信号与系统2002(期末考试题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安交通大学试题
课 程 信号与系统 系 别 考试日期2002年1月14日 专业班号 姓 名
学号
一、(15分)计算下列各题
1. 已知)()(Ω−→←
X t x F
,求t
j e t x t x 21)23()(--=的傅立叶变换)(1ΩX 。
2. 已知)()(11z X n x Z
−→←
,)()(22z X n x Z
−→←,求[]n
j e n x n x 0)()(21ω*的Z 变换)(z X 。
3. 已知)1()1()(--+=t u t u t x ,)(t x 的频谱为)(ΩX 求
ΩΩ⎰
+∞
∞
-d X )(。
二、(15分)某离散时间LTI 系统的互联结构如图所示,已知)1()()(1--=n n n h δδ,
)()(2n u n h =,n
n
n h ππ
2sin
)(3=
。系统最初是松弛的。
1. 求整个系统的单位脉冲响应)(n h ; 2. 判断系统的因果性,稳定性,并说明理由;
3. 若系统的输入信号)2()()(--=n u n u t x ,求系统响应)(n y 。 三、(15分)某连续时间LTI 系统对输入信号)()()(3t u e
e t x t
t
--+=的响应为
)()22()(4t u e e t y t t ---=,已知系统是因果稳定的,且初始松弛。
1. 求系统的频率响应)(ΩH ; 2. 求该系统的单位冲激响应)(t h ;
3. 写出描述系统的微分方程,并用直接II 型结构实现。
四、(15分)已知信号)(t x 的频谱为)(ΩX ,试用)(ΩX 分别表示信号)(1t x )(2t x )(3t x 的频谱)(1ΩX )(2ΩX )(3ΩX 。
五、(20分)某离散时间LTI 系统由下列微分方程描述,已知系统是因果的。且初始松弛。
)1(4
1
)()2(61)1(65)(-+=-+-+
n x n x n y n y n y 1. 求系统函数)(z H ,并画出系统的零极点图; 2. 求系统的单位脉冲响应)(n h ;
3. 如果系统的输入为)(41)(n u n x n
⎪⎭
⎫
⎝⎛-=,求系统的输出响应)(n y ;
4. 请根据零极点图概绘出系统的幅频特性,并标注出ππ
ω,2
,
0=时的幅值。
六、(10分)已知)(n x 是一个8点序列,其8点DFT(离散傅立叶变换)为)(k X ,如图所示。
)(1n y ,)(2n y 都是16点的序列。试绘出它们的16点DFT )(1k Y 和)(2k Y
的图形,并说明)(1k Y ,)(2k Y 与)(k X 之间的关系。
⎪⎩⎪⎨⎧+===1
2,02),2
()(1k n k
n n x n y ⎩⎨⎧≤≤≤≤=15870,0),()(2n n n x n y
七、(10分)已知信号)(1t x 的最高频率为500Hz ,)(2t x 的最高频率为1500Hz ,如果用来恢复信号的理想低通滤波器的截止频率为2500Hz ,试确定抽样时所允许的最大抽样间隔。
)()()(),3/()2()(),()()(213212211t x t x t f t x t x t f t x t x t f ∙=+=*=