椅子放平稳问题-数学建模

合集下载

数学建模试题(带答案)四

数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗?

椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗?

其次要把椅脚着地用数学符号表示出来。

椅子在不同位置时椅脚与地面的距离不同,当距离为0时,就是椅子四只脚着地,所以这个距离就是椅子位置变量θ的函数。

虽椅子有四只脚,四个距离,但由长方形是中心对称图形可用两个距离函数就行了。

A,C 两脚与地面的距离之和为()f θB,D 两脚与地面的距离之和为()g θ由假设2知道地面为连续曲面所以()f θ,()g θ是连续函数。

由假设3可得对于任意的θ,()f θ,()g θ至少一个为0。

可以假设(0)f =0,(0)g 〉0,而当椅子旋转180度后,对角线AC ,BD 互换,于是()f π〉0,()g π=0。

这样,改变椅子的位置使四只脚着地,就归结为证明如下的数学问题:已知()f θ,()g θ是θ的连续函数, 对任意的θ,()f θ*()g θ=0,而且()(0)0f g π==, (0)0,()0f g π>>。

证明存在0θ,使(0)(0)0f g θθ==。

五、模型求解(显示模型的求解方法、步骤及运算程序、结果)令()()()h f g θθθ=-,则(0)0h <和()0h π>。

由f 和g 的连续性知h 也是连续函数。

根据连续函数的基本性质,比存在0(0)θθπ<<使得(0)0h θ=,即(0)(0)f g θθ=。

最后因为(0)*(0)0f g θθ=,所以(0)(0)0f g θθ==。

文案 编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。

文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。

基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。

建模实例

建模实例

x(t ) x 0 e
rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
x(t)~S形曲线, x增加先快后慢
阻滞增长模型(Logistic模型)
参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1860 31.4 1870 38.6 1880 50.2 …… 1960 …… 179.3 1970 204.0 1980 226.5 1990 251.4
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整. 1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一 2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少 ―比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但不满足 1)。令人遗憾!
常用的计算公式
k年后人口
今年人口 x0, 年增长率 r

椅子能在不平的地面放稳的数学模型

椅子能在不平的地面放稳的数学模型

椅子能在不平的地面放稳的数学模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!椅子在不平的地面上放稳是一个常见但又非常重要的问题。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模习题答案

数学建模习题答案

数学建模习题答案数学建模部分课后习题解答中国地质大学能源学院华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?解:模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3)椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位在地面上所处的位置不变,由此可知,f (π)=g (0),g (π)=f (0).而由f (0)>0,g (0)=0,得g (π)>0,f (π)=0。

令h (θ)=f(θ)-g (θ),由f(θ)和g(θ)的连续性知h(θ)也是连续函数。

数学建模作业_实验1

数学建模作业_实验1

数学建模作业——实验1学院:软件学院:学号:班级:软件工程2015级 GCT班::日期:2016年5月10日基本实验1.椅子放平问题依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。

答:能放平,证明如下:如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,则一定存在α’∈(0,π),使得f(α’)=g(α’)=0令α=π(即椅子旋转180°,AB 边与CD 边互换),则f(π)=0,g(π)>0定义h(α)= f(α)-g(α),得到h(0)=f(0)-g(0)>0h(π)=f(π)-g(π) <0根据连续函数的零点定理,则存在α’∈( 0,π),使得 h(α’)= f(α’)-g(α’)=0结合条件f(α’)g(α’)=0,从而得到f(α’)=g(α’)=0,即四脚着地,椅子放平。

2. 过河问题依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。

答: 用i =1,2,3,4分别代表人,猫,鸡,米。

1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。

椅子能否放稳

椅子能否放稳

1 椅子在不平的地面上能放稳吗(一)问题的分析与假设由三点构成一个平面可知,通常情况下,在不平的地面椅子是三只脚着地,如果要达到放稳的要求,必须是四只椅脚同时着地。

