人教版九年级数学上册 23.1 图形的旋转
合集下载
人教版九年级初中数学上册第二十三章旋转-图形的旋转1PPT课件
![人教版九年级初中数学上册第二十三章旋转-图形的旋转1PPT课件](https://img.taocdn.com/s3/m/de702b405bcfa1c7aa00b52acfc789eb172d9e2f.png)
新知探究
旋转的性质 (1)旋转前、后的图形全等. (2)对应点到旋转中心的距离相等. (3)对应点与旋转中心所连线段的夹角等于旋转角.
新知探究
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺 时针旋转90°,画出旋转后的图形.
A
D
E
FB
C
新知探究
【分析】关键是确定△ADE三个顶点的对应点,即它们旋转后的位置.
第二十三章 旋转
23.1.1 图 形 的 旋 转
—-第一课时
人教版九年级(初中)数学上册 授课老师:XX
前言
学习目标
1.认识旋转,熟悉现实生活中的旋转现象。 2.理解图形旋转的基本性质。
重点难点
重点:分析研究旋转现象,探索旋转的性质。 难点:图形旋转的变换关系。
生活中常见的旋转
新课引入
电风扇
摩天轮
解:因为点A是旋转中心,所以它的对应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后D与B 重合。 设点E的对应点F. ∵△ADE≌△ABF ∴∠ABF=∠ADE,BF=DE. 因此在CB的延长线上取点F,使BF=DE, 则△ABF为旋转后的图形.
课堂练习
如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达 △ACE的位置.
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
A
② ∠DAE等于多少度? 60° ③ △DAE是什么三角形? 等边三角形 ④ 如果M是AB的中点,那么经过上述旋转后,点 M转到了什么位置? AC边中点
M
E
BD
C
课堂练习
如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达
人教版九年级数学上册23.1:图形的旋转(教案)
![人教版九年级数学上册23.1:图形的旋转(教案)](https://img.taocdn.com/s3/m/237fb07e2e60ddccda38376baf1ffc4ffe47e2dd.png)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。
23.1第2课时旋转作图+课件+2024-—2025学年人教版数学九年级上册
![23.1第2课时旋转作图+课件+2024-—2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/39b9d8b7b9f67c1cfad6195f312b3169a451eae3.png)
作图基本步骤
选择不同的旋转角和 旋转角图案不同
课堂训练
1.将图1绕O点顺时针旋转90°,得到图形是( B )
O
O
O
O
图1
A
B
C
课堂训练
2.将图2沿MN翻折180°,再旋转180°,所得图形是( D )
图2
A
B
C
D
课堂训练
3.下图为 4×4 的正方形网格,每个小正方形的边长均为 1,将
△OAB 绕点 O 逆时针旋转 90°, 你能画出△OAB 旋转后的图形 △O'A'B'吗?
a
β
αo
o
(2)两个旋转中,旋转中心不变,_旋__转__角_改变了,产生了不__同__的旋转效果.
新知探究
动手操作 下面的图形是某设计师设计图案的一部分,请你运用旋转 变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°, 270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部 分不要涂错,否则不能出现理想的效果,你来试一试吧!B源自A'AB'
O
课堂训练
4. 画出下图所示的四边形 ABCD 以 O为中心,旋转角为 60°的
旋转图形.
A' D'
D B'
A
C
C'
B
O
课堂训练
5. 借助旋转我们可以设计出许多美丽的图案.请自己设计一幅作品.
第二十三章 旋转
23. 1 图形的旋转
第2课时 旋转作图
学习目标-新课导入-新知探究-课堂小结-课堂训练
学习目标
1.掌握旋转作图的一般步骤.(重点) 2.通过旋转设计美丽的图案.(难点)
人教版数学九年级上册课件14-第二十三章23.1图形的旋转
![人教版数学九年级上册课件14-第二十三章23.1图形的旋转](https://img.taocdn.com/s3/m/36f83defbe1e650e53ea99ac.png)
(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度; (2)对应点到旋转中心的距离相等,对应线段相等,对应角相等; (3)图形的大小和形状都没有发生改变,只改变了图形的位置
例2 (2020北京东城期末)如图23-1-2,将△ABC绕点C顺时针旋转得到△DEC,使点 A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD; ②AB⊥EB;③BC=EC;④∠A=∠EBC.其中一定正确的是 ( )
2
+∠EBC不一定等于90°,故②不一定正确.综上所述,一定正确的是③④.故选C.
