金融建模的未来

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

* Emanuel Derman是高盛公司数量策略部门的董事总经理。这篇文章是他在第十届全球风险年会上的讲演。

在任何一个领域,建立模型的目的是什么?比较清楚的是,模型的目的是用来预测未来或者控制未来。我在这里的任务就是预测一个关于预测未来的领域的未来。为了这个目标:我必须说明我们现在身处何地:什么模型现在正在起作用,为什么这些模型能够起作用。我的观点或许有点局限,因为我被作为一个自然科学家而不是一个经济学家培养,在过去的十年里,以为那些以交易复杂证券-大部分是衍生品-谋生的人开发模型和系统为乐,并以此谋生。这些工作非常有趣,这个领域虽然范围有限,但却是我了解麾尽的一个领域。

我首先将描述一下今天的衍生品交易环境:和大量分散的数据,信息和交易纪录做斗争,雄心勃勃地尝试用自然科学中的经典工具来描述各种现象背后的规律,有些时候获得了异乎寻常的成功。人们通常会担心模型风险,但我认为最大的风险来自运营过程,例如管理风险和操作风险而不是模型风险。

有这个印象之后。你就能理解为什么在高盛,除了建立模型,写文章和走访客户,我们这个有30个人的权益衍生品数量策略小组中,只有4到5个人参与建模工作:分离金融变量,研究它们之间的动态关系,用微分方程和统计相关度来描述这些关系,并解出这些问题,最后写程序实现这些解。

这些模型被怎样运用?简单来说,用来给做市商和私人交易的交易所期权和OTC期权定价;用来计算和对冲暴露在不同国家和货币的组合中的风险;用来转换报价到隐含波动率;用来建立结构衍生品;用系统来找出公平价格和市场价格之间的不同;对用来套利的公司金融工具进行估价和对冲。最后,为了估计公司级的在险价值;我们也用模型来直接检验非衍生证券。

模型是重要的,因为我们的应用建立在它之上,但是建构这些模型却只占用了很少的资源。为什么和程序员和系统架构者比起来,建模者会这么少?更有趣的是,为什么在权益市场中,建模者又要比在固定收益市场中少?

衍生品和非线性 Stephon Ross教授在Palgrave Dictionary of Economics中这样表述:"...期权定价理论不仅是金融学,而且是所有经济学中最成功的理论。"这一点看起来毫无疑问,但问题是:为什么这个理论会运作得这么好?我认为原因在于期权定价理论中的基本问题是为了对混合,非线性的证券进行定价,期权理论虽然精巧但却是并不完美的近似。我不认为那是一种缺点,交易员直觉地使用期权理论,以波动率或者概率的简单,线性变化来理解价格变化中复杂的,非线性的模式。他们把复合衍生品看做简单证券的组合。他们线性思考波动率和概率的变化,并且用模型转换为价格中的非线性变化。

在被交易的证券的现实世界中,Black,Scholes和Merton的假设很少能被严格满足。但是他们把复合衍生品看作股票和债券的组合的观点抓住了真理的核心,为模型的健壮性提供了基础。

同样的策略-把一些复杂的东西看作简单事物的非线性组合-是收益率曲线模型的基础,在这种思路下,

可以把互换看作一些债券组合的逼近。同样,隐含树模型认为奇异期权是不同交割价和到期日的vanilla期权组合的逼近。

期权理论能够很好的运作是因为它是相对地而不是绝对地定价。一个必要条件就是被学术界蔑视的对价格调整的主张:没有使得衍生品价格和基础证券的价格在一些条件下相符合的努力,价格的相对性就没有基础。基准证券和线性股票期权可以和分子由不可见的原子组成相类比,我们用这个原理来理解基本的化学和合成过程。这里,股票是原子:衍生品的不可约的组成部分。

但这种相似性也是有限的。在物理学中,我们有对原子物理基本原则的深刻了解从而来支持化学,但是在金融学中,我们了解期权的原理--分子化学--更多于对股票原理的理解。这并非没有先例,19世纪的化学领先于20世纪的物理学。在现在,我们的股票模型缺少深刻的结构和坚实的原理。于是,大部分的传统的权益模型专注于数据之上。

但在债券上,情况有所不同。虽然他们是固定收益市场的基础,利率从债券价格中获得。但是人们把利率看作基准证券,把债券价格看作非线性衍生品种。于是,即使最简单的金融工具也是非线性的,需要利用数学来近似逼近。那就是为什么在固定收益领域有比在权益市场中多得多的数量建模员和计算机科学家。

传统模型的局限性传统模型能在哪里使用?“理论”,在自然科学中,意即,找出基本变量,并且利用他们之间的基本动态关系来描述世界的其他部分。但是自然科学理论是人和上帝的游戏,利用一些显见的变量,例如位置和动量,及一些基本原理,如Newton's,我们相信独立于人类的存在,永远正确。我不相信这种独立性象看上去那么显然,最近的宇宙学理论说我们的宇宙有很多小宇宙所构成*,每一个都是收缩的,并且每一个都有不同的原理。 *译者注:超弦理论认为物质最小单位不是原子,夸克,而是尺度更小的弦,弦的运动形成了很多个小宇宙,也就是数学上的Calabi-Yau流形,每一个这样的流形都是卷曲的,由于很小所以并不能看到,我们在现实世界中只能观察到三个维度,如果再加上时间,就是四维。

在金融世界中,相反的,是人与人之间的游戏。但是人类的金融变量很清楚并不是普适:他们是一些数量--期望收益和期望风险--不可能独立于人而存在;只有人才会有期望。并且这些变量常常是隐藏的或者观察不到--他们是只能从一些其他交易的数量所观察到的隐含变量的理论的一部分。但是人的期望和策略都是暂时的,不象物理学家的永恒的上帝。因此金融模型从来不能提供象物理学中8位精度那样的预测。工程上的进步常常跟随着科学理解上的进步。工业革命起于力学和热力学。计算机革命需要布尔代数和固态物理。刚刚开始的基因工程和免疫学的生物工程革命,需要DNA结构和基因密码。

最后,我不认为物理学和基因学是金融和经济学可以适用的模型。物理学有不可交换法则,有通过数学形式表达的很强的预测力量。你一般会预期物理学的教科书纯粹和严格。金融学有很少的动态原理和很弱的预测能力,你大概预期它的教科书将会有些粗略。那么为什么现在金融学书常常看上去象纯数学,充

相关文档
最新文档