(完整word版)传热学答案+第五版+章熙民(完整版)
传热学课后答案(完结版)
2
tw2
3
tw1 tw 2 q2 1 2 3 1 2 3
再由:
tw1
λ
λ 3
tw2
q1
q2 0.2q1 ,有
tw1 tw 2 t t 0.2 w1 w 2 1 2 1 2 3 1 2 1 2 3
得:
3 43 (
'2 3 2 5 6 2 R 0.265m k / W 2 3 0.65 0.024
"
由计算可知,双 Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双 Low-e 膜双真 空玻璃的保温性能要优于中空玻璃。 3. 4.略 5 .
m2
(m 2 K )
、 h2 85W
(m 2 K )
、 t1 45 ℃
t2 500 ℃、 k ' h2 85W
求: k 、 、
(m 2 K )
、 1mm 、 398 W
(m K )
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即: k
tw1 t w 2 x
(设 tw1 tw 2 ) , 否则 t 与平壁 coust (即常物性假设)
其与平壁的材料无关的根本原因在 的材料有关 (2)由 4.略
q
dt dx
知,q 与平壁的材料即物性有关
5.解:
d 2 dt (r )0 dr dr r r1 , t tw1 (设tw1 t w 2 ) r r2 , t tw 2
绪论
思考题与习题( P89 )答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到:
《传热学》(第五版)
第一章导热理论基础2已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ 解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。
5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q =、6x q = (2)v q解:(1)00020x x x dtq bx dx λλ====-=-= 3322452(2000)5010910x x x dtW q bx m dx σσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dtQ t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b f U d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx ===假设的 4()b e x ldtfT f dx λεσ=-=真实的 第二章稳态导热3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关5.解: 2111222()0,(),w w ww d dt r dr drr r t t t t r r t t===>==设有:12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >221313由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得:123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q =212tw 1tw 2q 11λ12λ23λ322即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f221)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 22330'101136.11/()131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分R 1R 1R 1R2R3R 2R 2R3R311113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+tw 1112323tw 4132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010121020122211ln ln 222d d R d d λδδδπλπλδ+++=++ '010122010122211ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010*******22211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++01010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)3''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。
传热学第五版章熙民_答案第一二三章
该导热体里存在内热源,其强度为 1.8 10 w / m 。 方法二 解:因为 t a bx 2 ,所以是一维稳态导热问题 绝热
5
放热
dt 2bx (c) dx
根据付立叶定律
q x dt 2 b x dx
(1) q x 0 0 ,无热流量
T
x0
T0
若忽略肋片端面的导热量,则: 2) x l 时
t x 0
xl
第二章 稳态导热
9
2-5 已知空心球壁导热系数 为常数,内,外表面分别保持 t w1
和 t w 2 ,试推导空心球壁导热量计算公式和球壁的导热热阻。
整理得:
1-10 从宇宙飞船伸出一根细长散热棒, 以辐射换热将热量散 发到外部空间去,已知棒的发射率(黑度)为 ,导热系数 为 ,棒的长度为 l ,横截面面积为 f ,截面周长为 U ,棒根 部温度为 T0 ,外部空间是绝对零度的黑体,试写出描写棒温 度分布的导热微分方程式和相应的边界条件。 解: 导热微分方程,就是将付立叶定律结合能量守恒定 律(没有功交换时,就是热平衡原理)推出的数学关系式。 如图所示,取一个微元体长度为 dx ,从左边导入的热量
无内热源时,内热源热 Ⅱ=0
d 时间内,微元体热力学能的增量为:
7
III c
t rdrddzd
根据能量平衡
I II III
