分,16题8分,17题8分,18题10分共48分)14.计算(1()202431-+-+(2))222-.15.解下列方程组(1)1342x y x y =+⎧⎨-=-⎩.(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩.16.如图,在四边形ABCD 中,90B Ð=°,3AB =,4BC =,点D 是Rt ABC △外一点,连接CD ,AD ,且12CD =,13AD =.求四边形ABCD 的面积17.如图,实数,,a b c 在数轴上对应点的位置如图所示,化简b a +--的结果.18.如图①,在长方形ABCD 中,已知AB =10,AD =6,动点P 从点D 出发,以每秒2个单位的速度沿线段DC 向终点C 运动,运动时间为t 秒,连接AP ,把△ADP 沿着AP 翻折得到△AEP .(1)如图②,射线PE 恰好经过点B ,试求此时t 的值.(2)当射线PE 与边AB 交于点Q 时,是否存在这样的t 的值,使得QE =QB ?若存在,请求出所有符合题意的t 的值,若不存在,请说明理由.B 卷(50分)一,填空题(共5小题每题4分共20分)19.比较大小:12-_____12.20.已知a 的值为__________.21.关于x ,y 的二元一次方程()()32290m x m y m ++-+-=,不论m 取何值,方程总有一组固定不变的解,这组解为__________.22.如图,在四边形ABCD 中和,6AB BC ==,60ABC ∠=︒,90ADC ∠=︒.对角线AC 与BD 相交于点E ,若3BE DE =,则ED =__________.23.【阅读材料】平面几何中的费马问题是十七世纪法国数学家皮埃尔·德·费马提出的一个著名的几何问题:给定不在一条直线上的三个点A ,B ,C ,求平面上到这三个点的距离之和最短的点P 的位置,费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将BPC 绕点B 顺时针旋转60°得到BDE V ,连接PD ,可得BPD △为等边三角形,故PD PB =,由旋转可得DE PC =,因PA PB PC PA PD DE ++=++,由两点之间线段最短可知,PA PB PC ++的最小值与线段AE 的长度相等.【解决问题】如图2,在直角三角形ABC 内部有一动点P ,90BAC ∠=︒,30ACB ∠=︒,连接PA ,PB ,PC ,若3AB =,求PA PB PC ++的最小值______.二,解答题(共3小题24题8分,25题10分,26题12分共30分)24.如图,在一条笔直的东西方向的公路上有A ,B 两地,相距500米,且离公路不远处有一块山地C 需要开发,已知C 与A 地的距离为300米,与B 地的距离为400米,在施工过程中需要实施爆破,为了安全起见,爆破点C 周围半径260米范围内不得进入.(1)山地C 距离公路的垂直距离为多少米?(2)在进行爆破时,A ,B 两地之间的公路是否有危险需要暂时封锁?若需要封锁,请求出需要封锁的公路长.25.科华数学之星在解决问题:已知a =,求2281a a -+的值.他是这样分析与解决的:2a ===2a ∴-=2(2)3a ∴-=,2443a a -+=.241a a ∴-=-.()222812412(1)11a a a a ∴-+=-+=⨯-+=-.请你根据小明的分析过程,解决如下问题:(1=,=.(2+ .(3)若a =,请按照小明的方法求出2481a a -+的值.26.数学活动课上,老师出示两个大小不一样的等腰直角ABC 和ADE 摆在一起,其中直角顶点A 重合,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)用数学的眼光观察.如图1,连接B ,C ,判断B 与C 的数量关系,并说明理由.(2)用数学的思维思考.如图2,连接BE ,B ,若F 是BE 中点,判断AF 与B 的数量关系,并说明理由.(3)用数学的语言表达.如图3,延长C 至点F ,满足AF AC =,然后连接DF ,BE ,当AB =,1AD =,ADE 绕A 点旋转得到D E F,,三点共线时,求线段EF 的长.八年级(上)10月学情反馈数学试卷A卷(100分)一,选择题(共8小题每题4分共32分)1.在下列实数234,π4,134.070070007-⋯(相邻两个7之间依次多一个0)中,无理数有()A.1个B.2个C.3个D.4个【答案】C【分析】本题考查无理数,根据无理数是无限不循环小数,进行判断即可.【详解】解:在234,π4,134.070070007-⋯(相邻两个7之间依次多一个0)中,无理数有,π4,134.070070007-⋯(相邻两个7之间依次多一个0),共3个.故选C.2.一个直角三角形的一条直角边和斜边的长分别为3和5,则另一条直角边的长为()A.B. C.4 D.4或【答案】C【分析】本题考查勾股定理求线段长,根据题意,利用勾股定理列式即可得到答案,熟练掌握勾股定理求线段长是解决问题的关键.【详解】解: 一个直角三角形的一条直角边和斜边的长分别为3和5.∴由勾股定理可得另一条直角边的长为4=.故选:C.3.下列计算正确的是()A.23=B.3=C.4=± D.3=-【答案】A【分析】根据二次根式的性质进行化简,然后分析作出判断即可.【详解】A.23=,故A正确,符合题意.B.3=±,故B错误,不符合题意.4=,故C错误,不符合题意.3=,故D错误,不符合题意.故选:A.a=,2a=,是解题的关键.4.已知12x y =⎧⎨=⎩是关于x ,y 的方程,x +ky =3的一个解,则k 的值为()A.-1 B.1 C.2 D.3【答案】B【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵12x y =⎧⎨=⎩是关于x ,y 的方程x +ky =3的一个解.∴把12x y =⎧⎨=⎩代入到原方程,得1+2k =3.解得k =1.故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.5.ABC V 的三边长分别为a ,b ,c ,由下列条件不能判断ABC V 为直角三角形的是()A.90B C ∠+∠=︒B.::3:4:5A B C ∠∠∠=C.6a =,8b =,10c = D.222c a b -=【答案】B【分析】本题考查勾股定理的逆定理的应用和三角形的内角和定理.根据三角形内角和定理可分析出A ,B 的正误,根据勾股定理逆定理可分析出C ,D 的正误.【详解】解:A ,90B C ∠+∠=︒ ,180A B C ∠+∠+∠=︒.90A ∴∠=︒.∴ABC V 为直角三角形,故A 选项不符合题意.B ,设3A x ∠=︒,4B x ∠=︒,5C x ∠=︒.345180x x x ++=.解得:15x =.则575x ︒=︒.∴ABC V 不是直角三角形,故B 选项符合题意.C ,∵6a =,8b =,10c =.222c a b ∴=+.∴能构成直角三角形,故C 选项不合题意.D ,222c a b -= .222a b c ∴+=.∴能构成直角三角形,故D 选项不合题意.故选:B .6.有意义,则x 的取值范围是()A.1x ≥- B.1x ≤- C.1x >- D.1x <-【答案】A【分析】本题考查的是二次根式有意义的条件,即二次根式中的被开方数是非负数.根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解: 有意义.10x ∴+≥,解得1x ≥-.故选:A .7.若1a a <<+,则22a -的值为()A.3B.7C.8D.9【答案】B【分析】此题主要考查了估算无理数的大小,正确得出接近无理数的整数是解题关键.根据题意得出34<<,进而求出3a =,然后代入22a -即可得出答案.【详解】∵91216<<∴34<<∵1a a <<+∴3a =∴222327a -=-=.故选:B .8.如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度h cm ,则h 的取值范围是()A.17cmh ≤ B.8cm h ≥ C.15cm 16cm h <≤ D.7cm 16cmh ≤≤【答案】D 【分析】本题主要考查了勾股定理的实际应用,如图,当筷子的底端在A 点时,筷子露在杯子外面的长度最短,当筷子的底端在D 点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h 的取值范围.【详解】解:如图1所示,当筷子的底端在D 点时,筷子露在杯子外面的长度最长.24816cm h ∴=-=最大.如图2所示,当筷子的底端在A 点时,筷子露在杯子外面的长度最短.在Rt ABD △中,15cm AD =,8cm BD =.17cm AB ∴==.∴此时24177cm h =-=最小.∴h 的取值范围是7cm 16cm h ≤≤.故选:D .二,填空题(共5小题每题4分共20分)9.若实数x ,y |2|0y +=,则x +y 的值为__________.【答案】1【分析】根据非负数的性质列出方程求出x,y 的值,代入所求代数式计算即可.【详解】根据题意得:x−3=0,y+2=0.解得:x =3,y =−2.则x+y=3-2=1.故答案是:1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如图,长方形ABCD 的边AB 落在数轴上,A ,B 两点在数轴上对应的数分别为1-和1,1BC =,连接BD ,以B 为圆心,BD 为半径画弧交数轴于点E ,则点E 在数轴上所表示的数为_________.【答案】1-1+【分析】根据勾股定理求得BD ,进而根据数轴上的两点距离即可求得点E 在数轴上所表示的数.【详解】解: 四边形ABCD 是长方形,A ,B 两点在数轴上对应的数分别为1-和1,1BC =.1,2AD BC AB ∴===依题意BE BD ===.设点E 在数轴上所表示的数为x,则1x -=解得1x =-故答案为:1【点睛】本题考查了勾股定理,实数与数轴,掌握勾股定理求得BD 是解题的关键.11.下列几组数:①8,15,17,②1,20.3,0.4,0.5,④16,18,110,⑤12,16,20.其中是勾股数的有______.(填序号)【答案】①⑤##⑤①【分析】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.根据勾股数的定义,逐一判断即可求解.【详解】解:①22281517+= .∴8,15,17是勾股数.1,2不是勾股数.③0.3,0.4,0.5不是整数,故0.3,0.4,0.5不是勾股数.④16,18,110不是整数,故16,18,110不是勾股数.⑤ 222121620+=.∴12,16,20是勾股数.故答案为:①⑤.12.若2325m n m n +=⎧⎨+=⎩.则m n +的值为______.【答案】83##223【分析】本题考查了求代数式的值,解二元一次方程组,能根据代数式的特点,选择整体代数法,从而将两个方程相加是解题的关键.【详解】解:2325m n m n +=⎧⎨+=⎩①②.由①+②得:3335m n +=+.即83m n +=.故答案为:8313.如图,在ABC V 中,90ACB ∠=︒,34AC BC ==,,点D 在边AB 上,AD AC AE CD =⊥,,垂足为F ,与BC 交于点E ,则BE 的长是___________.【答案】52【分析】此题考查了垂直平分线的判定和性质,全等三角形的判定和性质,勾股定理等知识,证明AE 是CD 的垂直平分线,则CE DE =,证明()SSS ACE ADE ≌,则90ADE ACB ∠=∠=︒,在Rt ABC △中,由勾股定理得5AB =,则2BD AB AD =-=,根据ABC ACE ABE S S S =+△△△求出32=DE ,在Rt BDE △中,由勾股定理即可得到BE 的长.【详解】解:连接DE .∵3AD AC AE CD ==⊥,.∴AE 是CD 的垂直平分线.∴CE DE =.∴()SSS ACE ADE ≌∴90ADE ACB ∠=∠=︒.在Rt ABC △中,由勾股定理得:5AB ==.∴2BD AB AD =-=.∵ABC ACE ABE S S S =+△△△.∴AC BC AC CE AB DE ⨯=⨯+⨯.∴3435CE DE ⨯=+.∴32=DE .在Rt BDE △中,由勾股定理得:52BE===,故答案为:52.三,解答题(共5小题14题10分,15题12分,16题8分,17题8分,18题10分共48分)14.计算(1()202431-+-+(2))222-.【答案】(1)(2)4+【分析】本题考查了二次根式的混合运算,乘方和立方根,掌握相关运算法则是解题关键.(1)先化简绝对值,二次根式,乘方和立方根,再计算加减法即可.(2)先根据完全平方公式和平方差公式展开,再计算加减法即可.【小问1详解】20243(1)+-+3214=+--=.【小问2详解】解:)222-32(54)=++--51=+-4=+.15.解下列方程组(1)1342x yx y=+⎧⎨-=-⎩.(2)11233210x yx y+⎧-=⎪⎨⎪+=⎩.【答案】(1)65xy=⎧⎨=⎩(2)312x y =⎧⎪⎨=⎪⎩【分析】本题考查解二元一次方程组.(1)把①代入②得()3142y y +-=-,求出y ,再把y 的值代入①求出y 即可.(2)整理后①+②得618x =,求出x ,②-①得42y =,再求出y 即可.把二元一次方程组转化成一元一次方程是解题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.【小问1详解】解:1342x y x y =+⎧⎨-=-⎩①②.把①代入②,得:()3142y y +-=-.解得:5y =.把5y =代入①,得:516x =+=.∴方程组的解是65x y =⎧⎨=⎩.【小问2详解】整理得:3283210x y x y -=⎧⎨+=⎩①②.①+②,得:618x =.解得:3x =.②-①,得:42y =.解得:12y =.∴方程组的解是312x y =⎧⎪⎨=⎪⎩.16.如图,在四边形ABCD 中,90B Ð=°,3AB =,4BC =,点D 是Rt ABC △外一点,连接CD ,AD ,且12CD =,13AD =.求四边形ABCD的面积【答案】36【分析】本题考查了勾股定理及其逆定理,熟练掌握定理是解题的关键.根据勾股定理计算AC ,根据勾股定理的逆定理判定ADC △是直角三角形,根据面积公式计算即可.【详解】∵90B Ð=°,3AB =,4BC =.∴5AC ===.故AC 得长为5.∵12CD =,13AD =,5AC =.且22222251213CD AC AD +=+==.∴=90ACD ∠︒.∴四边形ABCD 面积为:1122BC AC DC AD + =11512343622⨯⨯+⨯⨯=.17.如图,实数,,a b c 在数轴上对应点的位置如图所示,化简b a +--的结果.【答案】3a b c-+-【分析】本题主要考查了整式的加减混合运算,立方根的性质,算术平方根的性质.观察数轴可得0a b c <<<,再根据立方根的性质,算术平方根的性质化简,然后计算,即可求解.【详解】解:观察数轴得:0a b c <<<.b a +-()a b a a b bc =+--+--()()()a b a a b c b =-+--+--a b a a b c b=-+----+3a b c =-+-.18.