答案 C
温馨提醒 利用旋转的性质解决问题时,要准确确定旋转的对应线段、对应 角、旋转角等,然后利用旋转的性质求线段的长度、角的度数等.
知识点三 旋转作图
旋转作图 的依据 作图要素 作图步骤
(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角; (2)对应点到旋转中心的距离相等
答案 (1)A (2)60° (3)等边 方法归纳 一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那
么这个点就是旋转中心,对应点与旋转中心所连线段的夹角就是旋转角.
知识点二 旋转的性质
旋转的性质 重点解读
(1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等
经典例题全解
题型一 利用旋转的性质求线段长度或角度 例1 (2019天津滨海新区期中)如图23-1-5,点O是等边三角形ABC内的一点, ∠BOC=150°,将△BOC绕点C按顺时针方向旋转得到△ADC,连接OD,OA. (1)求∠ODC的度数; (2)若OB=2,OC=3,求AO的长.
图23-1-5
图23-1-3
例2 (2020北京东城期末)如图23-1-2,将△ABC绕点C顺时针旋转得到△DEC,使点 A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD; ②AB⊥EB;③BC=EC;④∠A=∠EBC.其中一定正确的是 ( )
2
+∠EBC不一定等于90°,故②不一定正确.综上所述,一定正确的是③④.故选C.
答案 C
温馨提醒 利用旋转的性质解决问题时,要准确确定旋转的对应线段、对应 角、旋转角等,然后利用旋转的性质求线段的长度、角的度数等.
知识点三 旋转作图
旋转作图 的依据 作图要素 作图步骤
(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角; (2)对应点到旋转中心的距离相等
答案 (1)A (2)60° (3)等边 方法归纳 一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那
么这个点就是旋转中心,对应点与旋转中心所连线段的夹角就是旋转角.
知识点二 旋转的性质
旋转的性质 重点解读
(1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等
经典例题全解
题型一 利用旋转的性质求线段长度或角度 例1 (2019天津滨海新区期中)如图23-1-5,点O是等边三角形ABC内的一点, ∠BOC=150°,将△BOC绕点C按顺时针方向旋转得到△ADC,连接OD,OA. (1)求∠ODC的度数; (2)若OB=2,OC=3,求AO的长.
图23-1-5
图23-1-3
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
![人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例](https://img.taocdn.com/s3/m/2a2d46610812a21614791711cc7931b765ce7bf9.png)
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。
人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
![人教版数学九年级上册第二十三章《23.1 图形的旋转》课件](https://img.taocdn.com/s3/m/ee4c06be534de518964bcf84b9d528ea81c72fa3.png)
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
九年级上册23.1图形的旋转(共19张PPT)
![九年级上册23.1图形的旋转(共19张PPT)](https://img.taocdn.com/s3/m/04bac39b4128915f804d2b160b4e767f5acf808b.png)
知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.
人教版九年级上册数学 23.1图形的旋转 (共90张PPT)
![人教版九年级上册数学 23.1图形的旋转 (共90张PPT)](https://img.taocdn.com/s3/m/f36591df4028915f804dc279.png)
活动二
B´ A C B O
A´
C´
找一找:找出旋转的旋转角,这些角有什么关系? ∠AOA ′ ∠COC′ =′ ∠BOB= 对应点与旋转中心所连线段的夹角等于旋转角。
活动二
B´
A C A´
B
旋转的性质:
转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角.
B
O
C´
看一看:在旋转过程中△ABC的形状大小是否 发生改变?旋转前后的两个三角形有什么关系?
旋转前后的图形全等。 (旋转不改变图形的大小和形状。)
活动二 A
C
B´
A´
B
O
C´
量一量:图中的OC和哪条线段相等?还有没有 类似这样对应相等的线段呢? OC=OC′ OA=OA ′ OB=OB ′
对应点到旋转中心的距离相等。
A D
E′
B
∴点 A 的对应点是它本身. 又∵AD = AB,∠DAB = 90°, E ∴旋转后点 D 与点 B 重合. ∴ △ABE′≌△ADE, ∴点 E 的对应点 E′在 CB 延 C 长线上,且 BE′= DE. 使 BE′= DE,连接 AE′
还有别的方法能 将△ADE旋转为 △ABE′吗?
从生活中来
23.1 图 形 的 旋 转(1)
活动1:自主学习
自学提纲:
自学课本59页练习前的内容,解决问题:
1.什么叫做图形的旋转? 2. 图形旋转的条件是什么? 3. 说一说你知道的我们生产、生活中旋转的 例子.