2t t 1 2t 2t 2 2 rdrddzd 2 rdrddzd c 2 r r z 2t t 1 2t 2t 2 2 c 2 2 r r z
传热学习题_建工 5 版 1
传热学课后习题答案第五版
传热学课后习题答案第五版传热学是热力学的一个重要分支,研究物体内部和物体之间的热量传递过程。
在传热学课程中,习题是巩固理论知识和培养解决实际问题能力的重要环节。
本文将根据《传热学课后习题答案第五版》的内容,探讨一些相关问题。
1. 对流传热问题:对流传热是指通过流体的运动来传递热量的过程。
在习题中,我们经常会遇到对流传热的计算问题。
例如,一个热水器中的水被加热,如何计算水的温度分布和对流传热速率?首先,我们需要根据热水器的温度和流体的热导率等参数,利用传热学的基本方程来计算水的温度分布。
然后,根据流体的流速和流体的热容等参数,利用对流传热的基本方程来计算对流传热速率。
最后,将这两个结果结合起来,就可以得到问题的答案。
2. 辐射传热问题:辐射传热是指通过电磁波辐射来传递热量的过程。
在习题中,我们经常会遇到辐射传热的计算问题。
例如,一个黑体表面的辐射率是多少?一个物体在给定温度下的辐射传热速率是多少?对于第一个问题,我们可以利用黑体的定义和辐射能量的基本关系来计算黑体表面的辐射率。
对于第二个问题,我们可以利用斯特藩-玻尔兹曼定律来计算物体的辐射传热速率。
这些计算需要一些数学和物理知识,但是通过习题的练习,我们可以掌握这些计算方法。
3. 导热传热问题:导热传热是指通过物体内部的分子热运动来传递热量的过程。
在习题中,我们经常会遇到导热传热的计算问题。
例如,一个材料的导热系数是多少?一个材料在给定温度梯度下的导热传热速率是多少?对于这些问题,我们可以利用导热传热的基本方程来计算导热系数和导热传热速率。
这些计算需要一些材料科学和热力学知识,但是通过习题的练习,我们可以掌握这些计算方法。
总结起来,传热学课后习题答案第五版涵盖了对流传热、辐射传热和导热传热等方面的问题。
通过解答这些习题,我们可以巩固理论知识,培养解决实际问题的能力。
传热学是一个重要的学科,它在工程、物理、化学等领域都有广泛的应用。
通过学习传热学,我们可以更好地理解和应用热力学的原理,为解决实际问题提供有力的支持。
传热学第五版课后习题答案(1)
λ=100W/(m·K),在给定的直角坐标系中,分别画
出稳态导热时如下两种情形的温度分布并分析 x 方向
温度梯度的分量和热流密度数值的正或负。
(1)t|x=0=400K, t|x=δ=600K; (2) t|x=δ=600K, t|x=0=400K; 解:根据付立叶定律
q
gradt
t x
i
t y
虽说计算前两项后计算精度提高了,但 11.9 ºC 和例 3-1 的结果 11.8 ºC 相差很小。说明计算一项 已经比较精确。
4-4 一无限大平壁,其厚度为 0.3m,导热系数为 = 36.4 w m* k 。平壁两侧表面均给定为第三类边界条 件 , 即 h1 = 60 w m2 * k , t f1 = 25°C ; h2 = 300 w m2 * k , t f2 = 215°C 。当平 壁中具有均 匀内热源 qv = 2×105W / m3 时, 试计算沿平壁厚度的稳态温度分布。(提示:取 Δx=0.06m)
A
40 1 0.003
ml 45.910.016 0.7344
th(ml)=th(0.734) 0.6255
11
f
th( ml ) 0.6255
ml
0.7344
85.2%
例题 3-1 一无限大平壁厚度为 0.5m, 已知平壁的热
物 性 参 数 =0.815W/(mk), c=0.839kJ/(kg.k),
的 h=73(W/m².k),热流密度 q=5110w/ m², 是确定管
壁温度及热流量 Ø。
解:热流量
qA=q( dl)=5110(3.14 0.05 2.5)
=2005.675(W)
又根据牛顿冷却公式
传热学第五版课后习题答案
传热学第五版课后习题答案传热学习题_建⼯版V0-14 ⼀⼤平板,⾼3m ,宽2m ,厚,导热系数为45W/, 两侧表⾯温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。
解:根据付⽴叶定律热流密度为:2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?- 负号表⽰传热⽅向与x 轴的⽅向相反。
通过整个导热⾯的热流量为:q A 30375(32)182250(W)Φ=?=-??=0-15 空⽓在⼀根内经50mm ,长⽶的管⼦内流动并被加热,已知空⽓的平均温度为85℃,管壁对空⽓的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。
解:热流量qA=q(dl)=5110(3.140.05 2.5) =2005.675(W)πΦ=?? ⼜根据⽜顿冷却公式wf hA t=h A(tt )qA Φ=??-=管内壁温度为:w f q 5110t t 85155(C)h 73=+=+=?1-1.按20℃时,铜、碳钢(%C )、铝和黄铜导热系数的⼤⼩,排列它们的顺序;隔热保温材料导热系数的数值最⼤为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
解:(1)由附录7可知,在温度为20℃的情况下,λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K),λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数⼤⼩排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最⼤不超过 W/(m ·K).(3) 由附录8得知,当材料的平均温度为20℃时的导热系数为:膨胀珍珠岩散料:λ=+ W/(m ·K)=+×20= W/(m ·K);矿渣棉: λ=+ W/(m ·K)=+×20= W/(m ·K);由附录7知聚⼄烯泡沫塑料在常温下, λ=~0. 038W/(m ·K)。
传热学(第五版)部分课后习题答案
加贴硬泡沫塑料的厚度为 90.56mm. 2-19 一外径为 100mm,内径为 85mm 的蒸汽管道,管材的导热系数为λ=40W/(m·K),其内表面温 度为 180℃,若采用λ=0.053W/(m·K)的保温材料进行保温,并要求保温层外表面温度不高于 40℃, 蒸汽管允许的热损失
ql =52.3 W/m。问保温材料层厚度应为多少?
