振动传感器的种类及选择方法
简述振动传感器的标定方法及特点
简述振动传感器的标定方法及特点
振动传感器的标定是指确定传感器测量值的准确性和精度的过程。
在实际应用中,由于传感器受到各种干扰,例如机械颤抖、漂移、噪声等,因此需要进行标定以确保测量结果的准确性。
振动传感器的标定方法通常有以下几个步骤:
1. 选择适当的参考点:为了确定传感器的精确度,需要选择一个参考点,并测量传感器在该点的振动响应。
参考点的选取应该考虑到传感器的性能特点,例如传感器的灵敏度、准确度、精度等。
2. 校准传感器:使用标定软件或手动校准方法对传感器进行校准,确保传感器测量值与参考点的振动响应一致。
校准的方法包括机械振动校准和数字信号校准。
3. 对比测量值:在实际应用中,需要将传感器测量值与参考点的振动响应进行对比,以确定传感器的测量精度和准确性。
振动传感器的标定特点如下:
1. 需要选取合适的参考点:振动传感器的标定需要选取一个合
适的参考点,并测量传感器在该点的振动响应。
参考点的选取应该考虑到传感器的性能特点,例如传感器的灵敏度、准确度、精度等。
2. 需要考虑传感器的误差:振动传感器的测量值受到传感器本
身误差的影响,因此需要进行标定以确定传感器的误差范围。
误差的大小取决于传感器的精度、灵敏度等性能参数。
3. 需要使用适当的标定软件或方法:振动传感器的标定需要使
用标定软件或手动校准方法,以确保传感器测量值的准确性和精度。
不同的传感器可能需要不同的标定方法,例如机械振动校准和数字信号校准。
振动传感器工作原理
振动传感器工作原理
振动传感器的种类丰富,按照工作原理的不同,能分为电涡流式振动传感器、电感式振动传感器、电容式振动传感器、压电式振动传感器和电阻应变式振动传感器等。
以下是这几种振动传感器的工作原理和用途。
1、电涡流式振动传感器
电涡流式振动传感器是涡流效应为工作原理的振动式传感器,它属于非接触式传感器。
电涡流式振动传感器是通过传感器的端部和被测对象之间距离上的变化,来测量物体振动参数的。
电涡流式振动传感器主要用于振动位移的测量。
2、电感式振动传感器
电感式振动传感器是依据电磁感应原理设计的一种振动传感器。
电感式振动传感器设置有磁铁和导磁体,对物体进行振动测量时,能将机械振动参数转化为电参量信号。
电感式振动传感器能应用于振动速度、加速度等参数的测量。
3、电容式振动传感器
电容式振动传感器是通过间隙或公共面积的改变来获得可变电容,再对电容量进行测定而后得到机械振动参数的。
电容式振动传感器可以分为可变间隙式和可变公共面积式两种,前者可以用来测量直线振动位移,后者可用于扭转振动的角位移测定。
4、压电式振动传感器
压电式振动传感器是利用晶体的压电效应来完成振动测量的,当被测物体的振动对压电式振动传感器形成压力后,晶体元件就会产生相应的电荷,电荷数即可换算为振动参数。
压电式振动传感器还可以分为压电式加速度传感器、压电式力传感器和阻抗头。
5、电阻应变式振动传感器
电阻应变式振动传感器是以电阻变化量来表达被测物体机械振动量的一种振动传感器。
电阻应变式振动传感器的实现方式很多,可以应用各种传感元件,其中较为常见的是电阻应变。
爆破振动监测方案
爆破振动监测方案爆破是一种常见的工程施工方式,可以用于矿山开采、建筑拆除等工程领域。
然而,爆破施工会伴随着强烈的振动,可能对周围环境和结构物造成不可忽视的影响。
因此,为了保证工程施工的安全性和可持续发展,爆破振动监测方案应运而生。
1. 振动监测原理爆破振动监测方案的核心是对爆破引起的振动进行实时监测和记录。
通常采用的方法是利用振动传感器将振动信号转化为电信号,并通过数据采集系统进行数据的存储和分析。
振动监测方案的目标是获得准确、全面的振动参数,包括振动速度、振动加速度和振动位移等指标。
2. 振动监测方案的关键技术(1)传感器选择:选择适合的振动传感器对于监测方案至关重要。
常见的振动传感器有加速度传感器、速度传感器和位移传感器等。
根据实际需要和监测要求,选择合适的传感器进行布置。
(2)布置方案:根据监测目标和工程施工的具体情况,合理规划传感器的布置位置和数量。
一般来说,应根据工程施工区域的大小和结构物的分布等因素进行布置,以确保监测数据的准确性和可靠性。
(3)数据采集与处理:振动监测方案需要结合现代信息技术手段,通过数据采集系统对监测数据进行实时采集和处理。
数据处理包括数据存储、传输和分析等环节,可以借助计算机、云平台和人工智能等技术手段进行。
3. 爆破振动监测方案的应用(1)工程施工监测:爆破振动监测方案可以应用于各类工程施工中,如建筑拆除、地铁隧道开挖等。
通过监测振动参数,可以评估工程施工对周围环境和结构物的影响,及时采取相应的措施进行调整和改进。
(2)安全评估与预警:振动监测方案可以提供全面的数据支持,对爆破施工产生的振动进行准确评估。
一旦发现超过安全限值的振动情况,可以及时预警并采取措施,以保证工程施工的安全性。
(3)环境保护与监管:爆破振动监测方案可以用于环境保护和监管领域,对工程施工中的爆破振动进行监测和评估。
通过振动监测数据,可以了解爆破施工对周边生态环境的影响程度,提出相应的环境保护措施和监管建议。
振动传感器的选型指南
振动传感器的选型指南工程振动量值的物理参数常用位移、速度和加速度来表示。
由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。