问题中,椅子四脚呈长方形,在以下建模过程中,为方便讨论,我们作出以下假设:(1)椅子的四条腿一样长,椅脚与地面点接触,四角连线呈矩形;(2)地面高度连续变化,可视为数学上的连续曲面;(3)地面相对平坦,使椅子在任意位置至少三只脚同时着地。

(二)模型的建立与求解问题的解决,是通过建立直角坐标系,利用矩形的对角线平分且相等,以AC所在直线作为X轴,以垂至于AC的直线作为为Y轴,以矩形的中心点为原点建立直角坐标系。

如图所示:错误!用对角线AC与X轴的夹角α表示椅子当前的位置,此时,可设椅脚与地面的距离是α的函数。

椅子的四脚与地面应有四个距离的函数,但由于矩形的对称性,对角上的两点距离之和可用一个函数表示。

设A,C两脚与地面的距离之和为,B,D两脚与地面的距离之和为。

已知地面是连续曲面,椅子可在任意位置至少三只脚着地,把已知条件转化为数学问题为已知,是连续函数,即α为任意值,·=0总成立;且。

现只需证明存在α0,使。

现给出证明方法:开始α=0,将椅子旋转角度大小为∠AOB=a,此时对角线AC和BD互换。

由,知,。

令, 则有。

因为,为连续函数,所以也为连续函数,根据连续函数的基本性质,必存在α0使=0,即,又因为·=0,所以可得,证毕。

由证明的结果看,在不平的平面上,椅子呈矩形四脚距离地面的距离能同时为零,即椅子能在不平的地面放平稳。

若椅子的四脚呈等腰梯形,同理可证这样的椅子也能在不平的地面上放稳。

数学建模习题答案

数学建模习题答案

数学建模部分课后习题解答中国地质大学 能源学院 华文静1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

数学建模作业——实验1

数学建模作业——实验1

数学建模作业——实验1学院:软件学院姓名:学号:班级:软件工程2015级 GCT班邮箱:电话:日期:2016年5月10日基本实验1.椅子放平问题依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。

答:能放平,证明如下:如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,则一定存在α’∈(0,π),使得f(α’)=g(α’)=0令α=π(即椅子旋转180°,AB 边与CD 边互换),则f(π)=0,g(π)>0定义h(α)= f(α)-g(α),得到h(0)=f(0)-g(0)>0h(π)=f(π)-g(π) <0根据连续函数的零点定理,则存在α’∈( 0,π),使得h(α’)= f(α’)-g(α’)=0结合条件f(α’)g(α’)=0,从而得到f(α’)=g(α’)=0,即四脚着地,椅子放平。

2. 过河问题依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。

答: 用i =1,2,3,4分别代表人,猫,鸡,米。

1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。

椅子摆放问题

椅子摆放问题

问题:椅子能在不平的地面放稳吗?
模型假设对椅子和地面应该做出一些假设:
1.椅子四条腿一样长,椅子与地面接触可视为一个点,四角的连接呈长方形。

2.地面的高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可以视为数学上的连续平面。

3.对于椅子腿的间距和椅子腿的长度而言地面是相对平坦的,使椅子腿在任何地方都有三个腿同时着地。

分析:
当椅子放稳时应为椅子的四条腿同时着地(即椅子的四条腿脚与地面的的距离为零)
如图建立直角坐标系,A、B、C、D为椅子的四条腿脚与地面的接触点。

表示在椅子不稳的情况下将椅子绕0点旋转角度后椅子的位置,不同的则表示椅子不同的位置。

问题:
是否存在一使得椅子的四条腿与地面的距离为零。

与假设三:记为椅子旋转角度时A、C两点(腿)到地面的距离之和记为椅子旋转角度时B、D两点(腿)到地面的距离之和对,=0
有假设二和都是在区间上的连续函数(地面是连续变化的)
由假设三不妨设:=0时有这样改变椅子的位置就可以使椅
子四只脚同时着地。

归结出数学命题:
已知和是的连续函数。

对,=0 且
证明存在,使得
模型求解:
如图(2)为将椅子旋转(两对角线之夹角)角度后,对角线BD覆盖到原先对角线AC 的位置上,而AC 则旋转出一新的位置。

由可知
令则有
的连续性可知也是连续函数,根据连续函数的基本性质
比存在使得
即有
肯定存在一位置可以使得四条腿同时着地放稳椅子,即椅子可以在不平的地方放。

椅子(四条腿的椅脚连线呈长方形)...