qx
(1)
t x t x0
(a )
t|x=0=400K, t|x=δ=600K 时 温度分布如图 2-5(1)所示 根据式(a), 热流密度 q
x
<0 ,说明 x 方向上的热流量流向 x 的反方向。可见计算值的方向符
(2)
合热流量由高温传向低温的方向 t|x=δ=600K, t|x=0=400K; 温度分布如图 2-5(2)所示 根据式(a), 热流密度 q
单位宽度上的肋片散热量为
qL 168.8(W/m)
2-27 一肋片厚度为 3mm,长度为 16mm,是计算等截面直肋的效率。 (1)铝材料肋片,其导热系数 为 140W/(m﹒K),对流换热系数 h=80W/(m²﹒K);(2)钢材料肋片,其导热系数为 40W/(m﹒K), 对流换 热系数 h=125W/(m²﹒K)。 解: (1)铝材料肋片
已知砖的导热系数07wmk灰泥的058wmk硬泡沫塑料的006wmk试求加贴硬泡沫塑料层的厚024002070582002400207058006加贴硬泡沫塑料的厚度为9056mm219一外径为100mm内径为85mm的蒸汽管道管材的导热系数为40wmk其内表面温度为180若采用0053wmk的保温材料进行保温并要求保温层外表面温度不高于40蒸汽管允许的热损失523wm
x
传热学总复习试题及答案【第五版】【精】【_必备】(K12教育文档)
传热学总复习试题及答案【第五版】【精】【_必备】(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(传热学总复习试题及答案【第五版】【精】【_必备】(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为传热学总复习试题及答案【第五版】【精】【_必备】(word版可编辑修改)的全部内容。
总复习题基本概念 :•薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度,则该物体称为 -——-.•传热:由热力学第二定律,凡是有温差的地方,就有热量自发地从高温物体向低温物体转移,这种由于温差引起的热量转移过程统称为 --——-—。
•导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时,发生的热量传输的现象。
物体各部分之间不发生相对位移,仅依靠物体内分子原子和自由电子等微观粒子的热运动而产生的热能传递成为热传导简称导热•对流 : 指物体各部分之间发生相对位移而引起的热量传输现象。
由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互渗混所导致的热量传递过程•对流换热:指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为——--—-。
•强制对流:由于外力作用或其它压差作用而引起的流动 .•自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 .•流动边界层:当具有粘性的流体流过壁面时,由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零,而在这一流层外 , 流体的速度基本达到主流速度。
传热学第五版[完整版]答案解析
1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a、地面向冰雹导热所得热量;b、冰雹与周围的空气对流换热所得到的热量;c、冰雹周围的物体对冰雹辐射所得的热量。
2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。
白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。
传热学第五章答案
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学第五版答案
第一章、一、基本概念主要包括导热、对流换热、辐射换热的特点及热传递方式辨析。
1、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。
试解释原因。
答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。
而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa 时,空气导热系数为0.0259W/(m ·K),具有良好的保温性能。
而经过拍打的棉被可以让更多的空气进入,因而效果更明显。
2、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。
试从传热的观点分析原因。
答:首先,冬季和夏季的最大区别是室外温度的不同。
夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。
而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。
根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。
3、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。
答:有以下换热环节及热传递方式(1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流);(2)由暖气片管道内壁至外壁,热传递方式为导热;(3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。
4、冬季晴朗的夜晚,测得室外空气温度t 高于0℃,有人却发现地面上结有—层簿冰,试解释原因(若不考虑水表面的蒸发)。
解:如图所示。
假定地面温度为了T e ,太空温度为T sky ,设过程已达稳态,空气与地面的表面传热系数为h ,地球表面近似看成温度为T c 的黑体,太空可看成温度为T sky 的黑体。
传热学第五版第五章答案
传热学第五版第五章答案【篇一:高等传热第五章习题答案】面矩形直肋关于中线是对称的,在对称面上为绝热边界条件,所以这里只研究其关于中心位置对称的一部分的温度场情况。
其图形如下图所示:各个边界条用有限差分法求解肋片中的二维稳态温度场1. 将区域离散化,把原来在空间上连续的物理量的场,转化为有限个离散的网格单元节点。
沿x方向和沿y方向分别按间距?x和?y,?x和?y相等,将x轴方向等划分为40段线段,y方向等划分为20段线段,将用一系列与坐标轴平行的网格线,把求解区域分割成许多小的矩形网格。
网格线的交点成为节点每个节点,每个节点可以看作是以它为中心的一个区域的代表。
?绝热……(21)……2. 建立离散方程,41? 区域内的所有点,包括内节点?i,j?都应满足以上的方程。
把内节点,即i?2……n?1,j?2……m?1处的二阶偏导数用对应的差商来近似,?2tti,j?1?2ti,j?ti,j?1?2tti?1,j?2ti,?jt??? , ?y2?x2?y2?x2则有:ti,j?i1,j1?ti?1,j?ti?1,j?ti,j?1?ti,j?1? 4? 边界上的点:当i?1,j?2……n-1时,为了使个节点的精度能够平衡,可以利用虚节点的概念对此边界节点进行处理,,则节点?1,j?可以按照内节点处理,得到:ti,j?1t1,j?1?t1,j?1?2t2,j? ?4当i?1,j?1时,ti,j?1t1,2?t2,1? ?2当i?2……n-1,j?1时,节点的处理也可以引进虚节点的概念,看成是内节点,则有:ti,1?1?ti?1,1?ti?1,1?2ti,2? 4当 i?n,j?1……m,根据边界条件则有:ti,j?t0当j?m,i?2……n-1,根据边界条件则有: ??所以可以假想上部有一个虚节点ti,m?1,则有:ti,m?ti,m?1?y?h?ti,m?tf?,但其精度低,ti,m?将??1ti?1,m?ti?1,m?ti,m?1?ti,m?1? ?42h?yti,m?1?ti,m?12?y???h?ti,m?tf?,得到:ti,m?1?2h?y??tf?ti,m??ti,m?1将其带入上式,可以得到:ti,m??ti?1,m?ti?1,m?2ti,m?1?2h?y??tf??4?? ?????当j?m,i?1时,假想两个虚节点t0,m和t1,m?1 则有:t1,m?1?t2,m?t1,m?1?t1,m?1?t0,m? 4将式子t0,m?t2,m?t1m,?12h?y??tf?t1m,??t?1m带入上式可以得到:,1h?y??h?y??t1,m??t2,m?t1,m?1?tf??2????????温度的无量纲化:令??t?tft0?tf,其中令tf?0,t0?1。