常用单位为:米/秒2 (m/s2),或重力加速度(g)。
描述振动信号的另一重要参数是信号的频率。
绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。
对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。
最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。
压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。
1.传感器的种类选择1)压电式压电式传感器是利用弹簧质量系统原理。
敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。
压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。
虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。
与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。
日本富士陶瓷生产的加速度传感器最低检测频率为0.1Hz。
2)压阻式应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。
现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。
在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。
振动传感器不同种类的应用
振动传感器不同种类的应用振动传感器可以测量物体的振动频率和振动强度,是工业生产过程中常见的传感器之一。
根据其结构和原理不同,振动传感器可以分为以下几种类型:1. 加速度传感器加速度传感器是常见的振动传感器类型之一,用于测量物体的加速度和振动频率。
该传感器通过测量物体运动过程中的加速度值,可以推导出物体的位移和速度等参数。
加速度传感器广泛应用于汽车、飞机、火车和船舶等交通工具的振动监测和故障排查,同时也被广泛应用于机械制造、电子设备和医疗设备等领域。
2. 拉压式传感器拉压式传感器是一种常用的压力传感器,也可用于振动测量。
其原理是通过测量被测物体的拉伸或压缩变形程度来反映物体的振动情况。
拉压式传感器常被用于汽车和机械制造等领域,在振动监测和数值分析方面发挥重要作用。
3. 电容式传感器电容式传感器也是常用的振动传感器类型之一。
其原理是通过测量被测物体与另一个电极之间的电容变化来反映物体的振动情况。
电容式传感器被广泛应用于医疗设备、电子产品和工业自动化等领域,如磁盘驱动器和光纤通信系统等。
4. 压电式传感器压电式传感器也是一种常见的振动传感器类型。
其原理是通过测量被测物体的压电效应来反映物体的振动情况。
压电式传感器被广泛应用于复杂的振动环境下,如航空航天、建筑结构和地震监测等领域。
5. 磁电阻传感器磁电阻传感器是一种利用自身磁性敏感元件来测量磁场强度的传感器。
它通过测量磁场的变化来反映被测物体的振动情况。
磁电阻传感器被广泛应用于汽车、医疗设备和通信系统等领域,也可用于低频振动监测中。
综上所述,不同类型的振动传感器在不同的领域和场合下都有其特定的应用。
在振动监测和故障排查中,选择合适的振动传感器可以提高数据采集的准确性和分析的精度,提高生产效率和产品质量。
振动传感器原理及应用
振动传感器原理及应用振动传感器是一种能够感知物体振动并将其转化为电信号的传感器,它在工业生产、机械设备监测、地震预警等领域有着广泛的应用。
本文将从振动传感器的工作原理、类型、应用场景以及未来发展方向等方面进行介绍。
振动传感器的工作原理主要是基于物体振动时产生的微小变化。
当物体受到外力作用时,会产生振动,而振动传感器可以通过测量物体振动时产生的位移、速度或加速度变化来实现对振动的感知。
常见的振动传感器工作原理包括压电效应、电磁感应效应、电容效应等。
其中,压电式振动传感器是应用最为广泛的一种,它利用压电晶体的压电效应将机械振动转化为电信号。
根据不同的工作原理,振动传感器可以分为压电式、电容式、电磁式、电阻式等多种类型。
每种类型的传感器都有其独特的特点和适用场景。
压电式振动传感器具有灵敏度高、频率响应宽等优点,适用于高频振动的监测;而电容式振动传感器则具有体积小、重量轻等特点,适用于对振动传感器体积要求严格的场景。
在实际应用中,振动传感器被广泛应用于工业生产和设备监测领域。
例如,振动传感器可以用于监测机械设备的振动情况,及时发现设备的异常振动并进行故障诊断和预防维护。
此外,振动传感器还被应用于地震预警系统中,通过监测地壳振动情况实现对地震的预警和监测。
随着科学技术的不断发展,振动传感器在未来的发展方向也将朝着更高的精度、更广的应用领域和更小的体积方向发展。
例如,随着微电子技术的进步,微型化、集成化的振动传感器将会得到更广泛的应用;同时,智能化、网络化的振动传感器系统也将成为未来的发展趋势,实现对振动数据的实时监测和分析。
总的来说,振动传感器作为一种重要的传感器设备,在工业生产、设备监测、地震预警等领域都有着重要的应用价值。