如图①,在长方形ABCD 中,已知AB =10,AD =6,动点P 从点D 出发,以每秒2个单位的速度沿线段DC 向终点C 运动,运动时间为t 秒,连接AP ,把△ADP 沿着AP 翻折得到△AEP .(1)如图②,射线PE 恰好经过点B ,试求此时t 的值.(2)当射线PE 与边AB 交于点Q 时,是否存在这样的t 的值,使得QE =QB ?若存在,请求出所有符合题意的t 的值,若不存在,请说明理由.【答案】(1)1t s =,(2)存在,0.9t s =或5.t s =【分析】(1)先证明∠APD =∠EPA =∠PAB ,得AB =PB =10,根据勾股定理得PC =8,由PD =2=2t ,可得结论,(2)分两种情况:点E 在矩形的内部时,先求解5+,AQ t =再过点P 作PH ⊥AB 于H ,过点Q 作QG ⊥CD 于G ,求解29t PG t -=,2992,t AQ PD PG t t t t-=+=+=+再建立方程求解即可,当点E 在矩形的外部,可得AB =2t ,从而可得答案.【详解】解:(1)如图1, 长方形ABCD ,,AB CD \∥∴∠DPA =∠PAB ,由轴对称得:∠DPA =∠EPA ,∴∠EPA =∠PAB ,∴BP =AB =10,在Rt △PCB 中,由勾股定理得:228,PC PB BC =-=∴PD =2=2t ,∴t =1,(2)存在,分两种情况:当点E 在矩形ABCD 内部时,如图,∵QE =PQ -PE =PQ -DP =PQ -2t ,而QE =QB ,由(1)同理可得:PQ =AQ ,∴QB =AQ -2t ,∵AQ +BQ =AB =10,∴AQ +AQ -2t =10,∴AQ =5+t ,如图,过点P 作PH ⊥AB 于H ,过点Q 作QG ⊥CD 于G ,∴PH =QG =AD =6.而222222636PQ PG QG PG PG =+=+=+,∴2236AQ PG =+,∵AQ =DG =DP +PG ,∴()2236DP PG PG +=+,∵PD =2t ,∴()22236t PG PG +=+,解得:29t PG t-=,∴2992,t AQ PD PG t t t t-=+=+=+∴910t t t∴+=+,解得:0.9t =.经检验,符合题意,当点E 在矩形ABCD 的外部时,如图,∵QE =PE -PQ =DP -PQ =2t -PQ ,同理:AQ PQ =.∵QE =QB ,∴BQ =2t -AQ ,∴AB -AQ =2t -AQ ,∴AB =2t ,∴152t AB ==,(此时P 与C 重合),综上,存在这样的t 值,使得QE =QB ,t 的值为0.9秒或5秒.【点睛】本题考查长方形的性质,几何动点问题,轴对称的性质,勾股定理的应用,等腰三角形的判定等知识,解题的关键是学会正确画出图形,学会分类讨论,充分利用轴对称的性质解决问题.B 卷(50分)一,填空题(共5小题每题4分共20分)19.比较大小:612-_____12.【答案】>6的大小,然后再比较无理数的大小即可.642>=.611->.∴61122->.故答案为:>.【点睛】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则.20.已知a 4933113a a a a +---的值为__________.【答案】39223310a -≥130a -≥,求出13a =,再代入求值即可.0≥0≥.∴13a =.∴原式==+393=+.故答案为:393+.21.关于x ,y 的二元一次方程()()32290m x m y m ++-+-=,不论m 取何值,方程总有一组固定不变的解,这组解为__________.【答案】13x y =-⎧⎨=⎩【分析】本题考查了解决含字母参数的二元一次方程组的能力,准确理解题意并能用特殊值法求解时解题关键.分别求出320m +=和20m -=时m 的值,再代入方程求出x ,y 的值即可.【详解】解:()()32290m x m y m ++-+-=.当320m +=时,32m =-.将32m =-代入方程得:3329022y ⎛⎫⎛⎫--+--= ⎪ ⎪⎝⎭⎝⎭.解得:2y =.当20m -=时,2m =.将2m =代入方程得:()322920x +⨯+-=.解得:1x =-.∴不论m 取何值,方程总有一组固定不变的解,这组解为13x y =-⎧⎨=⎩.故答案为:13x y =-⎧⎨=⎩.22.如图,在四边形ABCD 中和,6AB BC ==,60ABC ∠=︒,90ADC ∠=︒.对角线AC 与BD 相交于点E ,若3BE DE =,则ED =__________.【答案】36【分析】过点B 作BM AC ⊥于点M ,过点D 作DN BM ⊥于点N ,连接DM 并延长到H,使得MH MD =,连接AH ,先证明ABC ∴ 为等边三角形,得到6AC AB ==,再由三线合一定理得到132CM AM AC ===.则由勾股定理可得2233BM BC CM =-=,证明()SAS AHM CDM ≌,得到AH CD MAH MCD ==,∠∠,再证明ADH DAC △≌△,得到DH AC =,则132DM AC ==,由3BE DE =,得到34BE BD =,则132142BM ME BM DN ⋅=⋅,据此得到34ME DN =,设3434ME x DN x BE y BD y ====,,,在Rt BME △中,由勾股定理得222BE ME BM -=,可推出223y x -=.在Rt BDN △中,由勾股定理得222161648BN y x =-=,则3BN =,3MN =.利用勾股定理得到226DN DM MN =-=.则2236BD BN DN +=.【详解】解:过点B 作BM AC ⊥于点M ,过点D 作DN BM ⊥于点N ,连接DM 并延长到H,使得MH MD =,连接AH.6AB BC == ,60ABC ∠=︒.ABC ∴ 为等边三角形.6AC AB ∴==.BM AC ⊥ .132CM AM AC ∴===.2233BM BC CM ∴=-=.∵AM CM AMH CMD HM DM ===,∠∠,.∴()SAS AHM CDM ≌.∴AH CD MAH MCD ==,∠∠.∵90ADC ∠=︒.∴90ACD CAD ∠+∠=︒.∴90CAD CAH +=︒∠∠.∴90DAH ADC =︒=∠.又∵AD DA =.∴ADH DAC △≌△.∴DH AC =.∴132DM AC ==.∵3BE DE =.∴34BE BD =.∴34BDM BME S BE S BD ==△△.∴132142BM ME BM DN ⋅=⋅.∴34ME DN =.设3434ME x DN x BE y BD y ====,,,.在Rt BME △中,由勾股定理得222BE ME BM -=.∴229927y x -=.∴223y x -=.在Rt BDN △中,由勾股定理得222BN BD DN =-.∴222161648BN y x =-=.∴BN =MN ∴=.DN ∴==.BD ∴===.故答案为:.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.23.【阅读材料】平面几何中的费马问题是十七世纪法国数学家皮埃尔·德·费马提出的一个著名的几何问题:给定不在一条直线上的三个点A ,B ,C ,求平面上到这三个点的距离之和最短的点P 的位置,费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将BPC 绕点B 顺时针旋转60°得到BDE V ,连接PD ,可得BPD △为等边三角形,故PD PB =,由旋转可得DE PC =,因PA PB PC PA PD DE ++=++,由两点之间线段最短可知,PA PB PC ++的最小值与线段AE 的长度相等.【解决问题】如图2,在直角三角形ABC 内部有一动点P ,90BAC ∠=︒,30ACB ∠=︒,连接PA ,PB ,PC ,若3AB =,求PA PB PC ++的最小值______.【答案】【分析】将ABP 绕点B 顺时针旋转60︒得到EBF △,连接,PF CE ,作EH CA ⊥交CA 的延长线于点H ,首先证明PA PB PC CE ++≥,求出CE 的值即可解决问题.【详解】解:将ABP 绕点B 顺时针旋转60︒得到EBF △,连接,PF CE ,作EH CA ⊥交CA 的延长线于点H .在Rt ABC △中,∵30ACB ∠=︒,3AB =.∴26,BC AB AC ====.由旋转的性质可知:PA EF =,PBF △,ABE 是等边三角形.∴PF PB =.∴PA PB PC EF FP PC ++=++.∵EF FP PC CE ++≥.∴当C P F E 、、、共线时,PA PB PC ++的值最小.∵90BAC ∠=︒,60=︒∠BAE .∴180906030HAE ∠=︒-︒-︒=︒.∵,3EH AH AE AB ⊥==.∴1322EH AE ==,2AH ==.∴CE ==.∴PA PB PC ++的最小值为故答案为:【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,理由旋转作出正确的辅助线是解本题的关键.二,解答题(共3小题24题8分,25题10分,26题12分共30分)24.如图,在一条笔直的东西方向的公路上有A ,B 两地,相距500米,且离公路不远处有一块山地C 需要开发,已知C 与A 地的距离为300米,与B 地的距离为400米,在施工过程中需要实施爆破,为了安全起见,爆破点C 周围半径260米范围内不得进入.(1)山地C 距离公路的垂直距离为多少米?(2)在进行爆破时,A ,B 两地之间的公路是否有危险需要暂时封锁?若需要封锁,请求出需要封锁的公路长.【答案】(1)240m(2)需要,200m【分析】本题考查了勾股定理及其逆定理的应用.(1)过C 作CD AB ⊥,因为222300400500+=,由勾股定理的逆定理得ABC V 是直角三角形,通过三角形的面积转化,即可求解.(2)以点C 为圆心,260m 为半径画弧,交AB 于点E ,F ,连接CE ,CF ,由等腰三DE DF =,比较CD 与CE 的大小即可判断,由勾股定理得DE =,即可求解.掌握勾股定理及其逆定理,能作出适当的辅助线,将实际问题转化为勾股定理及其逆定理是解题的关键.【小问1详解】解:由题意得500m AB =,300m AC =,400m BC =.如图,过C 作CD AB ⊥,222300400500+=.222AC BC AB ∴+=.ABC ∴ 是直角三角形,且90ACB ∠=︒,1122AC BC AB CD ∴⋅=⋅.1130040050022CD ∴⨯⨯=⨯⋅.解得:240CD =.答:山地C 距离公路的垂直距离为240m .【小问2详解】解:公路AB 有危险需要暂时封锁,理由如下:如图,以点C 为圆心,260m 为半径画弧,交AB 于点E ,F ,连接CE ,CF .则260EC FC ==.CD AB ⊥ .DE DF ∴=.由(1)可知,240CD =.240260< .∴有危险需要暂时封锁.在Rt CDE △中.22DE CE CD =-22260240=-100=.2200EF DE ∴==.即需要封锁的公路长为200m .25.科华数学之星在解决问题:已知123a =+,求2281a a -+的值.他是这样分析与解决的:2a ===2a ∴-=2(2)3a ∴-=,2443a a -+=.241a a ∴-=-.()222812412(1)11a a a a ∴-+=-+=⨯-+=-.请你根据小明的分析过程,解决如下问题:(1=,=.(2+ .(3)若a =,请按照小明的方法求出2481a a -+的值.【答案】(1-,2-(2)4(3)5【分析】本题考查了二次根式的化简求值,分母有理化.熟练掌握分母有理化,整体代入法求代数式的值,是解决本题的关键.(1)根据例题可得:对每个式子的分子和分母同时乘以分母的有理化因式化简即可.(2)将式子中的每一个分式进行分母有理化,问题随之得解.(3)根据小明的分析过程,1a -=221a a -=,可求出代数式的值.【小问1详解】==.2==.,2-.【小问2详解】原式11(311)422=--=-+=.【小问3详解】∵1a ==.1a ∴-=.2(1)2a ∴-=,2212a a -+=.221a a ∴-=.∴原式()24214115a a =-+=⨯+=.26.数学活动课上,老师出示两个大小不一样的等腰直角ABC 和ADE 摆在一起,其中直角顶点A 重合,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)用数学的眼光观察.如图1,连接B ,C ,判断B 与C 的数量关系,并说明理由.(2)用数学的思维思考.如图2,连接BE ,B ,若F 是BE 中点,判断AF 与B 的数量关系,并说明理由.(3)用数学的语言表达.如图3,延长C 至点F ,满足AF AC =,然后连接DF ,BE ,当AB =,1AD =,ADE 绕A 点旋转得到D E F ,,三点共线时,求线段EF 的长.【答案】(1)BD CE =,理由见解析(2)2CD AF =,理由见解析(3)2或622+【分析】本题考查全等三角形的判定与性质,等腰直角三角形的性质,勾股定理等知识,灵活运用三角形的判定来判定三角形全等是解题的关键.(1)利用SAS 证明BAD CAE ≌,从而得解.(2)点B 作BQ AE ∥交AF 的延长线于点Q ,证明()AAS FAE FBQ ≌得到AF FQ =12=AQ ,再证明()SAS DAC QAB ≌,得到2CD BQ AF ==,即得证.(3)分①当点D E 、在直线AC 下方时,②当点D E 、在直线AC 上方时两种情况讨论即可得解.【小问1详解】解:BD CE =,理由:∵AE DA =,90BAD BAC CAD CAD EAD CAD CAE ∠=∠+∠=︒+∠=∠+∠=∠,AB AC =,∴()SAS BAD CAE ≌.∴BD CE =.【小问2详解】2CD AF =,理由:点B 作BQ AE ∥交AF 的延长线于点Q .∴Q EAF ∠=∠,EFA QFB ∠=∠.∵F 是BE 中点,则FE FB =.∴()AAS FAE FBQ ≌.∴AF FQ =12=AQ ,BQ AE AD ==.∵BQ EA ∥.∴180QBA EAB ∠+∠=︒.∵360180DAC EAB DAE BAC ∠+∠=︒-∠-∠=︒.∴DAC QBA ∠=∠.∵AB AC =.∴()SAS DAC QAB ≌.∴2CD BQ AF ==.【小问3详解】ADE 旋转得到D E F ,,三点共线.①当点D E 、在直线AC 下方时,如图所示,过点A 作1AM D F ^于M .∵Rt ADE 是等腰三角形,111AD AE AD AE ====,1AM D F ^.∴11D E ==,1AM D M =12=11D E 2=.在Rt AFM 中,AF AB ==.∴62MF ===.∴11D F MF D M =-622=.即ADE 旋转得到D E F ,,三点共线时,DF 622=.②当点D E 、在直线AC 上方时,如图所示,过点A 作2AN D F ^于N .同理,22D F MF D M =-2=.即ADE 旋转得到D E F ,,三点共线时,DF 622+=.综上所述,线段DF 的长为:622或622+.。