传热学第五版课后习题答案
传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。
解:根据付立叶定律热流密度为:2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ⎛⎫--⎛⎫=-=-=- ⎪ ⎪-⎝⎭⎝⎭ 负号表示传热方向与x 轴的方向相反。
通过整个导热面的热流量为:q A 30375(32)182250(W)Φ=⋅=-⋅⨯=0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m ².k),热流密度q=5110w/ m ², 是确定管壁温度及热流量Ø。
解:热流量qA=q(dl)=5110(3.140.05 2.5) =2005.675(W)πΦ=⨯⨯ 又根据牛顿冷却公式wf hA t=h A(tt )qA Φ=∆⨯-=管内壁温度为:w f q 5110t t 85155(C)h 73=+=+=︒1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。
解:(1)由附录7可知,在温度为20℃的情况下,λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K), λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。
传热学课后答案【第五版】[精]【完整整合版】
绪 论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=• 118f t =℃ 2187()Wh m K =•210f t =-℃ 22124()Wh m K =• 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K • 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W •3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =•、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =•、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()Wm K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学课后答案第五版
绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和爱上大声地大得多411231啊实打实大对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ c o n s t λ=→直线 c o n s t λ≠ 而为λλ=(t )时→曲线12. R R R R t −−→ q首先通过对故其间无导热和爱上大声地大得多411231啊实打实大对,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
)13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:12t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W ∙3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆ 解:12441.21.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:故其间无导热和爱上大声地大得多411231啊实打实大对即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水故其间无导热和爱上大声地大得多411231啊实打实大对18.略第一章导热理论基础 思考题与习题(24P )答案: 1. 略2. 已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ解:故其间无导热和爱上大声地大得多411231啊实打实大对 4.略 5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q=、6x q= (2)v q解:(1)00020x x x dtq bx dxλλ====-=-=3322452(2000)5010910x x x dt Wq bx m dxσσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯7.略8.略9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dt Q t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b fU d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx===假设的4()b e x ldt fT f dxλεσ=-=真实的第二章稳态导热思考题与习题(P 51-53)答案 1.略 2.略3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在c o u s tλ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关 4.略5.解: 2111222()0,(),w w w w d dt r dr drr r t t t t r r t t ===>==设有: 12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=6.略7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁 15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2Wm k q q λ=⋅= 求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >由题意知:1211212w w t t q δδλλ-=+221313212tw tw 1λ12λ23λ3122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w wt t t t δδδδδλλλλλ--=+++得: 123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t t mq qδλ+-∆==+⨯⋅ 44505045050[0.0941.