通过对振动传感器的工作原理、类型和应用场景的了解,可以更好地应用振动传感器技术,提高生产效率,保障设备安全,实现对振动数据的有效监测和分析。
随着科技的不断进步,振动传感器的应用前景也将更加广阔,为各行各业的发展提供更为可靠的技术支持。
振动试验中加速度传感器的选择
振动试验中加速度传感器的选择The Choice of Acceleration Sensor in the Vibration Testing环境适应性和可靠性2009.3国家电子计算机质量监督检验中心符瑜慧李雪松杨红左进凯 FU Yu-hui LI Xue-song YANG Hong ZUO Jin-kai摘要:参与振动试验中振动量值的获得,最直接也是主要的单元之一是加速度传感器。
本文将重点对压电式加速度传感器的工作原理及影响其选型的主要因素进行探讨。
关键词:传感器;选择Abstract: Getting the vibration force in the vibration testing, there is a unit-sensor which is directness and importance. This paper will talk about that the voltage acceleration sensor function and the important factor which must think about in choosing the sensor type.Key Words:sensor ; choice.1 引言振动试验中,我们对控制点、监测点等的振动量值都是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
如果控制点所得到的数值不真实,就会影响到我们对试验样品的振动应力施加,可能是欠应力或过应力,欠应力会导致不能真实反应样品的质量信息,达不到预期考察样品“抗振”的试验目的,过应力可能会使样品损害,或据此以样品进行改进设计,增加企业成本;如果监测点所得到的数值不真实,监测的作用就推动了应有的作用,达不到监测振动台面和样口某薄弱环节的作用,甚至会带来不必要的错误改进。
因此,影响振动试验中振动量值的正确获得,除了与传感器的安装位置、样品的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
电机震动的测量方法
电机震动的测量方法电机震动是指电机运行时产生的机械振动。
电机震动会导致电机和机器设备的损坏,影响设备的正常运行。
因此,对电机震动的测量和监测十分重要。
本文将介绍电机震动的测量方法。
1.传感器测量法:传感器是目前最常用的电机震动测量方法之一、传感器能够直接测量电机震动,并将其转化为电信号进行分析和判读。
主要使用的传感器包括加速度传感器、速度传感器和位移传感器。
- 加速度传感器(Accelerometer)是最常见的电机震动传感器。
它能够测量电机震动的加速度,通过与电机振动频率的关系,进而分析和判读电机的状态。
加速度传感器常常安装在电机轴承处,能够直接感知到电机的振动。
- 速度传感器(Velocity transducer)能够测量电机震动的速度。
与加速度传感器相比,速度传感器不易受到高频振动的干扰,因此在一些特定场合下更加适用。
- 位移传感器(Displacement sensor)测量电机震动的位移,可以直接反映电机的振动情况。
位移传感器能够精确度量电机振动的幅值,对于分析电机问题有较高的准确性。
2.振动计测量法:振动计是利用机械传动原理进行测量的设备。
它可以将电机振动转换成旋转角度或位置,进而判断电机的振动情况。
-机械式振动计是一种简单而有效的电机震动测量设备。
它通常由旋转惯性装置和振动表盘组成。
当电机运行时,旋转惯性装置会受到振动影响,进而使得振动表盘移动。
振动表盘的读数可以反映电机的振动程度。
-电子式振动计是一种采用电子技术进行测量的设备。
它通过电子传感器测量电机振动的角度或位置,转化为电信号进行分析和判读。
电子式振动计具有高精度、自动记录和数字化等优点。
3.频谱分析法:频谱分析是电机震动测量中常用的一种方法。
通过测量电机振动信号的频谱,可以分析电机振动的频率成分和振幅分布,从而得到电机的振动特征。
- 傅里叶变换(Fourier Transform)是频谱分析的基础方法。
它能够将时域的振动信号转换为频域的频谱分布图,直观地反映不同频率成分在整个振动信号中所占比例。
振动测量方法和标准
振动测量方法和标准振动测量是一种用于评估机械设备运行状况和故障诊断的重要工具。
通过测量机械设备产生的振动信号,可以获得有关设备结构的信息以及潜在故障的迹象。
正确选择适当的振动测量方法和遵循相应的标准,对于准确评估设备状况和制定维护计划至关重要。
本文将探讨振动测量方法和标准的相关内容。
1、振动测量方法1.1 加速度传感器加速度传感器是一种广泛用于振动测量的传感器。
它可以测量垂直方向和水平方向的加速度。
该传感器将振动转化为电信号,进而分析并显示振动特性。
加速度传感器具有高频响应和较低的成本,适用于连续振动监测和机械故障诊断。
1.2 速度传感器速度传感器可以测量振动的速度。
它适用于低频振动测量和对振动的整体评估。
速度传感器可以直接测量振动,并提供振动速度的输出信号。