旋转的概念:
把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转.
活动三
例:如图,E是正方形ABCD中CD边上 任意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形.
23.1图形的旋转(课件)2024-2025学年九年级数学上册(人教版)
![23.1图形的旋转(课件)2024-2025学年九年级数学上册(人教版)](https://img.taocdn.com/s3/m/ada725ad0408763231126edb6f1aff00bed57022.png)
P
对应点
O
120°
P′
合作探究
探究 如图,在硬纸板上,挖一个三角形洞,再挖一个小洞O作为
旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图
案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形
(△A′B′C′),移开硬纸板.
△A′B′C′是由△ABC绕点O按顺时针方向旋转得到的.
小试牛刀
3.如图,△ABC是等边三角形,D是BC边上的中点,
△ABD经过旋转后到达△ACE的位置,那么
A
(1)旋转中心是______;
点A
(2)点B、D的对应点分别是点_________;
点C和点E
(3)线段AB、BD、DA的对应线段
分别是___________;
AC、CE、AE
(4)∠B的对应角是_______;
人教版数学九年级上册
第23.1 图形的旋转
学习目标
1.认识旋转,理解图形旋转的三要素.
2.理解旋转的性质.
3.利用旋转的性质设计图形.
情境引入
情境引入
【问题】观察这些图形,你发现了什么?
它们都是沿某个方向绕定点转动.
互动新授
思考 如图(1),钟表的指针在不停地转动,从3时到5时,
时针转动了多少度?
问:线段OA与OA′有什么关系?_______;
OA=OA′
∠AOA′与∠BOB′有什么关系?______________;
∠AOA′=∠BOB′
△ABC与△A′B′C′形状和大小有什么关系?
__________________.
△ABC≌△A′B′C′
总结归纳
旋转的性质:
对应点到旋转中心的距离相等.
人教版数学九年级上册23.1第2课时旋转作图-课件
![人教版数学九年级上册23.1第2课时旋转作图-课件](https://img.taocdn.com/s3/m/1f38dc452379168884868762caaedd3382c4b56f.png)
(5)旋转中心是唯一不动的点;
讲授新课
一 简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后
的线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使 得∠BAX=60°. (2)在射线AX上取点C,使得AC=AB.线段AC为所求.
试一试 画出下图所示的四边形 ABCD 以 O为中心,
心,把△ADE顺时针旋转90°,画出旋转后的图形.
A
D
想一想:本题中作
图的关键是什么?
E
B
C
作图关键-关键是确定点E的对应点E′
解:∵点A是旋转中心,∴它的对应 A
D
点是 点A .正方形ABCD中,
AD=AB,∠DAB= 90 °,所以旋转后
重合. 设点E的对应点为E′.
E
∵△ADE≌ △ABE′
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C&旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
讲授新课
一 简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后
的线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使 得∠BAX=60°. (2)在射线AX上取点C,使得AC=AB.线段AC为所求.
试一试 画出下图所示的四边形 ABCD 以 O为中心,
心,把△ADE顺时针旋转90°,画出旋转后的图形.
A
D
想一想:本题中作
图的关键是什么?
E
B
C
作图关键-关键是确定点E的对应点E′
解:∵点A是旋转中心,∴它的对应 A
D
点是 点A .正方形ABCD中,
AD=AB,∠DAB= 90 °,所以旋转后
重合. 设点E的对应点为E′.
E
∵△ADE≌ △ABE′
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C&旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
人教版九年级数学上册23.1.1旋转的概念和性质课件
![人教版九年级数学上册23.1.1旋转的概念和性质课件](https://img.taocdn.com/s3/m/bbcf66e1f80f76c66137ee06eff9aef8941e487d.png)
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午9时43分22.4.1209:43April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二9时43分50秒09:43:5012 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念和性质
Hale Waihona Puke 教学重点:旋转的概念. 教学难点:能够正确地辨别出一种变换是否为旋转.
教学过程
一、创设情境,导入新课
2
大水轮在不停地转动.
时钟的分针在不停地旋转.
风车在风中转动
(1)从3时到5时,时针转动了多少度? (2)风车风轮的每个叶片在风的吹动下转动到新的 位置.每个叶子转了多少度? 学生观察分析、体会感知旋转.
二、合作探究,感受新知
1.概念的认识 (1)把一个图形绕着某一个点O转动一个角度的图形变换叫 做旋转,点O叫做旋转中心,转动的角叫做旋转角. (2)旋转对应点.