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ= 解: '2121'3123112313,w w w wt t t t q q δδδδδλλλλλ--==+++ 由题意知:'q q = 即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++ '33322λδδδλ=+220.6250505000.12mm =+⨯=12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===-- 33414200600.2660060w w w w R t t R t t λλ--===-- 13.略14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:12312,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++ 1)21311121129.96/()12101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-=25692.45687.2 5.2/q q q W m ∆=-=-=tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f222)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-=22205698.45687.211.2/q q q W m ∆=-=-=3) 22330'101136.11/()11131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-=23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/(A CB Wm k W m k λλλ==⋅=⋅ 求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分11113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅ 332322235101301020.221()/1.530.742C A B R m k W δδδλλλ--⨯⨯=++=⨯+=⋅R 1R 1R 1R2R3R 2R 2R3R32212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w m m W m k t δλ==⋅=℃,450w t =℃ 求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑3)由 121w w l t t q R λ-=得 tw 1112323tw 44211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010*******22211ln ln 222d d R d d λδδδπλπλδ+++=++'010*******22211ln ln 222d d R d d λδδδπλπλδ+++=++'',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010121020122211lnln 222ln ln 222l l d d q R d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==++01010010101001241lnln 22ln ln 22d d d d d d δδδδδδ++++=++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:2101010232()m m d d d d d δδδ=⇒+=+⇒= (代入上式) ''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q =3'21.7%l llq q q -∆==即热损失比原来减小21.7%。
传热学部分习题答案(第五版)
教材P81.冰雹落地后.即慢慢融化,试分析一下,它融化所需的热虽是由那些途径得到的?答:共有3个途径:⑴冰雹与地面接触处的导热;⑵冰雹表面与周围空气的热对流与导热(对流换热);⑶冰雹表面与周围固体表面的热辐射。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁⑴对流换热室内空气对流换热人体;暖气片外壁⑵热辐射墙壁热辐射人体。
电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热室内空气对流换热人体。
红外电热器:红外电热元件⑴热辐射人体;红外电热元件⑵热辐射墙壁热辐射人体。
电热暖风机:电加热器对流换热加热风对流换热人体。
冷暖两用空调机(供热时):加热风对流换热人体。
太阳辐射:阳光热辐射人体。
6.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:人体衣服表面散热途径有两个:一是通过对流换热向周围空气散热;二是通过热辐射向周围墙壁表面散热。
室内空气温度相同说明冬夏季对流换热散热相同,但因为冬季墙壁温度低于夏季,造成表面热辐射散热多于夏季,所以为保暖起见,冬季必须穿绒衣。
冬季挂上窗帘减少了通过窗户的热辐射散热,因此人感觉暖和。
9.一般保温瓶胆为真空玻璃夹层,夹层内两侧镀银,为什么它能较长时间地保持热水的温度?并分析热水的热量是如何通过胆壁传到外界的?什么情况下保温性能会变得很差?答:保温瓶胆为真空玻璃夹层,其目的是保证夹层散热方式仅是热辐射而没有对流换热方式,同时夹层内两测镀银是为了提高表面反射率,以降低热辐射散热,因此保温瓶可以较长时间地保持热水温度。
热水散热的途径:热水对流换热内胆内壁面导热内胆外壁面⑴热辐射外胆内壁面导热外胆外壁面对流换热室内空气;内胆外壁面⑵对流换热 夹层空气 对流换热 外胆内壁面 导热 外胆外壁面 对流换热 室内空气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论1.冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)。
挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响aα的大小。
)13.已知:360mmσ=、0.61()Wm Kλ=•118ft=℃2187()Whm K=•210ft=-℃22124()Whm K=•墙高2.8m,宽3m求:q、1wt、2wt、φ解:1211tqh hσλ∆=++=18(10)45.9210.361870.61124--=++2Wm111()f wq h t t=-⇒11137.541817.5787w fqt th=-=-=℃222()wfq h t t=-⇒22237.54109.7124w fqt th=+=-+=-℃45.92 2.83385.73q A Wφ=⨯=⨯⨯=14.已知:3H m=、0.2mσ=、2L m=、45λ=()Wm K•1150wt=℃、2285wt=℃求:tRλ、Rλ、q、φ解:40.27.407104532tKR WA HLλσσλλ-====⨯⨯⨯30.24.4441045tRλσλ-===⨯2m K W•3232851501030.44.44410t KWqmRλ--∆-==⨯=⨯3428515010182.37.40710ttKWRλφ--∆-==⨯=⨯15.已知:50id mm=、 2.5l m=、85ft=℃、273()Whm K=•、25110Wqm=求:i w t 、φ()i w f q h t h t t =∆=-⇒i w f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()Wc m K =•、1'200w t =℃ 求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦ 12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦ '21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()Wm K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h '100k k k -∆=⨯%8583.56 1.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