八年级(上)月考数学试卷(10月份)(1)共3份

八年级(上)月考数学试卷(10月份)(1)共3份

八年级月考试题(无答案)一、选择题(本大题共10小题,共30.0分)1.下列各式中,从左到右的变形是因式分解的是A. B.C. D.2.如果把分式中的x、y都扩大5倍,那么分式的值A. 不变B. 扩大5倍C. 缩小5倍D. 以上都不正确3.若关于x的方程有增根,则m的值是A. B. C. 3 D.4.当a,b互为相反数时,代数式的值为A. 4B. 0C.D.5.已知a,b,c为的三边长,且满足,则的形状是()A. 等边三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形6.的计算结果是A. aB. 1C.D.7.如果,则的值为A. 0B.C.D.8.若关于x的方程的解为正数,则m的取值范围是A. B. 且 C. D. 且9. 已知,则分式的值为A. 8B.C.D. 410. 已知,其中A 、B 为常数,则的值为A. 13B. 9C. 7D. 5二、填空题(本大题共8小题,共24.0分) 11. 因式分解:______. 12. 因式分解:______.13. 若,,则的值为______.14. 已知,且,则 .15. 观察给定的分式:x 1,22x ,34x ,48x ,516x,,猜想并探索规律:第10个分式是 ,第n 个分式是 . 16. 如果,那么代数式的值是____.17. 若关于x 的分式方程无解,则a 的值为__________.18. 分式与的最简公分母是______,方程的解是______.三、计算题(共66分) 19. (一)因式分解(6分); .(二)用简便方法计算(8分) (1)..20.计算: (18分).(5).21.(8分)先化简代数式:,然后再从的范围内选取一个你喜欢的整数作为x值代入求值.22.(8分)若关于x的方程的解为正数,求m的取值范围23.解分式方程(8分)。

24.阅读下面材料(10分):在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:,这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,这样的分式就是真分式我们知道,假分数可以化为带分数,例如:,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:将分式,化为带分式.当x取什么整数值时,分式的值也为整数?启东校区2020年初二数学十月份月考试题(无答案)一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .5cm ,5cm ,11cmD .13cm ,12cm ,20cm2.要求面ABC △的边AB 上的高,下列画法中,正确的是( )A .B .C .D .3.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( ).A .SSSB .SASC .ASAD .AAS4.如果一个正多边形的外角是30°,那么这个正多边形对角线共有( ). A .12条B .60条C .54条D .18条5.三条相互交叉的公路,现要建一个货物转运站,要求它到三条公路的距离相等,则可供选择的地址有( ). A .1个B .2个C .3个D .4个6.已知a ,b ,c 是ABC △的三条边长,化简a b c b a c +----的结果为( ). A .22a c -B .2aC .22b c -D .07.计算多边形内角和时不小心多输入一个内角,得到和为1290︒,则这个多边形的边数是( ). A .8B .9C .10D .118.根据下列已知条件,能画出唯一的ABC △的是( ). A .3AB =,4BC =,40C ∠=︒ B .4AB =,3BC =,30A ∠=︒ C .90C ∠=︒,6AB =D .60A ∠=︒,45B ∠=︒,4AB =9.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,,EF c =,则AD 的长为( ).A .a c +B .b c +C .a b c -+D .a b c +-10.如图,ABC ACB ∠=∠,AD 、BD 、CD 分别平分ABC △的外角EAC ∠、 内角ABC ∠、外角ACF ∠.以下结论:①//AD BC ;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④12BDC BAC ∠=∠. 其中正确的结论有( ).A .1个B .2个C .3个D .4个二、填空题11.已知等腰三角形两边长分别为3cm 和8cm ,则该三角形周长是______.12.如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为______.13.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为______. 14.如图,AD 是ABC △中BC 边上的中线,若5AD =,8AC =.则AB 的取值范围是______.15.如图,AD 是ABC △的角平分线,DF AB ⊥于点F ,DE DG =,ADG △和AED △的面积分别为50和39,则EDF △的面积为______.16.如图ABC △,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点.点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP △全等时,v 的值为______厘米/秒.三、解答题17.如图,ABC △中,40A ∠=︒,74B ∠=︒,CD 是AB 边上的高,CE 平分ACB ∠,DF CE ⊥于点F ,求ECD ∠和CDF ∠的度数.18.如图,在ABC △中,点D 在BC 上,70BAC ∠=︒,223∠=∠,1C ∠=∠,求2∠的度数.19.如图,AB DC =,AE DF =,CE BF =,求证://AE DF .20.公园里有一条“Z ”字型的道路ABCD ,其中//AB CB 在AB ,BC ,CD 三段路旁各有一只石凳E ,M ,F ,且BE CF =,点M 是BC 的中点,试说明三只石凳E ,F ,M 在一条直线上.21.如图,ABC △中,90ACB ∠=︒,AC BC =,已知点()2,0C -,点()1,6B ,求点A 的坐标.22.如图,已知//AP BC ,点E 是DC 的中点,且AD BC AB +=,求证:AE BE ⊥.23.如图,ABC △中,AC BC =,DCE △中,DC EC =,且DCE ACB ∠=∠,当把两个三角形如图①放置时,有AD BE =.(不需证明)(1)当把DCE △绕点C 旋转到图②③④的情况,其他条件不变,AD 和BE 还相等吗?请在图②③中选择一种情况进行证明;(2)若图④中AD 和BE 交于点P ,连接PC ,求证:PC 平分BPD ∠.百坡中学2019级八(上)第二次月考数学试卷(含图片答案)(时间:150分钟 满分:150分)一、选择题(每小题4分,共48分) 1、下列运算正确的是( )A 、623m m m =•B 、632)(m m =C 、532m m m =+D 、326m m m =÷2、下列各式,正确的是( )A 、416±=B 、416=±C 、416-=-D 、16162-=-)(3、下列实数中,是无理数的为( )A 、3B 、31C 、16D 、1.34、计算)152()3(2--•-x x x 的结果是( )A 、x x x 315622---B 、x x x 315623++-C 、23156x x +-D 、115623-+-x x5、下列式子从左到右的变形中,属于因式分解的是( )A 、()()1112-=-+x x xB 、()12122+-=+-x x x xC 、()()b a b a b a -+=-22D 、()()y x n y x m ny nx my mx +++=+++ 6、下列多项式相乘,不能用平方差公式计算的是( )A 、)2)(2(x y y x +-B 、)2)(2(y x x y +--C 、)2)(2(y x y x -+D 、)2)(2(x y y x --+- 7、若2132793=⨯⨯m m ,则m 的值为( )A 、 3B 、4C 、5D 、68、下列说法正确的个数有( )①实数包括有理数、无理数和0;②两个无理数的和一定是无理数;③有理数和数轴上的点一一对应;④负数没有立方根;⑤无理数分为正无理数和负无理数。