与加速度传感器相比,速度传感器具有较低的灵敏度和频率响应,但在某些应用中仍然具有一定的实用价值。
1.3 位移传感器位移传感器可以测量振动的位移。
它适用于低频振动测量和对机械设备结构变化的评估。
位移传感器可以直接测量振动的位移,并提供相应的输出信号。
位移传感器通常具有较低的频率响应和较高的灵敏度,适用于对振动幅值的精确测量。
2、振动测量标准2.1 ISO 10816系列标准ISO 10816系列标准是振动测量中最常用的国际标准之一。
该系列标准规定了振动测量的一般要求,以及根据不同类型的机械设备和应用的振动限值。
这些标准提供了一种测量和评估机械设备振动水平的一般方法,并提供了用于判断机械设备运行状况的准则。
2.2 ASME标准ASME标准适用于美国机械工程师学会制定的振动测量标准。
这些标准更加具体和详细,适用于各类机械设备和应用。
ASME标准提供了更为细致的振动测量方法和评估准则,有助于更准确地判断设备的运行状况,并制定相应的维护计划。
2.3 DIN标准DIN标准是德国国家标准组织制定的振动测量标准。
这些标准被广泛用于欧洲地区。
DIN 标准与ISO标准相似,提供了一种测量和评估机械设备振动的方法和准则。
使用振动传感器进行振动实验的技术要点
使用振动传感器进行振动实验的技术要点振动传感器是一种用于测量物体振动及其特性的设备。
在工程、科学研究和制造业等领域,振动实验是一项重要的技术活动。
使用振动传感器进行振动实验需要注意一些关键的技术要点,本文将介绍其中的几个要点。
一、传感器选择在进行振动实验之前,首先需要选择适合的振动传感器。
振动传感器种类繁多,常见的有压电传感器、电阻式传感器和电感式传感器等。
根据实验需求,可以选择不同类型的传感器。
压电传感器通常具有高灵敏度、宽频响范围和良好的线性度,适用于高频振动实验;电阻式传感器具有较低的成本,适用于一般的振动实验;而电感式传感器则适用于低频振动实验。
二、传感器安装振动传感器的安装位置对实验结果至关重要。
一般来说,传感器应该尽量靠近振动源,并与待测物体直接接触。
对于机械设备,传感器可以安装在主轴或重要零部件上,以获取真实的振动信号。
此外,对于高频振动实验,为避免信号失真,传感器的线缆长度应尽量短,并防止与其他电磁干扰源相接触。
三、传感器校准在进行振动实验之前,需要对传感器进行校准。
传感器的校准可以通过专业的校准设备进行,也可以使用已知频率和振幅的标准振动源进行。
校准的目的是建立传感器输出信号与真实振动之间的关系,并确定传感器的灵敏度。
四、信号采集与分析采集和分析振动信号是进行振动实验的关键步骤。
传感器所采集到的振动信号应通过数据采集系统进行记录。
数据采集系统应具备足够的采样率和动态范围,以保证信号的准确性和可靠性。
同时,还需要选择适当的分析方法,如频域分析、时域分析和轨迹分析等,以深入了解振动的特性和源头。
五、环境条件控制在进行振动实验时,环境条件的控制也十分重要。
温度、湿度和气压等环境因素会对振动信号产生干扰,影响实验结果的准确性。
因此,在实验室或测试场地内需要提供恒定的环境条件,并根据实际需求采取相应的措施,如使用隔音室降低外部噪声的影响。
六、数据处理与结果分析振动实验得到的原始数据通常需要进行一定的处理和分析,以得到有意义的结果。
混凝土梁的振动测试方法及应用分析
混凝土梁的振动测试方法及应用分析一、引言混凝土结构是现代建筑中最常见的结构形式之一,其主要承受着建筑中的重量和力量。
为了确保混凝土结构的安全性和稳定性,需要对其进行振动测试。
本文将介绍混凝土梁振动测试的方法及应用分析。
二、混凝土梁振动测试方法1.振动传感器的选择振动传感器是进行混凝土梁振动测试的重要工具。
常用的振动传感器有加速度传感器和位移传感器。
加速度传感器可以测量混凝土梁的振动加速度,而位移传感器则可以测量混凝土梁的振动位移。
选择合适的振动传感器可以保证测试结果的准确性。
2.振动测试仪器的选择振动测试仪器是进行混凝土梁振动测试的另一个重要工具。
常用的振动测试仪器有振动解调仪和频谱分析仪。
振动解调仪可以将振动传感器测量到的信号转换为振动速度或振动位移,并进行显示和分析。
频谱分析仪可以对振动信号进行进一步的频谱分析,提供更详细的振动特征信息。
3.测试点的选择在进行混凝土梁振动测试时,需要选择合适的测试点。
测试点应该在混凝土梁的中央位置或距离中央位置较近的位置。
这样可以更准确地测量混凝土梁的振动特性。
4.测试过程在进行混凝土梁振动测试时,应该先将振动传感器固定在选择的测试点上,并将传感器与振动测试仪器连接起来。
然后,通过振动测试仪器对混凝土梁进行激励,记录并分析振动信号。
测试过程中应该注意保持测试环境的稳定性,避免外界干扰。
三、混凝土梁振动测试应用分析1.混凝土梁的结构分析通过对混凝土梁的振动测试,可以分析混凝土梁的结构特点和缺陷。
通过振动测试结果的频谱分析,可以判断混凝土梁的自然频率和共振频率,从而判断混凝土梁的结构特点和缺陷。
2.混凝土梁的损伤检测通过对混凝土梁的振动测试,可以检测混凝土梁的损伤情况。
混凝土梁在受到外力作用后,会出现不同的振动特征。
通过对振动信号的分析,可以判断混凝土梁的损伤情况和位置。
3.混凝土梁的质量检测通过对混凝土梁的振动测试,可以检测混凝土梁的质量情况。
混凝土梁的质量好坏与其自然频率和共振频率有关。
振动传感器入门
谢谢!