椅子(四条腿的椅脚连线呈长方形)...

其次要把椅脚着地用数学符号表示出来。

椅子在不同位置时椅脚与地面的距离不同,当距离为0时,就是椅子四只脚着地,所以这个距离就是椅子位置变量θ的函数。

虽椅子有四只脚,四个距离,但由长方形是中心对称图形可用两个距离函数就行了。

A,C 两脚与地面的距离之和为()f θ
B,D 两脚与地面的距离之和为()g θ
由假设2知道地面为连续曲面所以()f θ,()g θ是连续函数。

由假设3可得对于任意的θ,()f θ,()g θ至少一个为0。

可以假设(0)f =0,(0)g 〉0,而当椅子旋转180度后,对角线AC ,BD 互换,于是()f π〉0,()g π=0。

这样,改变椅子的位置使四只脚着地,就归结为证明如下的数学问题:
已知()f θ,()g θ是θ的连续函数, 对任意的θ,()f θ*()g θ=0,而且()(0)0f g π==, (0)0,()0f g π>>。

证明存在0θ,使(0)(0)0f g θθ==。

五、模型求解
(显示模型的求解方法、步骤及运算程序、结果)
令()()()h f g θθθ=-,则(0)0h <和()0h π>。

由f 和g 的连续性知h 也是连续函数。

根据连续函数的基本性质,比存在0(0)θθπ<<使得(0)0h θ=,即(0)(0)f g θθ=。

最后因为(0)*(0)0f g θθ=,所以(0)(0)0f g θθ==。

椅子放平稳问题-数学建模

椅子放平稳问题-数学建模

椅子放平稳问题所谓数学模型是指对于一个实际问题,为了特定目的,作出必要的简化假设,根据问题的内在规律,运用适当的数学工具,得到的一个数学结构 . 建立及求解数学模型的过程就是数学建模. 下面例子是一个简单的数学建模问题.问题:四条腿一样长的椅子一定能在不平的地面上放平稳吗?1.模型假设 (文字转化为数学语言)(1) 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形;(2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面;(3) 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地.2.模型建立 (运用数学语言把条件和结论表现出来)设椅脚的连线为正方形 ABCD ,对角线 AC 与 x 轴重合,坐标原点 O 在椅子中心,当椅子绕 O 点旋转后,对角线 AC 变为 A'C',A'C'与 x 轴的夹角为θ.由于正方形的中心对称性,只要设两个距离函数就行了,记 A 、C 两脚与地面距离之和为 )(θf ,B 、D 两脚与地面距离之和为 )(θg .显然0)(≥θf 、0)(≥θg 。

因此椅子和地面的距离之和可令)()()(θθθg f h +=。

由假设(2),)(x f 、)(x g 为连续函数,因此)(θh 也是连续函数;由假设(3),得:0)()(=θθg f 。

则该问题归结为:已知连续函数0)(≥θf 、0)(≥θg 且0)()(=θθg f ,至少存在一个0θ,使得:0)()(00==θθg f3.模型求解 (找出0θ)证明:不妨设,0)0(>f 则0)0(=g 令2πθ=(即旋转o 90,对角线AC 和BD 互换)。