湖北省武汉市江岸区汉铁初级中学2024-2025学年八年级上学期月考数学试卷(10月份)

湖北省武汉市江岸区汉铁初级中学2024-2025学年八年级上学期月考数学试卷(10月份)

湖北省武汉市江岸区汉铁初级中学2024-2025学年八年级上学期月考数学试卷(10月份)一、单选题1.下列图形中,不是运用三角形的稳定性的是()A .B .C .D .2.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,53.ABC V 中,如果A B C ∠∠=∠+,那么ABC V 的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定4.从n 边形的一个顶点出发,可以作5条对角线,则n 的值是()A .6B .8C .10D .125.如图,90Rt ABC ACB CD AB ∠=︒⊥ ,,于40D BCD ∠=︒,,则A ∠的度数为()A .40︒B .38︒C .50︒D .30°6.将一副直角三角板如图放置,使两直角重合,则∠1=()度.A .155B .160C .165D .1707.如图,△ABC 中,AB 的垂直平分线DE 分别与边AB ,AC 交于点D ,点E ,若△ABC 与△BCE 的周长分别是36cm 和22cm ,则AD 的长是()A .7cmB .8cmC .10cmD .14cm8.下列命题:①两条直角边对应相等的两个直角三角形全等;②斜边和一个锐角对应相等的两个直角三角形全等;③斜边和一条直角边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等;其中正确命题的个数为()A .1个B .2个C .3个D .4个9.如图,ABC V 中,BD 平分ABC ∠,AD 垂直于BD ,BCD △的面积为10,ACD 的面积为6,则ABD △的面积是()A .16B .14C .13D .2210.如图,在四边形ABCD 中,AC 是对角线,10AB CD ==,180DAC BCA ∠+∠=︒,90BAC ACD ∠+∠=︒.四边形ABCD 的面积是()A .25B .40C .50D .100二、填空题11.如图,AD BC =,要利用SAS 判定ABC CDA △△≌,则可以添加一个条件是.12.如图,ABO DCO B D A C ≌,、、、在同一直线上,19AD BC ==,,则BD =13.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G =14.如图,△ACB 在平面直角坐标系中,∠ACB =90°,AC =BC ,O 是AC 的中点,点A 的坐标是(1,2),则点B 的坐标为.15.如图,在ABC V 中,90ACB ∠=︒,AC BC =,M 为BC 的中点,CE AM ⊥于点E ,其延长线交AB 于点D ,连接DM .下列结论:①DC DM AM +=,②=ADC BDM ∠∠,③CE BD =,④2AMD DCM ∠=∠.其中正确的有.(填序号)16.如图,在ABC V 中,AH 是高,AE BC ∥,AB AE =,在AB 边上取点D ,连接DE ,DE AC =,若6ABC ADE S S =△△,2BH =,则CH =.三、解答题17.如图,DE 分别与△ABC 的边AB ,AC 交于点D ,点E ,与BC 的延长线交于点F ,∠B =65°,∠ACB =70°,∠AED =42°,求∠BDF 的度数.18.用一条长为18cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边长是4cm 的等腰三角形吗?为什么?19.如图,AC BC ⊥,BD AD ⊥,垂足分别为C ,D ,AC BD =,求证BAC ABD ∠=∠.20.已知:2AB AE CD BC DE ===+=,90ABC AED ∠=∠=︒,求ABCDE S 五边形.21.如图,是由80个边长为1的正方形组成的108⨯的长方形网格.ABC V 的顶点都在正方形的顶点上,5AB =.(1)ABC V 的面积为__________,点C 到AB 的距离为__________;(2)仅用无刻度的直尺作图(保留画图过程的痕迹)①作ABC ∠的角平分线.②在边AC 上确定一点P ,使得45ABP ∠=︒.22.如图,AB AD ⊥,AB AD =,AC AE ⊥,AC AE =.(1)如图1,BAC ∠、ADE ∠、AED ∠之间的数量关系为;(2)如图2,点F 为DE 的中点,连接AF .①求证:2BC AF =.②判断BC 与AF 的位置关系,并说明理由.23.(1)如图1,在ABC V 中,B C ∠=∠,请用全等三角形的知识说明AB AC =;(2)如图,在ABC V 中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D ,2ACB B ∠=∠.①求证:2AB CF =;②若3EF =,8=CF ,直接写出BD CD=__________.24.已知,点(),4A t 是平面直角坐标系中第一象限的点,点B ,C 分别是y 轴负半轴和x 轴正半轴上的点,连接AB AC BC ,,.(1)如图1,若()0,4B -,()5,0C 且A ,B ,C 在同一条直线上,求t 的值;(2)如图2,当4t =,180∠+∠=︒ACO ACB 时,求BC OC OB +-的值;(3)如图3,点(),H m n 是A 上一点,90A OHA ∠=∠=︒,若OB OC =,且37m n -=,求A 点的坐标.。

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年重庆一中八年级(上)月考数学试卷(10月份)一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,3的相反数是()A.3B.C.D.2.下列图形不是轴对称图形的是()A. B. C. D.3.下列各式中,计算正确的是()A. B.C. D.4.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是()A.,,B.,,C.,,D.,,5.正比例函数的图象在第二、四象限,则一次函数的图象大致是()A. B.C. D.6.下列命题是真命题的是()A.在平面直角坐标系中,点在y轴上B.在一次函数中,y随着x的增大而增大C.同旁内角互补D.若,则7.估计的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.以方程组的解为坐标的点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限9.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A. B. C. D.10.如图,在平面直角坐标系中,点P的坐标为,直线与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3B.4C.5D.611.如图,动点P从坐标原点出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点,第2秒运动到点,第3秒运动到点,第4秒运动到点,……则第2022秒点P所在位置的坐标是()A.B.C.D.12.下列说法中正确的有个①坐标平面内的点与有序实数对是一一对应的;②点位于第三象限;③点到y轴的距离为m;④点和点关于x轴对称,则的值为5;⑤若,则点在第一、三象限角平分线上.A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分。

2023-2024学年福建省福州市仓山区时代中学八年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年福建省福州市仓山区时代中学八年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年福建省福州市仓山区时代中学八年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是轴对称图形的是( )A. B. C. D.2.在△ABC中,若AB=AC=5,∠B=60°,则BC的值为( )A. 3B. 4C. 5D. 63.某小学为了表示学校男、女生各占全校人数的百分比,应绘制统计图.( )A. 条形B. 扇形C. 折线D. 无法确定4.如图,已知a//b,截线c与直线a,b分别交于点A,B,以点A为圆心,AB长为半径作弧交直线b于点C,连接AC,若∠CAB=50°,则∠ACB的度数是( )A. 50°B. 65°C. 80°D. 75°5.如图,AD//BC,BD平分∠ABC,AD=2,则AB的长为( )A. 1B. 2C. 4D. 66.在平面直角坐标系中,点P(a,b)关于y轴对称的点Q(2,3),点P所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下面调查中,适合采用全面调查的是( )A. 调查全国中学生心理健康现状B. 调查我市食品合格情况C. 我的班级同学的身高情况D. 调查中央电视台《开学第一课》收视率8.如图,在△ABC中,DE垂直平分AB.若AD=4,BC=3CD,则BC的长为( )A. 3B. 4C. 5D. 69.下列说法正确的是( )A. 有两条边不相等的三角形不是等腰三角形B. 有两个内角不相等的三角形不是等腰三角形C. 有两个内角分别是40°和110°的三角形是等腰三角形D. 如果三角形两边上的高相等,那么这个三角形是等腰三角形10.在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一直线上,当△ABC的周长最小时,点C的坐标可能是( )A. (0,0)B. (0,−1)C. (0,5)D. (0,3)二、填空题(本大题共6小题,共24.0分)11.点P(−1,5)关于x轴的对称点P′的坐标是______ .12.如图,∠AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N,若P1P2=6cm,则△PMN的周长是______ cm.13.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为______度.14.如图,等边三角形ABC的边长如图所示,那么y=______ .15.如图,三角形ABC 的顶点B 用数对(1,1)表示,顶点A 用数对(4,5)表示,如果作三角形ABC 关于直线l 对称的三角形A′B′C′,那么点B 的对称点B′用数对______ 表示.16.如图,已知点D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =6,BC =4,则BD 的长为______ .三、解答题(本大题共9小题,共86.0分。