Page ▪ 30
Page ▪ 7
三、振动传感器定义
Page ▪ 8
四、传感器的分类
Page ▪ 9
四、传感器的分类
按基准分: 1.相对式:传感器测出的是被测振 动相对某一取做参考相对静止坐标 的运动,又可分为直接式和跟随式。 (相对式电动传感器适用于测量两 个相对运动物体的振动量。
2.绝对式(惯性式):这种传感器 不需要依赖外界,而是利用本身惯 性在惯性空间建立坐标,测定的是 被测振动相对大地或惯性空间的绝 对运动,因此称为惯性式或绝对式。
Page ▪ 16
五、振动传感器的分类
按测试方法: 1.机械式测量方法
将工程振动的参量转换成机械信号,再经机械系统放大 后,进行测量、记录。它能测量的频率较低,精度也较差。 但在现场测试时较为简单方便。 2.光学式的测量方法
将工程振动的参量转换为光学信号,经光学系统放大后 显示和记录。 3.电测法
差(±5%,±10%,±3dB)传感器所能测量的频率范围。 5.线性范围/线性度:
任何传感器都有一定的线性工作范围,在该范围内输出与输 入成比例关系,线性范围越宽,则表明传感器的工作量程越大。 6.响应特性:
响应特性是指在所测频率范围内,保持不失真的测量条件; 7.测量方式:
传感器的工作方式。例如,接触与非接触测量、破坏与非破 坏测量、在线与非在线测量等。 8.稳定性 9.精确度
九、传感器安装事项
1.传感器怎样安装才能满足测试要求,误差最小? https:///s?__biz=MzI5NTM0MTQwNA==&mid=2247484091&idx=1&sn=420f44b70e7f2c e8fdad9226ab846f33&scene=21#wechat_redirect 2.怎样评价传感器附加质量对模态频率的影响? https:///s?__biz=MzI5NTM0MTQwNA==&mid=2247484088&idx=1&sn=4651de1380f1ec f439ef242716cb2ae1&scene=21#wechat_redirect 3.采样过程中存在的误差,您肯定不全知道! https:///s?__biz=MzI5NTM0MTQwNA==&mid=2247484044&idx=1&sn=f5a9eb5dc865bd eeca7369d8664fd7ac&scene=21#wechat_redirect
振动传感器采集信息的方法
振动传感器采集信息的方法振动传感器是一种用于采集物体振动信息的设备。
它可以将物体振动产生的信号转换成电信号,从而实现对振动信息的采集和监测。
振动传感器广泛应用于工业、交通、医疗等领域,对于提高生产效率、保障安全等方面具有重要意义。
振动传感器采集信息的方法有多种,下面将介绍其中的几种常见方法。
首先是基于加速度传感器的振动信号采集方法。
加速度传感器是一种能够测量物体加速度的设备,通过测量物体在振动过程中的加速度变化来获取振动信息。
该方法具有简单、灵敏度高等优点,可以实现对物体振动的实时监测。
其次是基于位移传感器的振动信号采集方法。
位移传感器是一种能够测量物体位移变化的设备,通过测量物体在振动过程中的位移变化来获取振动信息。
该方法可以实现对物体振动的精确测量,适用于对振动信号进行详细分析和处理的应用场景。
还有基于速度传感器的振动信号采集方法。
速度传感器是一种能够测量物体速度变化的设备,通过测量物体在振动过程中的速度变化来获取振动信息。
该方法适用于对振动信号进行频谱分析和频率测量的应用场景。
除了传统的传感器采集方法,近年来还出现了基于光纤传感器的振动信号采集技术。
光纤传感器是一种利用光纤的光学特性来测量物理量的设备,通过测量光纤在振动过程中的光强变化来获取振动信息。
该方法具有高精度、抗干扰能力强等优点,可用于对振动信号进行长距离传输和监测。
在振动传感器采集信息的过程中,还需要考虑信号的处理和分析。
常见的信号处理方法包括滤波、放大、采样等。
滤波可以去除噪声干扰,提取有效的振动信号;放大可以增强信号的强度,提高传感器的灵敏度;采样可以将连续的振动信号转换成离散的数字信号,方便后续的处理和分析。
在振动传感器采集信息的过程中,还需要注意传感器的安装位置和方式。
传感器的安装位置应选择在物体振动较大的部位,以确保能够准确采集到振动信号。
传感器的安装方式可以选择贴片式、螺纹式、夹持式等不同的方式,根据具体应用场景和要求进行选择。
振动传感器的原理及应用
压电激励方案
(2)振动膜式传感器
这种传感器的Q值很高,一般约为104, 因此,输出信号的通频带很窄。膜片是振 荡器中的谐振元件,振荡器的输出是频率 变化的正弦波信号,经放大、整形、限幅 后,作为高分辨力计数器的门控信号。这 样,就提供了正比于加在膜片上压力的计 数输出。使用的数字线性化电路与振筒式 压力传感器相类似,不再赘Байду номын сангаас。
4、波纹管