2.例题分析例如图,△OAB绕O点按顺时针方向旋转得到 △OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置?
谢谢观赏
You made my day!
我们,还在路上……
教师边讲解边演示. 教师引导学生回答这些问题,教师书写. 学生理解认识有关概念. 学生积极思考,勇于发言.
三、课堂小结,梳理新知
1.旋转的概念. 2.旋转中心、旋转角、对应点.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时43分49秒09:43:4922.4.12
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念和性质
Hale Waihona Puke 教学重点:旋转的概念. 教学难点:能够正确地辨别出一种变换是否为旋转.
教学过程
一、创设情境,导入新课
2
大水轮在不停地转动.
时钟的分针在不停地旋转.
风车在风中转动
(1)从3时到5时,时针转动了多少度? (2)风车风轮的每个叶片在风的吹动下转动到新的 位置.每个叶子转了多少度? 学生观察分析、体会感知旋转.
二、合作探究,感受新知
1.概念的认识 (1)把一个图形绕着某一个点O转动一个角度的图形变换叫 做旋转,点O叫做旋转中心,转动的角叫做旋转角. (2)旋转对应点.
2.例题分析例如图,△OAB绕O点按顺时针方向旋转得到 △OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置?
谢谢观赏
You made my day!
我们,还在路上……
教师边讲解边演示. 教师引导学生回答这些问题,教师书写. 学生理解认识有关概念. 学生积极思考,勇于发言.
三、课堂小结,梳理新知
1.旋转的概念. 2.旋转中心、旋转角、对应点.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时43分49秒09:43:4922.4.12
人教版九年级数学上册第23章 旋转 旋转及其性质
![人教版九年级数学上册第23章 旋转 旋转及其性质](https://img.taocdn.com/s3/m/8150b48f48649b6648d7c1c708a1284ac9500565.png)
∠OAB=120°, ∠AOB绕点O逆时针旋转, 每次旋转90°,则第2 024 次旋转后,
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:连接EE′, 由旋转性质知BE=BE′,∠EBE′=90°, ∴∠BE'E=45°, 在△EE′C中,E′C=1,EC=3,
由勾股定理逆定理可知∠EE′C=90°, ∴∠BE′C=∠BE′E+∠EE′C=135°.
拓广探索题 将一个直角三角板绕30°角的顶点顺时针旋转, 使一直角边与原斜边在同一条直线上(如图所示).你知道 旋转角是多少吗?连结BB’,△ABB’有什么特征吗?
设计方案,使正方形ABCD旋转后能与正方形CDEF重合,
你能写出几种方案?
解: 方案一:把正方形ABCD绕点D顺时针旋转90°. B
方案二:把正方形ABCD绕点C逆时针旋转90°.
A
方案三: 把正方形ABCD绕CD的中点O旋转180°.
C
·F O
D
E
能力提升题
1. 如图(1)中,△ABC和△ADE都是等腰直角三角形,
转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋
千运动.
A.2
B.3
C.4
D.5
基础巩固题
2. 下列说法正确的是( B ) A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
基础巩固题
D
E
A
C
D
B
基础巩固题
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到 的.已知∠AOB=20 °, ∠ A ′ OB =24°, AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 , 旋转角等于 44 °.
如果图形上的点P经过 A 旋转变为点P’,那么这
两个点叫做这个旋转的 对应点。线段OP与OP’ 叫做对应线段.
B
P 旋转角 P’
O 旋转中心
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_45度到点B.
旋转的三要素: 旋转中心、 旋转方向、旋转角度.
我能行,我最棒!
若叶片 A 绕 O 顺时针旋转到叶
、B(3,0)、C(1,4).
请找出旋转中心P的位置,并写出P的坐标.
解:根据旋转中心到对应点 距离相等可以知道,旋转中
y
C
P(3,2)
心P既在线段AD的垂直平分
PE
线上,又在线段BE的垂直平 分线上,他们的交点就是点P.
OA B D
x
能力提升题
如图,正方形ABCD和正方形CDEF有公共边CD,请
片 B,则旋转中心是___O___,旋转
B
A
角是_∠__A_O_B____,旋转角等于__6_0_
O
C
度,其中的对应点有__A_与__B__、
_B__与__C__、 __C_与__D__、 __D_与__E__、 F _E__与_F___、 __F_与__A__ .
D
E
如右图,点P是△CBP′的位置时,其旋转中 心是点 B ,旋转角度为 90° .