第一章导热理论基础思考题与习题(24P )答案:2已知:10.62()Wm K λ=•、20.65()Wm K λ=•、30.024()Wm K λ=•、40.016()Wm K λ=•求:'R λ、''R λ解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫•=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。
5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=•求:(1)0x q =、6x q = (2)v q g解:(1)00020x x x dtq bx dxλλ====-=-=3322452(2000)5010910x x x dt Wq bx m dxσσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=g2332245(2000)218010v d t W q b m dx λλ=-=-=-⨯-⨯=⨯g9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dt Q t dx dx dxλ+=-++• 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b fU d t T dx εσλ-= 00,x t T ==,0()x ldtx l dx===假设的4()b e x ldt fT f dxλεσ=-=真实的第二章稳态导热思考题与习题(P 51-53)答案 3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关 5.解: 2111222()0,(),w w w w d dt r dr dr r r t t t t r r t t ===>==设有: 12124()11w w Q t t r r πλ=-- 21214Fr r R r r λπλ-= r1r2rtw1tw 2Qtw1tw27.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δQ ?,可认为该墙为无限大平壁 15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯=8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mm δδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变, 且12w w t t > 由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得: 123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤221313212tw 1tw 2q 11λ12λ23λ3求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m mm δ≤≥时有11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q = 即有:2121'3123112313w w w w t t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----==== ∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--22tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃220112,75/(),50/()h W m k h W m k λλ==⋅=⋅2)223,320/()mm W m k δλ==⋅3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆解: 未变前的122030102250605687.2/11131********f f t t q W m h h δλ---===⨯++++ 1)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-=2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-=3) 22330'101136.11/()1113101754070k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-=321q q q ∴∆∆>∆?,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,tt f221.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅ 求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分111132222,A B C A B C R R R R R R R R R =++==++3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅ 33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃ 求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:tw 1112323tw 4R 1R 1R 1R2R3R 2R 2R3R31)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯ 2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+132R R R λλλ∴<= 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'llq q 解:忽略管壁热阻010*******22211ln ln 222d d R d d λδδδπλπλδ+++=++'010*******22211ln ln 222d d R d d λδδδπλπλδ+++=++'',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010121020122211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++301010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)''15ln 3ln23 1.27715ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。