波纹管的作用是把输入压力差转换为振 动梁的测量力,使用高纯度材料经特殊加 工制成。这是因为石英振动梁相当坚硬, 要使梁在力作用下发生即使仅几十微米的 挠曲,没有足够大的力是不行的。此外, 还要求波纹管的迟滞小。
5、配重
当石英晶体谐振器的形状、尺寸、位置 决定后,配重可以调节运动组件的重心与 支点重合。在受到外界加速度干扰时,配 重还有补偿加速度的效应,因其力臂几乎 是零,使得谐振器仅仅对压力造成的力矩 起反应而不感受外力。
一、概述
二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器
三、应用及产品
VIB-10b便携式智能振动测量仪 ——上海胜利测试技术有限公司
机械运行振动中包含着从低频到高频各 种频率成分,而不同的频率与振幅所对应 的设备工作状况及故障原因都是不同的, 因此,该领域的专家们利用这一结论开发 出了不少
位移
加速度
频率范围 速 度
位移
精 度 显 示 电 源 自动关断功 能 体 积 质 量
技术参数 0.1--199.9m/s2(峰值)
0.1--199.9mm/s(真有效值) 0.001--1.999mm(峰峰值) LO档10Hz~1KHz Hi档1KHz~10KHz
桥梁结构振动检测方案振动传感器的应用
桥梁结构振动检测方案振动传感器的应用桥梁是人类创造的重要基础设施之一,关乎城市交通、经济发展和人民生活。
然而,长期的使用和自然力的作用使得桥梁很容易受到振动的影响。
振动问题一旦被忽视或者处理不当,就有可能导致桥梁的倒塌和事故的发生。
因此,对桥梁结构的振动进行及时、准确地检测显得十分重要。
为了解决桥梁结构振动检测的问题,振动传感器应用广泛。
振动传感器是一种能够感测结构振动并将振动信号转换为电信号输出的装置。
下面,我们将探讨一些常见的桥梁结构振动检测方案以及振动传感器的应用。
1. 振动传感器的种类及原理在桥梁结构振动检测中,常用的振动传感器包括加速度传感器、速度传感器和位移传感器。
加速度传感器通过测量结构的加速度来判断结构的振动状态;速度传感器通过测量结构的速度来分析结构的振动特性;而位移传感器则通过测量结构的位移来描绘结构的振动图像。
2. 固定安装振动传感器固定安装振动传感器是常见的桥梁结构振动检测方案之一。
在桥梁建设完成后,工程师会在关键位置固定安装振动传感器。
这些振动传感器会不间断地感测桥梁的振动情况,并将振动信号实时传输到数据采集系统进行存储和分析。
通过固定安装振动传感器,工程师可以实时监测到桥梁结构的振动情况,发现可能的问题并及时采取措施进行修复。
这种方案能够全面覆盖桥梁的振动情况,为桥梁的安全运行提供有力支持。
3. 移动式振动传感器除了固定安装的振动传感器,移动式振动传感器也广泛应用于桥梁结构振动检测。
移动式振动传感器是一种可以在桥梁上移动并进行振动检测的装置。
工程师可以根据需要将振动传感器放置在不同的位置进行检测,以获取更加全面的振动数据。
移动式振动传感器通常由无线传输模块和数据采集单元组成。
工程师可以通过无线传输模块将振动数据实时传输到数据采集单元,并进行存储和分析。
这种方案具有便携性强、适用范围广、操作灵活等优点,能够更好地满足桥梁结构振动检测的需求。
4. 振动传感器在桥梁结构振动检测中的应用价值振动传感器在桥梁结构振动检测中具有重要的应用价值。
振动传感器
电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。
振动传感器科技名词定义
中文名称:振动传感器 英文名称:vibration transducer 定义:能感受机械运动振动的参量(振动速度、频率,加速度等)并转换成可用输出信号的传感器。 应用学科:机械工程(一级学科);传感器(二级学科);物理量传感器(三级学科) 以上内容由全国科学技术名词审定委员会审定公布
目录
工程振动测试方法1、机械式测量方法
2、光学式测量方法
3、电测方法
传感器的机械接收原理
振动传感器的机电变换原理
振动传感器的分类1、相对式电动传感器
2、电涡流式传感器
3、感式传感器
4、电容式传感器
5、惯性式电动传感器
6、压电式加速度传感器
7、压电式力传感器
8、阻抗头
7、压电式力传感器
在振动试验中,除了测量振动,还经常需要测量对试件施加的动态激振力。压电式力传感器具有频率范围宽、动态范围大、体积小和重量轻等优点,因而获得广泛应用。压电式力传感器的工作原理是利用压电晶体的压电效应,即压电式力传感器的输出电荷信号与外力成正比。
8、阻抗头
阻抗头是一种综合性传感器。它集压电式力传感器和压电式加速度传感器于一体,其作用是在力传递点测量激振力的同时测量该点的运动响应。因此阻抗头由两部分组成,一部分是力传感器,另一部分是加速度传感器,它的优点是,保证测量点的响应就是激振点的响应。使用时将小头(测力端)连向结构,大头(测量加速度)与激振器的施力杆相连。从“力信号输出端”测量激振力的信号,从“加速度信号输出端”测量加速度的响应信号。 注意,阻抗头一般只能承受轻载荷,因而只可以用于轻型的结构、机械部件以及材料试样的测量。无论是力传感器还是阻抗头,其信号转换元件都是压电晶体,因而其测量线路均应是电压放大器或电荷放大器。