基础巩固题
5.△ABC绕点A旋转一定角度后得到△ADE,若BC=4, AC=3,则下列说法正确的是( D )
A. DE=3 B. AE=4 C. ∠CAB是旋转角 D. ∠CAE是旋转角
2. 如图,△ADE可由△CAB旋转而成,点B的对应点是E,点
A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)
(1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形? 解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置 时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
150°
△ABB′是等腰三角形
定 义 三要素:旋转中心,旋转方向 和旋转角度
旋转 性质
如图,△ABC为等边三角形,点P在△ABC中,将 △ABP旋转后能与△CBQ重合. (1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形?
分析 (1)根据对应点到旋转中心的距 离相等来确定旋转中心的位置.(2)对 应点与旋转中心连线的夹角都等于旋 转角.(3)由旋转角和对应边的关系可 以得到答案.
怎样来定义 这种图形变 换?
把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.
(2)风车风轮的每个叶片在风的吹动下转动到新的 位置.
怎样来定义这 种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动 一定角度.
旋转的概念
把一个平面图形绕着平面内某一点O转动一个角 度,叫做图形的旋转。 点O叫做旋转中心,转动的角叫做旋转角。
则△ABE′为旋转后的图形.
BE′= DE ,
因此 在CB的延长线上截取点E′,使BE′=DE .
A
D
想一想:还有其他方法
确定点E的对应点E′吗?
E
E′
B
C
答:延长CB,以点A为圆心,AE 的长为半径画弧,交CB的延
长线于E',连接AE',则△ABE'为旋转后的图形.
基础巩固题
1.下列现象中属于旋转的有( C )个 ①地下水位逐年下降;②传送带的移动;③方向盘的
第二十三章旋转
23.1 图形的旋转与性质
学习目标
2.能够根据旋转的基本性质解决实际 问题.
1.掌握旋转的有关概念及基本性质.
创设情境导入新课
O
(1)以上现象有什么共同特点? (2)钟表的指针、电扇的风叶在转动过程中,其 形状、大小、位置是否发生变化呢?
思考
(1) 钟表的指针在不停地转动, 从12时到4时,时针转动了__1_2_0_°_度.
旋转的性质
1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,
OF=OC)
2.对应点与旋转中心所连线段的夹角等于旋转角.
(∠DOA=∠EOB=∠FOC)
A
E
3.旋转前、后的图形全等.
△ABC≌△DEF
F B
D O
例 如图,E是正方形ABCD中CD边上任意一点,以点A为 中心,把△ADE顺时针旋转90°,画出旋转后的图形.
∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时 针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕 着A点经过逆时针旋转得到图(2).两次旋转的角度分别为
( A)
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
2.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将 △ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1, BE=2,CE=3则∠BE′C=___13_5____度.
A
D
想一想:本题中作
图的关键是什么?
E
作图关键-确定△ADE三个顶点的对
B
C
应点,即它们旋转后的位置.
解:∵点A是旋转中心,∴它的
A
D
对应点是 点A .正方形ABCD中,AD=AB,
∠DAB= 90°,所以旋转后 点D与点B重
E
合.
设点E的对应点为E′.
∵△ADE ≌△ABE′
E′ B
C
∴∠ABE′=∠ADE= 90 °,
由勾股定理逆定理可知∠EE′C=90°, ∴∠BE′C=∠BE′E+∠EE′C=135°.
拓广探索题 将一个直角三角板绕30°角的顶点顺时针旋转, 使一直角边与原斜边在同一条直线上(如图所示).你知道 旋转角是多少吗?连结BB’,△ABB’有什么特征吗?
设计方案,使正方形ABCD旋转后能与正方形CDEF重合,
你能写出几种方案?
解: 方案一:把正方形ABCD绕点D顺时针旋转90°. B
方案二:把正方形ABCD绕点C逆时针旋转90°.
A
方案三: 把正方形ABCD绕CD的中点O旋转180°.
C
·F O
D
E
能力提升题
1. 如图(1)中,△ABC和△ADE都是等腰直角三角形,
转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋
千运动.
A.2
B.3
C.4
D.5
基础巩固题
2. 下列说法正确的是( B ) A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
基础巩固题
D
E
A
C
D
B
基础巩固题
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到 的.已知∠AOB=20 °, ∠ A ′ OB =24°, AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 , 旋转角等于 44 °.
如果图形上的点P经过 A 旋转变为点P’,那么这
两个点叫做这个旋转的 对应点。线段OP与OP’ 叫做对应线段.