则有0)2(,0)2(>=ππg f定义:)()()(θθθg f H -=,所以0)]2()0([)2()0(<-=ππg f H H 根据连续函数解的存在性定理,得:存在)2,0(0πθ∈使得:0)()()(000=-=θθθg f H ; 又 0)()(00=θθg f 所以0)()(00==θθg f 即 当0θθ=时,四点均在同一平面上。

建模作业

建模作业

建模作业航天学院复合材料与工程周晓军 1101840117作业一:椅子能在不平的地面上放稳问题拓展——四角连线成长方形情况问题提出日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地。

试从数学的角度加以解释。

模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形。

(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件。

(3)椅子在任何位置至少有三只脚同时着地。

为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

建立模型首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180o 度后,椅子仍在原地。

把长方形绕它的对称中心O 旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

如下图所示,设椅脚连线为长方形ABCD ,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至1111A B C D 的位置,这样就可以用旋转角θ表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

数学建模作业1(长方形椅子能否在不平的地面上放稳吗)

数学建模作业1(长方形椅子能否在不平的地面上放稳吗)

数学建模作业1(长方形椅子能否在不平的地
面上放稳吗)
-CAL-FENGHAI.-(YICAI)-Company One1
四、模型建立
(显示模型函数的构造过程)
在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.
首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.
如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.
其次,把椅脚是否着地用数学形式表示出来.
我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ。

北工大数学建模作业1--已通过考核

北工大数学建模作业1--已通过考核
1.椅子放平问题
依照1.2.1节中的“椅子问题’的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。
答:模型假设 1.椅子四脚一样长,椅脚与地面接触处可视为一个点。 2.地面高度是连续变化的,即地面视为连续曲面。 3.对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只 脚与地面同时着地。 首先用变量表示椅子的位置,以长方形一对角线 AC为 X 轴,BD为 Y。设X模型构成 轴Y轴间夹角为θ。当椅子绕中心 O 旋转角度θ’后。长方形 ABCD 转至 A’B’C’D’的位置,所以对角线 AC 与 X 轴的夹角θ’表示了椅子的位置。
(2)因为增加必要的档案、文书等管理工作,因此,要预付给借贷公司贷款总额10%的佣金,
试分析,小王夫妇是否要请这家借贷公司帮助还款。
答:小王夫妇正常还款,总共的还款额为:
1574.70×12×20=377928.00元。
如果请这家借贷公司帮助还款,提前三年还完则为 17 年还完贷款。因此总的还款额是:
最后,因为f(θ1) g(θ1)=0,所以f(θ1)=g(θ1)=0.
2.过河问题
依照1.2.2节“商人安全过河’的方法,完成下面的智力游戏:人带着猫、鸡、米过过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量地少.
答:人带鸡先过河,把鸡放对岸;回来把猫带过去,把猫放对岸;同时,把鸡带回来,把鸡放下,带米过河,把米放在对岸,最后回来,把鸡带到对岸。
S=0时,即小狗、男孩、女孩同时从家出发,设小狗先向女孩运动,假设小狗最后停在Si’处,可以得到方程:

椅子摆放问题

椅子摆放问题

椅子摆放问题[问题的提出]把椅子住不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地,放稳了.试建立一个数学模型,给出椅子能在不平的地面上放稳的数学解释. [模型假设]1.椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况).即地面可视为数学上的连续曲面(放稳条件);3.对于椅脚的间距和椅脚的长度而言.地面是相对平坦,使椅子在任何位置至少有三只脚同时着地.(对假设2的进一步加强,排除出现深沟或凸峰的情况) [问题的分析]中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来. ① 用变量表示椅子的位置.注意到椅脚连线呈正方 形,且为中心对称图形.设此正方形为ABCD② 建立坐标系:对角线AC 与x 轴重合.心点O 的转角θ表示椅子的位置. ③ 用某个变量表示椅脚与地面的竖直距离, 注意到对称性及有三个脚同时着地,故用距离之和来表示[模型的建立]设A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为)θg . ① 显然()()0,≥θθg f .② 由假设2,()()θθg f ,都是θ的连续函数. ③ 由假设3,[]()()θθπθg f ,,2,0∈∀少有一个为零,即[]πθ2,0∈∀()()0,=θθg f .④ 为讨论方便起见,不妨设()()00,00 f g =.于是引进了变量θ及函数()()θθg f 、.模型的假设条件就可用简单、精确的数学语言表述.yx另外,由假设1,将椅子旋转90()2π,对角线AC 与BD 互换.由()()00,00 f g =,得到02,02=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛ππf g . 而同时着地可表述为:[]πθ2,00∈∃,使()()000==θθf g .这样椅子放稳问题可归结为如下命题(数学模型):设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()02,02,00,00=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f [模型的求解]命题的证明:令()()()θθθg f h -=,则()()()()00000 f g f h =-=,02222 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛ππππg g f h . 再由()()θθg f ,的连续性,得到()θh 是一个连续函数.从而()θh 是⎥⎦⎤⎢⎣⎡2,0π上的连续函数.由连续函数的介值定理:⎪⎭⎫⎝⎛∈∃2,00πθ,使()00=θh .即⎪⎭⎫⎝⎛∈∃2,00πθ,使()()00θθg f =.又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f . [注释]① 结论指出至多旋转90就可找到放稳点; ② 问:四条脚不一样长能否放稳?(否)③ 此模型的巧妙,关键所在是:变量θ及距离之和()θf 、()θg .而正方形的中心对称性及旋转90并不是本质的.。

数学模型经典例题

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。

(15分) 解:一、模型假设:1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。

2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。

3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。

(3分) 二、建立模型:以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定:()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和由假设3可得,()f θ、()g θ中至少有一个为0。

由假设2知()f θ、()g θ是θ的连续函数。

(3分) 问题归结为:已知()f θ和()g θ是θ的连续函数,对任意θ,()()0f g θθ=,且设()()00,00g f =>。

证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。

(3分)由f g 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在()000θθπ<<使000()0,()()h f g θθθ==即。

最后,因为00()()0f g θθ=,所以00()()0f g θθ==。

(3分)图 5二、给出7支队参加比赛的循环比赛赛程安排,要求各参赛队的每两场比赛之间的休息场次尽可能均衡,并列出表格说明。

解:设(1,2,7)i A i =表示7支参赛队。

长方形椅子能在不平的地面放稳吗

长方形椅子能在不平的地面放稳吗

课程名称 上机项目 专业班级 姓 名



数学建模 长方形椅子能在不平的地面上放稳吗? 学 号
一、问题提出
椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可 以四脚着地,放稳了。下面用数学语言证明。
二、问题分析
该模型看似与数学无关,但我们可以用数学语言给予表述,并用数学工具来证实,经过分 析,我们可以用一元变量 表示椅子的位置,用 的两个函数表示椅子四脚与地面的距离,进 而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题 的数学模型。
其次,把椅脚是否着地用数学形式表示出来。 我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅 脚不着地。由于椅子在不同的位置是θ 的函数,因此,椅脚与地面的竖直距离也是θ 的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ 的函数.而由假设(3) 可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ ,其函数值至少有 三个同时为 0.因此,只需引入两个距离函数即可。考虑到长方形 ABCD 是中心对称图形,绕 其对称中心 O 沿逆时针方向旋转 180°后,长方形位置不变,但 A,C 和 B,D 对换了。因此,记 A、B 两脚与地面竖直距离之和为 f(θ ) ,C、D 两脚与地面竖直距离之和为 g(θ ) ,其中θ ∈ [0,π ],从而将原问题数学化。 数学模型:已知 f(θ )和 g(θ )是θ 的非负连续函数,对任意θ ,f(θ ) •g(θ )=0,证 明:存在θ 0∈[0,π ],使得 f(θ 0)=g(θ 0)=0 成立。
仍在原地。把长方形绕它的对称中心 O 旋转,这可以表示椅子位置的改变。于是,旋转角度θ 这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 如下图所示,设椅脚连线为长方形 ABCD,以对角线 AC 所在的直线为 x 轴,对称中心 O 为原点,建立平面直角坐标系。椅子绕 O 点沿逆时针方向旋转角度θ 后,长方形 ABCD 转至 A1B1C1D1 的位置,这样就可以用旋转角θ (0≤θ ≤π )表示出椅子绕点 O 旋转θ 后的位置.