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

(人教版)八年级(上学期)月考数学试卷(10月份)共3份

2020-2021学年上学期月考试题八年级数学(无答案)(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2、一个多边形的内角和为1800°,则这个多边形的边数为( )A.12 B.11 C.10 D.93、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )A.180°B.270°C.300°D.360°4、一个三角形的两边长分别为3和7,第三边长为整数,则第三边长度的最小值是( )A.4 B.5 C.6 D.75、下列四组中一定是全等三角形的是( )A.两条边相等的两个直角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形6、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为( )A.13 B.3 C.4 D.67、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2B. 3C. 4D. 58、到三角形三个顶点距离相等的是( )A.三边高线的交点B.三条中线的交点C.三条垂直平分线的交点D.三条内角平分线的交点9、如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD.若CD=AC ,∠A=50°,则∠ACB 的度数为( ) A.90° B.95° C.100° D.105°10、如图,在△ABC 中,∠B =∠C ,D 为BC 中点,若由点D 分别向AB 、AC 作垂线段DE 、DF ,则能说明△BDE ≌△CDF 的理由是( )A .AASB .SASC .HLD .SSS11、如图,AD 垂直平分线段BC ,垂足为D ,∠ABC 的平分线BE 交AD 于点E ,连接EC ,若∠ABC =50°,则∠C 的度数是( )A .25°B .20°C .50°D .65°(9) (10) (11) (12)12、如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBD 是等腰三角形,EB =ED ;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13、若正多边形的一个外角是40°,则这个正多边形的边数是__________.14、如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA =__________度.15、如图所示,在△ABC 中,∠C =90°,AB =8,AD 是△ABC 的一条角平分线.若CD =2,则△ABD 的面积为__________.5) (16) (17)(17)16、如图,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,AB=6cm,BC=3cm,则∠DBC=_______,△DBC 的周长是_______cm17、如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =,则下列结论:①DE DF =;②AD 平分BAC ∠;③AE AD =;④2AC AB BE -=,正确的是__________.18、如图,在△ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推….已知∠A =α,则∠A 2018的度数为__________(用含α的代数式表示).三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19、(8分)如图,有公路l 1同侧、l 2异侧的两个城镇A ,B ,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不写作法)20、(10分)在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(-1,2).(1)把△ABC 向下平移8个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标.(2)画出与△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点B 2的坐标.(3)求出△A 2B 2C 2的面积21、(10分 )如图,点A 、F 、C 、D 在同一条直线上,已知AF=DC ,∠A=∠D ,BC ∥EF ,求证:AB=DE .22、(12分)如图,(1)AD是△ABC的外角∠EAC的平分线,AD∥BC.求证:△ABC是等腰三角形;(2)AD是△ABC的外角∠EAC的平分线,AB=AC.求证:AD∥BC.23、(12分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.24、(12分)如图,AO,BO,CO,DO分别是四边形ABCD四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,则AB,CD有怎样的位置关系?为什么?25、(14分)动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系(写出说理过程)。

2023-2024学年安徽省滁州市天长市城区学校联考八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省滁州市天长市城区学校联考八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省滁州市天长市城区学校联考八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,点一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.使式子有意义的x的取值范围是()A. B.且 C. D.且3.把点先向右平移3个单位长度,再向上平移4个单位长度得到的点的坐标是()A. B. C. D.4.下列图象中,y是x的函数的是()A. B.C. D.5.点B的坐标为,直线AB平行于y轴,那么A点的坐标可能为()A. B. C. D.6.若点,都在直线上,则与的大小关系是()A. B. C. D.无法比较大小7.点P在第二象限,若该点到x轴的距离是5,到y轴的距离是8,则点P的坐标是()A. B. C. D.8.小明从A地前往B地,到达后立刻返回,他与A地的距离千米和所用时间小时之间的图象关系如图所示,则小明出发6小时后距A地()A.40千米B.50千米C.60千米D.80千米9.如图,一次函数与的图象交于点P,则关于x、y的方程组的解是()A. B. C. D.10.若一次函数与坐标轴围成的三角形的面积为2,则下列说法正确的是()A.k的值为或B.y的值随x的增大而增大C.该函数图象经过第一、二、三象限D.在的范围内,y的最大值为1二、填空题:本题共4小题,每小题5分,共20分。

11.请写出一个满足以下两个条件的一次函数:______.随x的增大而增大;图象与x轴交在负半轴上.12.如图是突脉金丝桃花瓣标本,将其放在平面直角坐标系中,表示花瓣“顶部”A,B两点的坐标分别为,则子房“中部”点C的坐标为______.13.已知直线经过,则的值为______.14.已知y关于x的一次函数,函数图象经过点,则______;当时,y的最大值是______.三、解答题:本题共9小题,共90分。