电动机的振动分析与抑制技术研究
电动机的振动分析与抑制技术研究电动机是工业中广泛应用的一种设备,但其在运行过程中常常会产生振动问题,影响设备的稳定性和使用寿命。
因此,对电动机的振动进行分析与抑制技术的研究具有重要意义。
本文将通过对电动机振动分析的方法、振动产生的原因、振动抑制技术的研究以及应用案例的介绍,来探讨该领域的相关内容。
一、电动机振动分析方法1. 振动传感器的选择与布置振动传感器是进行电动机振动分析的关键设备,其选型与布置的合理性直接影响到分析结果的准确性。
常见的振动传感器有加速度传感器、速度传感器和位移传感器等,根据振动频率的不同可以选择不同类型的传感器。
具体布置时应注意传感器的位置选择,一般应在主要振动源的附近,以获取准确的振动数据。
另外,应保证传感器与电动机之间的良好接触,以确保振动信号的传递。
2. 振动信号采集与处理振动信号的采集与处理是电动机振动分析的关键步骤。
在信号采集方面,可以利用波形图、频谱图、轨迹图等方式进行振动信号的记录。
在信号处理方面,可以根据不同的分析需求选择不同的信号处理算法,如傅里叶变换、小波分析等,以获取所需的振动特征参数。
二、电动机振动产生的原因1. 不平衡电动机内部的转子不平衡是造成振动的主要原因之一。
在电动机运行中,由于生产制造的原因或长时间使用的磨损等,可能会导致电动机的转子出现不平衡现象,从而引起振动。
2. 轴承故障电动机的轴承是支撑转子旋转的关键部件,如果轴承损坏或寿命到期,就会出现颤振现象。
常见的轴承故障包括润滑不良、磨损、损伤等,这些因素都会引起电动机的振动。
3. 不良安装电动机在安装过程中如果没有按照规范进行操作,会导致定位不准确、固定不牢固等问题,进而引起电动机的振动。
此外,如果电动机与机械设备的联接不紧密,也会引发振动现象。
三、电动机振动抑制技术的研究1. 堵塞振动源对于电动机振动的抑制,一种方法是直接堵塞振动源。
通过添加平衡块、采用可矫正的装配方式等手段,对电动机中的不平衡现象进行补偿,从而减小振动。
选择振动测量加速度传感器的方法
工业级别振动测量加速度传感器实际应用是根据测量对象和与测量系统的组合。
在类似情况下对测量对象进行实时监测即所谓在线监测其次需要定期对测量对象巡回检测。
相对于其他的环境工业振动测量的周边环境相对都比较恶劣,在线监测的加速度传感器到数字采集系统一般都有需要在一定的距离,因此高阻抗的电荷信号就非常容易受干扰。
除现场是高温测量外,工业振动在线监测用的传感器通常都选用带内置电路的电压输出型。
而对巡回检测用传感器往往因为出于对成本的考虑大多使用电荷输出型压电加速度传感器。
工业操作振动的测量一般的灵敏度考虑在50mV/g, 100mV/g 和 200 mV/g 的加速度传感器,然而对传感器的频率范围则必须根据不同的测量对象进行选择。
需要指出的是加速度传感器的安装形式和质量好坏以及不同的电缆配备都会直接影响到传感器的高频使用。
这些影响频响的因素虽不能从传感器的技术指标上完全反映,但都是工业振动加速度传感器使用中常见的问题。
一般情况下使用加速度传感器测量旋转冲击设备的振动速度是非常理想的,虽然有需要考虑温度对测量的结果有所影响,这个也是如今加速度测量的一个难题。
但是如果真正的考虑,主要问题然而也不是温度,而是量程和灵敏度。
如果加速度传感器的偏置电压不稳定,这将直接影响测量信号。
目前法国的传感器在这些方面的改进是最理想的,由于工业测量现场环境条件复杂多变,因此在电缆选择时首先要确保信号的质量,将外部噪声对信号的干扰降低到最小;可以直流电压供电,输出4-20mA的专业工业加速度传感器,其次是考虑电缆的寿命和使用方便程度。
在法国加速度传感器也称加计,高低精度的加速度传感器、微加速度计、加表,不同响应频率,各种精度。
可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
微机械结构,微型尺寸,可以直接焊接在PCB版上。
震动传感器
振动传感器,我接触过的是防盗贴在玻璃上的。
一旦打碎玻璃就报警。
----------------------------------以下为转载-----------------------------------常用振动传感器有以下几种:①、压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。
其优点是灵敏度较高,结构简单。
但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可。
②、机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。
振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。