椅子能在不平的地面上放稳

椅子能在不平的地面上放稳

技术大致有章可循 艺术无法归纳成普遍适用的准则
想象力 洞察力
判断力
创新意识
• 学习、分析、评价、改进别人作过的模型
• 亲自动手,认真作几个实际题目
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下午5时到达山顶 并留宿。次日早8时沿同一路径下山,下午5时回到旅店。某 乙说,甲必在两天中的同一时刻经过路径中的同一地点,为 什么?
习题
• 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要
人划之外,至多能载猫、鸡、米三者之 一,而当人不在场时猫要吃鸡、鸡要吃 米。试设计一安全过河方案,并使渡河 次数尽量地少。
建模示例 如何预报人口的增长
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
求解
知g(
2
)>0,f(
2
)=0
令 续 即h函f((tt0数))== 。fg((tt)0根-)。g据(t),连则续h(函0)>数0和的h基(2本) 性<0质,,由必f存和在g的t0 (连0续<t性0<知2 ),h使也h是(t0连)=0,
最后,因为f(t) •g(t)=0,所以f(t0)= g(t0)=0。
D={(u , v) u+v=1, 2}
模型求解 穷举法 ~ 编程上机
y
图 解
状态s=(x,y) ~ 16个格点
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格; 2
k奇,左下移; k偶,右上移.
d1, d11给出安全渡河方案
1 d11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椅子放平稳问题
所谓数学模型是指对于一个实际问题,为了特定目的,作出必要的简化假设,根据问题的内在规律,运用适当的数学工具,得到的一个数学结构 . 建立及求解数学模型的过程就是数学建模. 下面例子是一个简单的数学建模问题.
问题:四条腿一样长的椅子一定能在不平的地面上放平稳吗?
1.模型假设 (文字转化为数学语言)
(1) 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形;
(2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面;
(3) 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地.
2.模型建立 (运用数学语言把条件和结论表现出来)
设椅脚的连线为正方形 ABCD ,对角线 AC 与 x 轴重合,坐标原点 O 在椅子中心,当椅子绕 O 点旋转后,对角线 AC 变为 A'C',A'C'与 x 轴的夹角为θ.
由于正方形的中心对称性,只要设两个距离函数就行了,记 A 、C 两脚与地面距离之和为 )(θf ,B 、D 两脚与地面距离之和为 )(θg .显然0)(≥θf 、0)(≥θg 。

因此椅子和地面的距离之和可令)()()(θθθg f h +=。

由假设(2),)(x f 、)(x g 为连续函数,因此)(θh 也是连续函数;由假设(3),得:0)()(=θθg f 。

则该问题归结为:
已知连续函数0)(≥θf 、0)(≥θg 且0)()(=θθg f ,至少存在一个0θ,使得:
0)()(00==θθg f
3.模型求解 (找出0θ)
证明:不妨设,0)0(>f 则0)0(=g 令2π
θ=(即旋转o 90,对角线AC 和BD 互换)。

则有0)2
(,0)2(>=π
πg f
定义:)()()(θθθg f H -=,所以
0)]2()0([)2()0(<-=π
πg f H H 根据连续函数解的存在性定理,得:存在)2,0(0π
θ∈
使得:
0)()()(000=-=θθθg f H ; 又 0)()(00=θθg f 所以0)()(00==θθg f 即 当0θθ=时,四点均在同一平面上。

相关文档
最新文档