人教版八年级(上)月考数学试卷(10月份)共3份

人教版八年级(上)月考数学试卷(10月份)共3份

2020—2021学年太原市志达中学校八年级第一学期10月月调研 数学试卷(含答案)说明:本试卷为闭卷笔答,考试时不允许携带科学计算器,时间60分钟,满分100分一、选择题(本大题共10个小题,每小题3分,共30分)1.3的相反数是( ) A .3 B .3- C .33 D .33- 2.下列实数中的无理数是( )A .12B .4C .12-D .38-3.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .0.3,0.4,0.5C .1,2,3D .2,3,44.下列二次根式中是最简二次根式的是( )A .6B .16C .40D .175.下列算式中,正确的是( )A .255=±B .93±=C .()222-=-D .31-6.要使1x -有意义,则x 的取值范围是( )A .1x ≥B .01x <<C .1x ≤D .1x > 7.已知212m =+,估计m 的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .5B .25C .144D .1699.如图,在行距、列距都是1的的44⨯方格网中,将任意连接两个格点的线段称作“格点线”,则“格点线”的长度不可能等于( )A .13B .5C .9D .1110.如图,在矩形ABCD 中,5CD =,8BC =,点E 若为BC 的中点,点F 为CD 上任意一点,AEF ∆周长的最小值为( )A .12B .1241+C .1341+D .13二、填空题(本大题含8个小题,每小题3分,共24分)把结果直接填在横线上.11.27的立方根是_______.12.计算:(23)(23)+-=_______.13.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三个城市的沿江高速公路,已知该沿江高速公路的建设成本是5000万元/km ,该沿江高速公路的造价预计是______万元.1431+______54(填“>”,“<”,“=”) 15.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若8ab =,小正方形的面积为9,则大正方形的边长为______.16.如图,数轴上点A 所表示的实数是_______.17.如图,四边形ABCD 中,2AB BC ==,1CD =,3DA =,AC 为一条对角线,若90ABC ∠=︒,则四边形ABCD 的面积为_______.18.如图,长方形ABCD 中,90A ABC C D ∠=∠=∠=∠=︒,6AB CD ==,10AD BC ==,点E 为射线AD 上的一个动点,ABE ∆与FBE ∆关于直线BE 对称,当点E ,F ,C 三点共线时,AE 的长为_______.三、解答题(共46分,解答时写出必要的文字说明,证明过程或演算步骤)19.(12045(28182+ (3)(223 (41(21227)3(5)(35)(52)20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长为25米,求木杆断裂处离地面多少米?21.如图,在ABC ∆中,D 是BC 上一点,若10AB =,6BD =,8AD =,17AC =.(1)求DC 的长.(2)求ABC ∆的面积.22.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设2a b c p ++=,则三角形的面积()()()S p p a p b p c =---. 我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦. (1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于______. (2)若一个三角形的三边长分别是5,6,7选择一种适当的方法求这个三角形的面积.23.数学活动课上,老师提出了这样的问题:没有直角尺,要过AB 上的一点C ,作出AB 的垂线. 乐学组想到了办法一:如图1,可利用一把有刻度的直尺在AB 上量出4CD cm =,然后分别以C ,D 为圆心,以3cm 与5cm 为半径画圆弧,两弧相交于点E ,作射线CE ,则DCE ∠必为90︒.图1勤学组想到了办法二:如图2,以C 为圆心,任意长为半径作弧,交直线AB 于点F ,G 分别以F ,G 为圆心,大于12FG 长为半径作弧,两弧相交于点H ;作射线CH ,则FCH ∠必为90︒. 图2善思组想到了办法三:如图3,以C 为圆心,任意长为半径作弧,交直线AB 于点M ;分别以M ,C 为圆心,MC 长为半径作弧,两弧相交于点N :射线MN ,以N 为圆心,MN 长为半径作弧,交射线MN 于点P ;作射线CP ,则MCP ∠必为90︒.图3任务: (1)填空:“办法一”依据的一个数学定理是_________________________;(2)根据“办法二”的操作过程,亮亮完成了证明过程:如图4,连接HF ,HG ,在HFG ∆中,由作图可知HF HG =,CF CG =,HC FG ∴⊥(依据1):90FCH ∴∠=︒.依据1指的是:______________________; 图4 (3)请你根据“办法三”的操作过程,补充完成证明过程:如图5,连接CN ,由作图可知NM NC MC ==,图5(4)已知,如图6,点Q ,R 是直线l 上两点,且4QR =①尺规作图:求作RQS ∆,使得点S 在l 的上方,且90RQS ∠=︒,QR QS =;②若RSW ∆是以RS 为一边的等边三角形,请直接写出线段QW 的长度(不需要作图).图62020—2021学年志达八年级第一学期10月月调研数学试卷一、选择题1-5:BABAD 6-10:ACBDC二、填空题11.312.1 13.900000 14.> 15.5 1651 17.22+18.2或18三、解答题19.【答案】(1)5-(2)5(3)743-(4)1(55120.【答案】12米【解析】解:设木杆断裂处离地面x 米由题意得:2225(25)x x +=-解得12x =.答:木杆断裂处离地面12米21.【答案】(1)15(2)84【解析】解:2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,AD BC ∴⊥,在Rt ACD ∆中,15CD ===,111()21884222ABC S BC AD BC CD AD ∆∴=⋅=⋅⋅=⨯⨯= 因此ABC ∆的面积为8422.【答案】(1)66(2)2【解析】解:(1)567922a b c p ++++===S ===答:这个三角形的面积等于(2)S ====23.【答案】(1)勾股定理逆定理(2)等腰三角形三线合一(3)见解析(4)见解析【解析】(3)如下所示:NM NC =NMC NCM ∴∠=∠又NP NC =NPC NCP ∴∠=∠又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒90MCP ∴∠=︒(4)①如图所示,RQS ∆即为所求②2622QW =或26224QS QR ==42RS ∴=易得2PS PR PQ ===易得22PR SP ==122326PW ==12622QW ∴=同理,易得22622QW ∴=图22020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷(解析版)一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.79.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为.12.(3分)三角形的外角和等于度.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.2020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性【分析】利用三角形的稳定性进行解答即可.【解答】解:按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是三角形的稳定性,故选:D.3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵这个正六边形的外角和等于360°,∴∠1=360°÷6=60°.故选:A.4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A,C,D都不是△ABC的边AB上的高,故选:B.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°【分析】先求出∠2=45°、∠3=30°,再根据三角形的内角和列式计算即可得解.【解答】解:由图可知,∠2=90°﹣45°=45°,∴∠1=180﹣45°﹣30°=105°.故选:A.6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°【分析】利用平行线的性质求出∠A,再利用三角形内角和定理求出∠B即可.【解答】解:∵AB∥CD,∴∠A=∠ACD=36°,∵∠ACB=90°,∴∠B=90°﹣36°=54°,故选:B.7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE【分析】利用三角形内角和定理可得∠ADC的度数,再利用平行线的性质及角平分线的定义可得答案.【解答】解:∵∠C=90°,∠CAD=26°,∴∠ADC=64°.∵直线EF∥直线GH,∴∠DBE=∠ADC=64°.∵BA平分∠DBE,∴∠ABE=∠DBE=32°.∵直线EF∥直线GH,∴∠BAD=∠ABE=32°.故选:D.8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.7【分析】利用全等三角形的性质可得BC=EF=8,再利用线段的和差关系计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF=8,∴EC=5,∴CF=8﹣5=3,故选:B.9.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【分析】根据三角形内角和定理来判断.【解答】解:①由∠A+∠B=∠C,∠A+∠B+∠C=180°得到:2∠C=180°,则∠C=90°,所以△ABC是直角三角形;②设∠A=x,∠B=2x,∠C=3x,∠A+∠B+∠C=180°得到:6x=180°,则x=30°,∠C=3x=90°,所以△ABC是直角三角形;③由∠A=2∠B=3∠C,∠A+∠B+∠C=180°得到:∠A+∠A+∠A=180°,则∠A=()°,所以△ABC不是直角三角形;④∠A=∠B=∠C,∠A+∠B+∠C=180°得到:∠A+∠A+2∠A=180°,则∠A=45°,∠C=90°,所以△ABC是直角三角形;综上所述,能确定△ABC是直角三角形的条件有3个.故选:C.10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°【分析】求出∠AFE+∠CFD即可解决问题.【解答】解:∵∠B=100°,∴∠A+∠C=80°,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=280°,∴∠AFE+∠CFD=140°,∴∠EFD=180°﹣140°=40°,故选:C.二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为55°.【分析】根据直角三角形的性质解答即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=35°,∴∠A=90°﹣35°=55°,故答案是:55°.12.(3分)三角形的外角和等于360度.【分析】根据任何多边形的外角和是360度即可求解.【解答】解:三角形的外角和等于360°.故答案是:360.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为4.【分析】利用三角形的中线定义解答即可.【解答】解:∵CD是△ABC的中线,∴AD=AB,∵AB=8,∴AD=4,故答案为:4.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为60°.【分析】利用全等三角形的性质结合等式的性质可推出∠ACD=∠BCE,进而可得答案.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16 s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【解答】解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.【分析】(1)根据三角形的外角性质求出∠B,根据余角的概念计算,得到答案;(2)根据五边形的内角和等于540°列方程即可得到结论.【解答】解:(1)∠B=∠CAD﹣∠C=36°,∴∠B的余角=90°﹣36°=54°;(2)∵80°+x°+x°+x°+x°=540°,∴x=115.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.【分析】利用全等三角形的性质可得∠ACB=∠DCB,进而可得度数,然后再利用三角形内角和求∠ABC 的度数即可.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.【分析】利用角平分线的定义可得∠BAC的度数,然后再计算出∠FDE的度数,再利用直角三角形两锐角互余可得答案.【解答】解:∵AD平分∠BAC,∴∠BAC=2∠1=2×40°=80°,∵∠C=70°,∴∠B=30°,∴∠ADC=∠1+∠B=70°,∵EF⊥BC于点E,∴∠FED=90°,∴∠F=180°﹣70°﹣90°=20°.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =360°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=540°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是180n°.【分析】(1)过点E作EF∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【解答】解:(1)过E作EF∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EF∥AB,∴CD∥EF(平行于同一条直线的两条直线互相平行).∵EF∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.【分析】尝试:利用三角形三边关系进而得出c的取值范围,进而得出答案;发现:根据奇数的定义和x的取值范围,可求解;联想:根据偶数的定义,以及x的取值范围即可求c的值,利用等腰三角形的判定方法得出即可.【解答】解:尝试:因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.发现:∵a=4,b=6,c为奇数,∴x为奇数,∵12<x<20,∴x最大为19,最小为13.联想:∵周长为小于18的偶数,∴x=16或x=14.当x为16时,c=6;当x为14时,c=4.当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上所述,△ABC是等腰三角形.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.【分析】(1)根据角平分线的定义得到∠GAB=∠DAB,∠GBA=∠CBA,求得∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),两式相加即可得到结论;(2)当∠FGE=∠FHE时,求得∠DAB+∠CBA=∠ADC+∠BCD,根据四边形的内角和即可得到结论.【解答】解:(1)∠FGE+∠FHE=180°,理由:∵AE平分∠BAD,BF平分∠ABC,∴∠GAB=∠DAB,∠GBA=∠CBA,∴∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),∴∠FGE+∠FHE=360°﹣(∠DAB+∠CBA+∠ADC+∠BCD)=180°;(2)∠FGE与∠FHE相等,此时,AD∥BC,∵∠FGE=180°﹣(∠DAB+∠CBA),∠FHE=180°﹣(∠ADC+∠BCD),当∠FGE=∠FHE时,180°﹣(∠DAB+∠CBA)=180°﹣(∠ADC+∠BCD),即∠DAB+∠CBA=∠ADC+∠BCD,∵四边形的内角和=360°,∴∠DAB+∠CBA=∠ADC+∠BCD=180°,∴AD∥BC.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=168°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=168°,∴∠MBC+∠NDC=168°;(2)β﹣α=70°.理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=35°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+35°=180°,∴β﹣α=70°;(3)平行.理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)(解析版)一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣35.(3分)下列二次根式中,不能与合并的是()A.B.C.D.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c27.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣810.(3分)如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A.B.C.D.511.(3分)如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米12.(3分)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)二、填空题(本大题共6小题,共24分)13.(3分)4是的算术平方根.14.(3分)与﹣最接近的整数是.15.(3分)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“炮”位于点.16.(3分)已知a、b满足,则点(a、b)关于y轴对称的点的坐标为.17.(3分)有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为.18.(3分)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是.三、解答题(共78分)19.(16分)计算:(1);(2);(3);(4).20.(8分)化简:(1);(2).21.(6分)先化简,再求值:(a+b)(a﹣b)+b(a+2b)﹣(a﹣b)2,其中a=1+,b=1﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点A为端点画出AB=,AC=,AD=的线段;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,;(3)如图3,点P,M,N是小正方形的顶点,直接写出∠PNM的度数.23.(6分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(6分)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.25.(8分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN =45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)26.(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A 作AD⊥CD,过点B作BE⊥CD,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线PQ与x轴交于点Q(1,0),与y轴交于点P(0,3),以线段PQ为一边作等腰直角三角形PQR,请直接写出点R的坐标.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:B.2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个【分析】根据同类项、整式、多项式的定义,结合选项进行判定.【解答】解:3.14159,,0是有理数,π是无理数,故无理数的个数有1个.故选:A.3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣3【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式==,所以C选项错误;D、原式=3,所以D选项错误.故选:B.5.(3分)下列二次根式中,不能与合并的是()A.B.C.D.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c2【分析】根据三角形内角和定理可分析出A、C的正误;根据勾股定理逆定理可分析出B、D的正误.【解答】解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.7.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处【分析】根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.【解答】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸【分析】根据勾股定理求出电视机对角线的长即可.【解答】解:∵一台电视机的屏幕长约80厘米,宽约60厘米,∴对角线的长==100.∵1英寸≈2.5厘米,∴=40(英寸).故选:D.9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.。

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)

云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。

答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。

2023-2024学年安徽省合肥五十中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥五十中八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥五十中八年级(上)月考数学试卷(10月份)一、选择题:本题共7小题,每小题4分,共28分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列函数中,是一次函数的是()A. B.是常数C. D.2.已知一次函数,y的值随x的增大而减小,则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.一次函数是常数与在同一平面直角坐标系中的图象可能是()A. B.C. D.4.已知正比例函数的图象上两点、,当时,有,那么m的取值范围是()A. B. C. D.5.已知,都是关于x的一次函数,的图象如图所示,若,下列说法正确的是()A.的图象与x轴的交点位于x轴的正半轴B.的图象与y轴的交点位于y轴的正半轴C.的图象经过原点D.的图象经过第一、二、三象限6.当时,对于x的每一个值,函数的值都小于函数的值,则k的取值范围是()A.且B.C.D.7.将矩形纸板剪掉一个小矩形后剩余部分如图1所示,动点P 从点A 出发,沿路径匀速运动,速度为,点P 到达终点F 后停止运动,的面积与点P 运动的时间的关系如图2所示,根据图象获取了以下的信息:①;②;③点P 从点E 运动到点F 需要10s ;④矩形纸板裁剪前后周长均为其中正确信息的个数有()A.4个B.3个C.2个D.1个二、填空题:本题共5小题,每小题4分,共20分。

8.在函数中,自变量x 的取值范围是______.9.把一次函数图象中,平面直角坐标系向上平移2个单位长度,得到的直线解析式为______.10.请写出一个图象平行于直线,且过第一、二、四象限的一次函数的表达式__________.11.甲、乙两人同时从A 、B 两地出发相向而行,甲先到达B 地后原地休息,甲、乙两人的距离与乙步行的时间之间的函数关系的图象如图,则_________.12.已知一次函数,自变量x 的取值范围是,函数值y 的取值范围是,则这个一次函数表达式是______.三、解答题:本题共5小题,共52分。

2023-2024学年山东省青岛市市南区海信学校八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年山东省青岛市市南区海信学校八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年山东省青岛市市南区海信学校八年级(上)月考数学试卷(10月份)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组数中,能构成直角三角形的是()A.6,8,11B.5,12,23C.4,5,6D.1,1,2.数,,,,,,,相邻两个1之间的0的个数逐渐加中,无理数的个数为()A.1B.2C.3D.43.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标是()A. B. C. D.4.如图,今年的冰雪灾害中,一棵大树在离地面9米处折断,树的顶端落在离树杆底部12米处,那么这棵树折断之前的高度是()A.9米B.12米C.15米D.24米5.下列计算正确的是()A. B. C. D.6.在平面直角坐标系中,点和点关于x轴对称,的值是()A. B.1 C.5 D.7.使有意义的x的取值范围是()A. B. C. D.8.如图,在长方形纸片ABCD中,,把纸片沿对角线AC折叠,点B落在点E处,AE交DC于点F,则重叠部分的面积为()A.B.C.D.二、填空题:本题共8小题,每小题3分,共24分。

9.的平方根是______;的立方根是______;0的立方根是______.10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为______11.到x轴的距离是__________.12.一个正数a的两个平方根分别是与,则a的值为______.13.云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为,其边缘,点E在CD上,,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为______14.的整数部分是a,小数部分是b,则的值是______.15.如图,长方形ABCD的边AB落在数轴上,A、B两点在数轴上对应的数分别为和1,,连接BD,以B为圆心,BD为半径画弧交数轴于点E,则点E在数轴上所表示的数为______.16.如图,一个机器人从点O出发,向正西方向走2m到达点;再向正北方向走4m到达点,再向正东方向走6m到达点,再向正南方向走8m到达点,再向正西方向走10m到达点,…按如此规律走下去,当机器人走到点时,点的坐标为______.三、解答题:本题共8小题,共72分。