③、微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。
输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。
输出阻抗高,静态工作电流小。
右图是说用MOST非门电路组成的震动检测电路,其输出的波形是幅度相同的震动脉冲信号。
该信号送到单片机,有单片机软件检测震动信号的真伪,通过脉冲宽度、脉冲数量判断震动的类型。
如果使用端口可编程的单片机,端口编程为输入状态时,可以直接检测震动信号,省去整形放大电路。
========================以下仍为转载========================SV系列振动传感器适用于安全防范和振动源检测,器件采用环氧树脂封装,具有耐潮、抗冲击的良好性能,检测全方位,能采集到0.1g物体落体所产生的微弱振动信号。
在汽车、摩托车、电动车安全防范的应用方面,显示出十分优良的性能。
当车体受到触碰或移动时,振动传感器能快速作出响应,同时具有良好的抗干扰特性。
SV系列振动传感器性能优异,价格低廉,完全取代对环境噪音敏感的压电式振动传感器,使振动传感器性能更加稳定、可靠。
振动监测仪表之振动传感器分类及原理
振动监测仪表之振动传感器分类及原理在振动测量领域中,测量监控手段与方法多种多样,本文主要讨论电测量方法,电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。
这是目前工业生产领域应用的最广泛有效的方法。
电测量法用到的振动传感器种类丰富,按照工作原理的不同,能分为电涡流式位移传感器、电感式速度传感器、压电式加速度传感器、电容式振传感器和电阻应变式传感器等,下面主要对转动设备应用最多的前三种传感器原理进行研究介绍。
1、电涡流式位移传感器工作原理:在传感器的端部有一线圈,线圈通以频率较高的交变电压,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出一涡流,这种现象被称为涡流效应。
电涡流传感器就是建立在电涡流效应原理上的一种传感器,它可以对一些物理量实现非接触式测量,具有结构简单、体积小、灵敏度高等优点。
当电涡流传感器接近被测导体时,被测导体表面产生电涡流,这样原线圈与涡流“线圈”形成了有一定耦合的互感,使线圈电感发生变化。
被测导体与传感器之间间隙越小,导体产生的电涡流越大,传感器线圈的电感量就越小。
它的输出电压是电感的函数,因此导体与传感器之间间隙变化时,测得输出电压值就可获得间隙值,电压值再经前置器放大以0V~24VDC 信号进入振动监测系统。
涡流式位移传感器的主要特点是它与被测点没有接触,因此它特别适用于转动设备旋转轴的振动测量。
2、电感式速度传感器原理:电感式速度传感器是一种动圈式(磁电式)的传感器。
当传感器与结构一起振动或传感器动圈上的顶杆与结构相连时,由于结构的振动,使传感器的线圈在磁铁磁场中产生运动,切割磁力线而产生感应电动势,感应电动势的大小与动圈运动速度成正比。
因此,通过感应电动势的量测即可确定结构的振动速度。
电感速度传感器固定于振动体(比如轴承盖)上,测得的结果为振动体的绝对速度;传感器壳体固定于一个物体上,顶杆顶住另一个物体,测量所得为两物体的相对速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涡流传感器输出与振动位移成正比。
传感器与被测物体不接触,可以测量转动部件的振动,并可进一步用于测量旋转机械振动分析中的两个关键参数:转速和相位。
振动测量的频率范围较宽,能同时作静态和动态测量,适用于绝大多数旋转机械。
传感器输出结果与被测物体材料有关,材料本身会影响传感器线性范围和灵敏度,必须重新标定。
为了获得可靠的数据,对传感器的安装要求较严。
速度传感器输出与振动速度成正比,信号可以直接提供给分析系统。
传感器安装简单,临时测量可以采用手扶方式或通过磁座与被测物体固定,长期监测可以通过螺钉与被测物体固定。
速度传感器体积、质量偏大,低频特性较差,测量10Hz以下振动时,幅值和相位有误差,需要补偿。
测量发电机和励磁机振动时,速度传感器可能会受到电磁干扰的影响。
此时,速度传感器的输出信号会变得很不稳定,忽大忽小,没有规律。
加速度传感器输出与振动加速度成正比。
体积小、质量轻是加速度传感器的突出特点,特别适用于细小和质量较轻部件的振动测试。
加速度传感器结构紧凑,不易损坏。
涡流、速度和加速度传感器在旋转机械振动测试中都得到了广泛应用。
通常是用涡流传感器测量转轴振动,用速度或加速度传感器测量轴承座振动。
另外,由位移、速度和加速度之间的关系可知,为了突出反映故障信号中高频分量或脉冲量的变化,可以选用加速度传感器,而为了突出反映故障信号中低频分且的变化,可以选用涡流传感器。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。