B
P 旋转角 P’
O 旋转中心
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了_45度到点B.
旋转的三要素: 旋转中心、 旋转方向、旋转角度.
我能行,我最棒!
若叶片 A 绕 O 顺时针旋转到叶
、B(3,0)、C(1,4).
请找出旋转中心P的位置,并写出P的坐标.
解:根据旋转中心到对应点 距离相等可以知道,旋转中
y
C
P(3,2)
心P既在线段AD的垂直平分
PE
线上,又在线段BE的垂直平 分线上,他们的交点就是点P.
OA B D
x
能力提升题
如图,正方形ABCD和正方形CDEF有公共边CD,请
片 B,则旋转中心是___O___,旋转
B
A
角是_∠__A_O_B____,旋转角等于__6_0_
O
C
度,其中的对应点有__A_与__B__、
_B__与__C__、 __C_与__D__、 __D_与__E__、 F _E__与_F___、 __F_与__A__ .
D
E
如右图,点P是△CBP′的位置时,其旋转中 心是点 B ,旋转角度为 90° .
基础巩固题
5.△ABC绕点A旋转一定角度后得到△ADE,若BC=4, AC=3,则下列说法正确的是( D )
A. DE=3 B. AE=4 C. ∠CAB是旋转角 D. ∠CAE是旋转角
2. 如图,△ADE可由△CAB旋转而成,点B的对应点是E,点
A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)
(1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形? 解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置 时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
150°
△ABB′是等腰三角形
定 义 三要素:旋转中心,旋转方向 和旋转角度
旋转 性质
如图,△ABC为等边三角形,点P在△ABC中,将 △ABP旋转后能与△CBQ重合. (1)旋转中心是哪一点? (2)旋转角是多少度? (3)△BPQ是什么三角形?
分析 (1)根据对应点到旋转中心的距 离相等来确定旋转中心的位置.(2)对 应点与旋转中心连线的夹角都等于旋 转角.(3)由旋转角和对应边的关系可 以得到答案.
怎样来定义 这种图形变 换?
把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.
(2)风车风轮的每个叶片在风的吹动下转动到新的 位置.
怎样来定义这 种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动 一定角度.
旋转的概念
把一个平面图形绕着平面内某一点O转动一个角 度,叫做图形的旋转。 点O叫做旋转中心,转动的角叫做旋转角。
则△ABE′为旋转后的图形.
BE′= DE ,
因此 在CB的延长线上截取点E′,使BE′=DE .
A
D
想一想:还有其他方法
确定点E的对应点E′吗?
E
E′
B
C
答:延长CB,以点A为圆心,AE 的长为半径画弧,交CB的延
长线于E',连接AE',则△ABE'为旋转后的图形.
基础巩固题
1.下列现象中属于旋转的有( C )个 ①地下水位逐年下降;②传送带的移动;③方向盘的
第二十三章旋转
23.1 图形的旋转与性质
学习目标
2.能够根据旋转的基本性质解决实际 问题.
1.掌握旋转的有关概念及基本性质.
创设情境导入新课
O
(1)以上现象有什么共同特点? (2)钟表的指针、电扇的风叶在转动过程中,其 形状、大小、位置是否发生变化呢?
思考
(1) 钟表的指针在不停地转动, 从12时到4时,时针转动了__1_2_0_°_度.
旋转的性质
1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,
OF=OC)
2.对应点与旋转中心所连线段的夹角等于旋转角.
(∠DOA=∠EOB=∠FOC)
A
E
3.旋转前、后的图形全等.
△ABC≌△DEF
F B
D O
例 如图,E是正方形ABCD中CD边上任意一点,以点A为 中心,把△ADE顺时针旋转90°,画出旋转后的图形.
∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时 针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕 着A点经过逆时针旋转得到图(2).两次旋转的角度分别为
( A)
A.45°,90° B.90°,45° C.60°,30° D.30°,60°
2.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将 △ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1, BE=2,CE=3则∠BE′C=___13_5____度.
A
D
想一想:本题中作
图的关键是什么?
E
作图关键-确定△ADE三个顶点的对
B
C
应点,即它们旋转后的位置.
解:∵点A是旋转中心,∴它的
A
D
对应点是 点A .正方形ABCD中,AD=AB,
∠DAB= 90°,所以旋转后 点D与点B重
E
合.
设点E的对应点为E′.
∵△ADE ≌△ABE′
E′ B
C
∴∠ABE′=∠ADE= 90 °,