2024-2025学年内蒙古呼和浩特市新城区启秀中学八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年内蒙古呼和浩特市新城区启秀中学八年级(上)月考数学试卷(10月份)(含答案)

2024-2025学年内蒙古呼和浩特市新城区启秀中学八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是( )A. 甲B. 乙C. 甲和乙D. 都不是2.在学习三角形的高线时,老师要求同学们画出△ABC边AC上的高,下列作图正确的是( )A. B.C. D.3.已知凸n边形有n条对角线,正m边形每个内角是144°,则边数为(m+n)的多边形的内角和是( )A. 1440°B. 2340°C. 2160°D. 2520°4.如图,将△ABC沿经过点A的直线AD折叠,使边AC所在的直线与边AB所在的直线重合,点C落在边AB 上的E处.若∠B=45°,∠BDE=20°,则∠CAD度数为( )A. 25°B. 35°C. 40°D. 45°5.下列命题:①两条直角边对应相等的两个直角三角形全等;②斜边和一个锐角对应相等的两个直角三角形全等;③斜边和一条直角边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个6.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,AC=8B. AB=4,BC=3,∠A=30°C. ∠A=60°,∠B=45°,AB=4D. ∠C=90°,AB=67.为测量一池塘两端A,B间的距离.甲、乙两位同学分别设计了两种不同的方案.甲:如图1,先过点B作AB的垂线BF,再在射线BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E.则测出DE的长即为A,B间的距离;乙:如图2,先确定直线AB,过点B作AB的垂线BE,在BE上找可直接到达点A的点D,连接DA,作DC=DA,交直线AB于点C,则测出BC的长即为AB间的距离,则下列判断正确的是( )A. 只有甲同学的方案可行B. 只有乙同学的方案可行C. 甲、乙同学的方案均可行D. 甲、乙同学的方案均不可行8.如图,点A,B,C,D,E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )A. 280°B. 260°C. 240°D. 220°9.如图,△ABC中,点P是∠ABC和∠ACB的平分线的交点,若∠P=2∠A,则∠A=( )A. 50°B. 60°C. 70°D. 80°10.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.A. 4B. 3C. 2D. 1二、填空题:本题共6小题,每小题3分,共18分。

福建省厦门市湖里中学2024-2025学年八年级上学期月考数学试卷(10月份)

福建省厦门市湖里中学2024-2025学年八年级上学期月考数学试卷(10月份)

福建省厦门市湖里中学2024-2025学年八年级上学期月考数学试卷(10月份)一、单选题1.下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2.如图,木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD ).这样做的依据是( )A .矩形的对称性B .三角形的稳定性C .两点之间线段最短D .垂线段最短 3.如图,在ABC V 中,3525A B ∠=︒∠=︒,,则ACD ∠的度数是( )A .60°B .55︒C .120︒D .65︒4.如图,ABC DEC ≌△△,B 、C 、D 在同一直线上,且6CE =,8AC =,则BD 长( )A .12B .14C .16D .185.如图,BD 是ABC V 的中线,G 是BD 中点,连接AG ,若ABC V 的面积为40,则图中阴影部分的面积是( )A .5B .10C .15D .206.代数式3333366666⨯⨯⨯⨯可表示为( )A .365⨯B .356+C .356⨯D .3567.学习了三角形的“中线、高线、角平分线”后,老师给同学们布置了一项作业:作ABC V 的AC 边上的高.下面是四位同学的作业,其中正确的是( )A .B .C .D .8.具备下列条件的ABC V 中,不是直角三角形的是( )A .ABC ∠∠=∠+B .A BC ∠-∠=∠ C .123A B C ∠∠∠=::::D .3A B C ∠=∠=∠9.如图,点B 、F 、C 、E 都在一条直线上,AC DF =,BC EF =,添加下列一个条件后,仍无法判断ABC DEF ≌△△的是( )A .90A D ∠=∠=︒B .ACB DFE ∠=∠C .B E ∠=∠D .AB DE =10.如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB ,若∠BA 'C =120°,则∠1+∠2的度数为( )A .90°B .100°C .110°D .120°二、填空题11.填空:(1;(2;(3)()22-=;(4=.12.已知一个正n 边形的一个外角为40︒,则n =.13.等腰三角形的两边长为2cm 和4cm ,则该三角形的周长为cm .14.如图,在△ABC 中,AB =17,AC =12,AD 为中线,则△ABD 与△ACD 的周长之差=.15.如图,在ABC V 中,90C ∠=︒,16AB =,AD 是ABC V 的一条角平分线,若5CD =,则ABD V 的面积是.16.如图,已知:四边形ABCD 中,对角线BD 平分ABC ∠,72ACB ∠=︒,50ABC ∠=︒,并且180BAD CAD ∠+∠=︒,那么BDC ∠的度数为三、解答题17.解不等式组42(1)532x x x x +>+⎧⎨≤+⎩,并把解集在数轴上表示出来.四、填空题18.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是.五、解答题19.如图,在ABC V 中,70A ∠=︒,50ABC ∠=︒.(1)求C ∠的度数;(2)若30BDE ∠=︒,DE BC ∥交AB 于点E ,判断BDC V 的形状,并说明理由. 20.如图,点D 在AB 上,点E 在AC 上,AD AE =,B C ∠=∠.求证:BD CE =.21.如图,已知ABC V ,点D 在边BC 上,DAC C ∠=∠.(1)尺规作图:作出点D ;(不写作法,保留作图痕迹)(2)若BAC B C ∠=∠+∠,且2B C ∠=∠,求ADB ∠的度数.22.下面是嘉淇同学的数学日记,请仔细阅读,并完成相应任务.执“规”“矩”等分已知角《伏羲女娲图》中女娲执规,伏羲执矩,规与矩中间的图案是太阳,象征天地秩序,我是数学爱好者,在我的眼里“规”是圆规,“矩”是直角工具“”,“太阳”是被等分的360︒角.要研究等分360︒角,可以先从研究平分一个已知角开始.怎样借助圆规和直角工具作一个角的平分线呢?经过任务:(1)嘉淇的“办法1”可由作法判断OMC ONC ≌△△,因为全等三角形的对应角相等,所以MOC NOC ∠=∠,即OC 平分AOB ∠.请直接写出判断OMC ONC ≌△△的依据是________;(2)请说明嘉淇的办法2的合理性.23.如图,CA =CB ,CD =CE ,∠ACB =∠DCE =α,AD 、BE 交于点H ,连CH .(1)求证:△ACD ≌△BCE ;(2)求证:HC 平分∠AHE ;(3)求∠CHE 的度数(用含α的式子表示).24.在平面直角坐标系中,点()()0,,,0,,A a B b a b 满足2(2)40a b -+-=,点P 在第一象限,PA PB =,且PA PB ⊥(1)如图1,点P 的坐标为;(2)如图2,若A 点运动到1A 位置,B 点运动到1B 位置,保持PA PB ⊥,求11OB OA -的值;(3)如图3,若Q 是线段AB 上一点,C 为AQ 中点,作,PR PQ PR PQ =⊥,连BR ,判定线段BR 与PC 的关系,并加以证明.。

2024-2025学年山东省淄博市张店八中八年级(上)第一次月考数学试卷(10月份)(五四学制)

2024-2025学年山东省淄博市张店八中八年级(上)第一次月考数学试卷(10月份)(五四学制)

2024-2025学年山东省淄博市张店八中八年级(上)第一次月考数学试卷(10月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.代数式x +y 6,1a−1,x +2x ,x−y a +b ,x π中分式有( )A. 2个B. 3个C. 4个D. 5个2.下列各式从左到右的变形中,属于因式分解的是( )A. 6x +12y +3=3(2x +4y)B. a 2−1=(a−1)2C. x 2+x +14=(x +12)2D. 2x 2−1=2(x−1)(x +1)3.已知ab =−3,a +b =2,则a 2b +ab 2的值是( )A. 6B. −6C. 1D. −14.将下列多项式分解因式,结果中不含有因式(m−2)的是( )A. m 2−4B. (m +2)2−8(m +2)+16C. m 3−4m 2+4mD. m 2+2m5.(−2)2022+(−2)2023等于( )A. −22022B. −22023C. (−2)2022D. −26.将多项式16m 2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是( )A. −2B. −15m 2C. 8mD. −8m7.将多项式3x 2−mx +18进行因式分解得到(x−3)(3x−n),则m +n 的值为( )A. −21B. −9C. 9D. 218.如果△ABC 的三边长a ,b ,c 满足(a−b)(a 2+b 2)=ac 2−bc 2,那么△ABC 的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.如果a +2b =2,那么代数式4a a 2−4b 2−8b a 2−4b 2的值是( )A. −2B. 2C. −12D. 1210.如图,标号为①,②,③,④的长方形不重叠地围成长方形PQMN ,已知①和②能够重合,③和④能够重合,且这四个长方形的面积相等.若AE =4DE ,则S 长方形PQMNS 长方形ABCD 的值为( )A. 35B. 925C. 34D. 916二、填空题:本题共5小题,每小题3分,共15分。

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列点属于第二象限的为()A. B. C. D.2.下列曲线中不能表示y是x的函数的是()A. B. C. D.3.对于一次函数,下列说法正确的是()A.y随x的增大而增大B.直线在y轴上的截距是2C.它的图象过第一、二、三象限D.它的图象过点4.把函数的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A. B. C. D.5.如图,已知点和点是一次函数图象上的两点,则m与n的大小关系是()A.B.C.D.6.如图,函数和的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.7.如图是温度计的示意图,图中左边的温度表示摄氏温度,右边的温度表示华氏温度.小明观察温度计发现,两个刻度x,y之间的关系如表.据此可知,摄氏温度为15时,对应华氏温度应为()1020253050687786A.15B.59C.D.548.一次函数与为常数,且,它们在同一坐标系内的图象可能为()A. B.C. D.9.如图,函数的图象经过点,与函数的图象交于点A,则不等式的解集为()A.B.C.D.10.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:①A,B两村相距10km;②甲出发2h后到达C村;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了或时两人相距其中正确的是()A.①③④B.①②③C.①②④D.①②③④二、填空题:本题共4小题,每小题5分,共20分。

11.若,则点P到y轴的距离是______.12.函数的自变量x的取值范围是______.13.若一次函数是常数与y轴交于负半轴,则m的取值范围是______.14.已知直线经过点,直线:经过点直线的解析式为:______;若无论t取何值,直线和的交点Q都在第一象限,则k的取值范围是______.三、解答题:本题共9小题,共90分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年辽宁省葫芦岛市兴城市合作校八年级(上)第一次质检数学试卷(解析版)一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.82.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,则CD的长为()A.2B.4C.4.5D.36.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.707.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4B.3C.6D.58.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF ≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③二.填空题(每题3分,共30分)11.如图,自行车的三角形支架,这是利用三角形具有性.12.已知等腰三角形两边长分别为6cm、4cm,则它的周长为.13.若△ABC的三个内角满足,则这个三角形是三角形.14.一副三角板,如图所示叠放在一起,则图中∠α的度数是.15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)16.如图,D为Rt△ABC中斜边BC的中点,过D作BC的垂线,交AC于E,且AE=DE,若BC=12cm,则AB的长为cm.17.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=.18.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;③各边都相等的多边形是正多边形;④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等.其中正确的有.(填序号)19.如图,△ABC≌△CDA,AD、BC交于点P,∠BCA=40°,则∠APB=(度).20.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是.三.解答题(21题10分,22题12分,23题12分、24题12分、25题14分,共60分)21.(10分)一个多边形的内角和比它的外角和的3倍少180°.(1)求这个多边形的边数和内角和;(2)从该多边形的一个顶点作对角线,则所作的对角线条数为,此时多边形中有个三角形.22.(12分)如图,已知AD∥BC,AF=CE,AD=BC,E、F都在直线AC上,写出DE与BF之间的数量关系和位置关系并加以证明.23.(12分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D(1)求证:AC=CB;(2)若AC=12cm,求BD的长.24.(12分)如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.25.(14分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.2020-2021学年辽宁省葫芦岛市兴城市合作校八年级(上)第一次质检数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)1.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.8【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.2.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部【分析】根据三角形的角平分线、中线和高的概念进行判断即可.【解答】解:A、一个三角形的三个内角中最多有一个直角,错误;B、三角形的中线是线段,错误;C、三角形的高是线段,正确;D、锐角三角形的高总在三角形的内部,而直角三角形和钝角三角形则不一定,错误;故选:C.3.下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④【分析】根据高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选:D.4.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC ≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠P AE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠P AE.故选:D.5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,则CD的长为()A.2B.4C.4.5D.3【分析】先证明△ABC≌△EFD,得出AC=ED=6,再求出AD=AE﹣ED=4,即可得出CD=AC﹣AD =2.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=6,∴AD=AE﹣ED=10﹣6=4,∴CD=AC﹣AD=6﹣4=2.故选:A.6.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.70【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选:C.7.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4B.3C.6D.5【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选:B.8.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.9.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD【分析】利用三角形全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、添加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、添加∠A=∠DEF,AC=ED可利用ASA判定△ABC≌△EFD,故此选项不合题意;C、添加AC=ED,AB=EF不能判定△ABC≌△EFD,故此选项符合题意;D、添加∠ABC=∠EFD,BC=FD可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选:C.10.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF ≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③【分析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选:D.二.填空题(每题3分,共30分)11.如图,自行车的三角形支架,这是利用三角形具有稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.12.已知等腰三角形两边长分别为6cm、4cm,则它的周长为16cm或14cm.【分析】根据等腰三角形的性质,分两种情况:①当腰长为6cm时,②当腰长为4cm时,解答出即可.【解答】解:当4为底时,其它两边都为6,4、6、6可以构成三角形,周长为16(cm);当4为腰时,其它两边为4和6,4、4、6可以构成三角形,周长为14(cm).综上所述,该等腰三角形的周长是14cm或16cm.故答案为:14cm或16cm.13.若△ABC的三个内角满足,则这个三角形是直角三角形.【分析】由于,则∠C=3∠A,∠B=2∠A,再根据三角形内角和定理得到∠A+∠B+∠C=180°,即∠A+2∠A+3∠A=180°,然后分别计算出∠A、∠B、∠C,再根据三角形的分类进行判断.【解答】解:∵,∴∠C=3∠A,∠B=2∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴此三角形为直角三角形.故答案为直角.14.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.16.如图,D为Rt△ABC中斜边BC的中点,过D作BC的垂线,交AC于E,且AE=DE,若BC=12cm,则AB的长为6cm.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求AB的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC的中点,∴BD=BC=6cm,∵过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,在Rt△DBE和Rt△ABE中,,∴Rt△DBE≌Rt△ABE(HL),∴AB=BD=6cm.故答案为:6.17.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=270°.【分析】根据四边形内角和为360°可得∠1+∠2+∠A+∠B=360°,再根据直角三角形的性质可得∠A+∠B=90°,进而可得∠1+∠2的和.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.∴∠1+∠2=270°.故答案为:270°.18.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;③各边都相等的多边形是正多边形;④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等.其中正确的有①⑤.(填序号)【分析】根据三角形的重心、三角形的分类、正多边形、三角形全等进行判断即可.【解答】解:①三角形三条中线的交点叫做三角形的重心,正确;②三角形按边分类可分为三边都不相等的三角形、等腰三角形,错误;③各边都相等、各角都相等的多边形是正多边形,错误;④周长相等的两个三角形不一定全等,错误;⑤两条直角边分别相等的两个直角三角形全等,正确;故答案为:①⑤19.如图,△ABC≌△CDA,AD、BC交于点P,∠BCA=40°,则∠APB=80(度).【分析】先根据全等三角形的对应角相等得出∠BCA=∠DAC=40°,再根据三角形外角的性质求出∠APB=∠BCA+∠DAC=80°.【解答】解:∵△ABC≌△CDA,∴∠BCA=∠DAC=40°,∴∠APB=∠BCA+∠DAC=80°.故答案为80.20.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).【分析】根据题意画出图形,根据A、B、C的坐标和全等三角形的性质即可得出答案.【解答】解:符合题意的有3个,如图,∵点A、B、C坐标为(0,1),(3,1),(4,3),∴D1的坐标是(4,﹣1),D2的坐标是(﹣1,3),D3的坐标是(﹣1,﹣1),故答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1).三.解答题(21题10分,22题12分,23题12分、24题12分、25题14分,共60分)21.(10分)一个多边形的内角和比它的外角和的3倍少180°.(1)求这个多边形的边数和内角和;(2)从该多边形的一个顶点作对角线,则所作的对角线条数为(n﹣3),此时多边形中有(n ﹣2)个三角形.【分析】(1)一个多边形的内角和等于外角和的3倍少180°,而任何多边形的外角和是360°,因而多边形的内角和等于900°.(2)n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【解答】解:(1)360°×3﹣180°=1080°﹣180°=900°.故这个多边形的边数和内角和是900°;(2)设这个多边形的边数为n,则内角和为180°(n﹣2),依题意得:180(n﹣2)=360×3﹣180,解得n=7,则从该多边形的一个顶点作对角线,则所作的对角线条数为(n﹣3),此时多边形中有(n﹣2)个三角形.故答案为:(n﹣3),(n﹣2).22.(12分)如图,已知AD∥BC,AF=CE,AD=BC,E、F都在直线AC上,写出DE与BF之间的数量关系和位置关系并加以证明.【分析】结论:DE=BF,DE∥BF.只要证明△ADE≌△CBF(SAS),即可推出DE=BF,∠AED=∠CFB,推出180°﹣∠AED=180°﹣∠CFB,推出∠DEF=∠EFB,可得DE∥BF.【解答】解:结论:DE=BF,DE∥BF.理由:∵AF=EC,∴AF﹣EF=EC﹣EF,即AE=CF;∵AD∥BC∴∠A=∠C.在△ABC和△DEF中,,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠CFB,∴180°﹣∠AED=180°﹣∠CFB,∴∠DEF=∠EFB,∴DE∥BF23.(12分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D(1)求证:AC=CB;(2)若AC=12cm,求BD的长.【分析】(1)由“AAS”可证△DBC≌△ECA,可得AC=BC;(2)由全等三角形的性质和中线的性质可求解.【解答】证明:(1)∵DB⊥BC,AE⊥CD,∴∠DBC=∠ACE=∠AFC=90°,∵∠DCB+∠ACF=90°,∠ACF+∠EAC=90°,∴∠DCB=∠EAC,且DC=AE,∠DBC=∠ACE=90°∴△DBC≌△ECA(AAS)∴AC=BC(2)∵AE是BC边上的中线,∴CE=BE=BC=AC=6cm,∵△DBC≌△ECA∴DB=CE=6cm24.(12分)如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.【分析】(1)由角平分线的性质定理证得AE=AF,进而证出△ABE≌△ADF,再得出∠CDA=120°;(2)四边形AECD的面积化为△AEC的面积+△ACD的面积,根据三角形面积公式求出结论.【解答】解:(1)∵AC平分∠BCD,AE⊥BCAF⊥CD,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF,∴∠ADF=∠ABE=60°,∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,∴BC=CE+BE=6,∴四边形AECD的面积=△AEC的面积+△ACD的面积=CE•AE+=×2×5+×4×2=9.25.(14分)在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.【分析】(1)直接写出答案即可.(2)证明△ECB≌△ACD即可.(3)由(2)得到∠CEB=∠CAD,此为解题的关键性结论,借助内角和定理即可解决问题.【解答】解:(1)∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为AD=BE.(2)AD=BE成立.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴BE=AD.(3))∠APE不随着∠ACB的大小发生变化,始终是60°.如图2,设BE与AC交于Q,由(2)可知△ECB≌△ACD,∴∠BEC=∠DAC又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.武汉大方学校2020-2021学年八年级九月月考数学试卷(含简案)一.选择题(每小题3分,共30分)1.已知三条线段a=2,b=1,c(c为整数)可以组成一个三角形,则c的值为()A.1B.2C.3D.42. 下列图形中具有稳定性的是()A.钝角三角形B.四边形C.五边形D.平行四边形3.在△ABC中,∠A:∠B:∠C=1:2:6,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.如图,已知△ABC的三条边和三个角六个元素,则下面甲、乙、丙三个三角形中和△ABC不全等的图形是()A.只有甲B.乙和丙C.只有乙D.只有丙5.如图,在△ABC中,∠C=70°,沿图中虚线截去∠C,则∠1+∠2=()A.140°B.180°C.250°D.360°2170°C ABFBCEDAB CDOMN第5题第7题第8题第9题6.若一个多边形从一个顶点所作的对角线为5条,则这个多边形是()A.五边形B.六边形C.七边形D.八边形7.如图,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠ACD=35°,∠ABE=20°,∠BFD=63°,则∠A=()A.65° B.62° C.55° D.82°8.如图,在四边形ABCD中,AB∥DC,AD∥BC,AC与BD相交于点O,M、A、O、C、N五点在一条直线上,MB⊥BC,ND⊥DA,则图中的全等三角形共有()对.A.5 B.6 C.7 D.89.如图,△ABC 中,将∠A 沿D E 翻折后,∠CEA′、∠BDA′、∠A 三者之间的关系是()A.∠CEA′=∠BDA′+∠A B.∠CEA′-3∠A=∠BDA′C.∠CEA′=2(∠BDA′+∠A) D.∠CEA′-∠BDA′=2∠A10. 已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠AEB=180°;③∠ACE=∠EBC;④AD=AE;其中正确的结论有( )个A.4B.3C.2D.1第10题 第11题 第15题 第16题二、填空题(每小题3分,共18分)11.如图,点B 、E 、C 、F 在一条直线上,AB=DE ,BE=CF ,请添加一个条件 使△ABC ≌△DEF 。

相关文档
最新文档