5汽轮机变工况特性1
汽轮机的变工况
* Gcr1 p01 * Gcr p0
二、缩放喷管的变工况 设计背压p1:保持蒸汽在斜切部分不膨胀 的最低背压。 特征背压p1a:喷嘴喉部保持临界状态的 最高背压。 极限背压p1d:在斜切部分膨胀达到极限 时对应的压力。
膨胀度
图3-5 速度系数随压力比的变化曲线
第二节
级与级组的变工况
亚临界工况下,按弗留格尔公式计算。末级p0
沿双曲线变化。
倒数第三级之前的各级pg1<<p01 ,pz <<p0
2 p01 p z21 T0 G1 G p02 p z2 T01
=
p z1 2 p 1 ( ) p01 T0 p z 2 T01 2 p0 1 ( ) p0
1 m1 1 m
前提条件: 亚临界工况下比容变化较小;
近似计算中,对上式近似假定: (1)工况变动时,反动级的反动度基本不变,冲
动级的速比变化不大时,反动度的变化较小, (2)亚临界级的较大
m m1 m 0 p2
p0
p 较大, 0 p2 较小,
忽略大根号内分子、分母的第二项。
四、压力与流量关系式的应用
1. 应用条件
1) 通汽面积不变;
若因结垢或腐蚀等使变工况下通汽面积有了改 变,应进行修正。即:
Gc1 p 01 Gc p0 T0 T01
G1 G
2 2 p01 p g1 2 2 p0 p g
T0 T01
A1 a A
——面积变化之比。
对于调节级,只有当第一调节汽门开大或关小
§3.1 喷嘴的变工况特性 分析:喷嘴前后参数与流量之间的变化关系 激波:缩放喷嘴背压逐渐高于设计值时,将先 再喷嘴出口处,后在喷嘴段渐放段内产生冲波,超 音速汽流经过冲波,流速大大降低,损失很大,
汽轮机设备运行(中级工)
汽轮机设备运行(中级工)章节练习及答案第一篇汽轮机运行第一章汽轮机的工作原理一、名词解释1、冲动力答:由力学可知,当一运动物体在碰到另一物体时,就会受到阻碍而改变其速度和方向,同时给阻碍它运动的物体一作用力,通常称这个作用力为冲动力。
2、轮周功率答:周向力F u在动叶片上每秒钟所作的功,它等于周向力F u与圆周速度之积。
P u=F uu3、汽耗率答:汽轮发电机每发1kw.h电所消耗的蒸汽量,称为汽耗率d,单位为kg/(kw.h)。
4、最佳速比答:圆周速度u与出口汽流速度c1之比称作速比,用符号x1表示。
人们把轮周效率最高的速比称作最佳速比(x1)op。
x1=u/c1。
二、填空题1、汽轮机是一种以具有一定温度和压力的水蒸汽为工质,将热能转换为机械能的回转式原动机。
2、反动力是由原来静止或运动速度较小的物体,在离开或通过另一物体时,骤然获得一个较大的速度增加而产生的。
3、汽轮机按工作原理可分为冲动式汽轮机、反动式汽轮机和冲动反动联合式汽轮机。
4、型号“N300-16.7/537/537-3型”中,N表示凝汽式,额定功率为300M ,主蒸汽压力为16.7mpa,主、再热蒸汽温度为537℃,3表示第三次改型设计。
5、对于具有反动度的冲动式叶片,不仅受蒸汽的冲动力作用,而且受蒸汽的在动叶片内膨胀加速所产生的反动力作用。
6、多级汽轮机由若干个级,按压力高低顺序依次排列组成。
7、蒸汽作用在动叶片的轴向力,由叶片反动度引起叶片前后产生压力差产生的轴向力和蒸汽对动叶片作用力轴向分力两部分组成。
8、汽轮机损失分为外部损失和内部损失两种。
9、汽轮机级内损失包括叶高损失、扇形损失、叶栅损失、余速损失、叶轮摩擦损失、撞击损失、部分进汽损失湿汽损失及漏汽损失。
10、汽轮机的外部损失包括机械损失和外部漏汽损失两种。
11、汽轮机变工况时,如果级的焓降增加,则反动度减少。
12、供热式汽轮机有背压式和调整抽汽凝汽式汽轮机两类。
13、汽轮发电机组每小时所耗用的蒸汽量叫汽耗量。
汽轮机原理(第三章)
* * Gcr1 0.648 An p01 01 * * Gcr 0.648 An p0 0
式中,下标“1”为工况变动后的参数(以下 均同)。
若把蒸汽当成理想气体,利用其状态方程 P/ρ=RT,则上式可写成
Gcr1 Gcr
* * p01 01 * * p0 0 p01 T0 p0 T01
在作级的变工况估算时,通常略去动 叶顶部的间隙漏汽,这样两工况下的流量 Gcr、Gcr1又可用喷嘴的汽流参数表示,即 有
Gcr 2k 1 * k k n p0 ( ) n n * An k 1 RT0 Gcr1 2k 1 * n p01 ( * An k 1 RT01
(二)设计工况和变动工况下,级 均为亚临界状态
在此条件下,汽轮机任意一级喷嘴出口 截面的连续方程式为 G=μnAnCıtρıt 或
G [ n An 2t
1t 2ht ] 1 m 2t
方括号内的部分表示级的反动度等于零 (P1=P2)时,通过该喷嘴的流量,用G‘表 示,G’流量也可以表示为(假定初速度为零)
(二)级组前、后压力与流量的关系
第一节 喷嘴的变工况
一、渐缩喷嘴压力与流量的关系
研究喷嘴变工况,主要是分析喷嘴前后压 力与流量之间的变化关系。喷嘴的这种关系 是以后研究汽轮机级和整个汽轮机变工况特 性的基础。
(一)喷嘴初压P0*不变而背压P1变 化时
(1)当Pı>Pсr(εn>εcr)时,随着背压Pı的减 小,如图3-1所示,流量G沿CB线逐渐增加, 可按下式计算:
2 k n1 k 1 k n1
2
k 1
)
p1 n * p0
第五章§4凝汽式汽轮机的工况图
p H t RT0 z p0 p0
k 1 k
p 1 p0 v0 z p0 p0
k 1 k
1 p0
k 1 Pi p0 v0 pz k p0 1 H t Pi p 0 p0
k
H t T0
近似认为初温升高20℃ ~30℃ ,效率约升高1% i 1
t0
Pi Pi t0 t0
浙江大学热工与动力系统研究所
20 30
%
cp Pi 1 1 t0 Pi T0 h0 h fw 2000 3000 i
浙江大学热工与动力系统研究所
Institute of Thermal Science and Power Systems
•
二、初温t0变化对汽轮机功率的影响 (初压、背压不变)
认为锅炉吸热量不变
Q D h0 h fw / 3.6 Pi DH t ri QH t ri 3.6 h0 h fw
q q n —热耗率修正系数。 qt qn q 1 qn q q q q q q q q n q n p 0 q n to q n pr q n tr q n tfw q n pc qt q n q
透平机械原理
第五章 汽轮机的变工况特性
热工与动力系统研究所
盛德仁 教授
E-mail: shengdr@
联系电话:0571-87951492,13906534086
§6、凝汽式汽轮机工况图
汽轮机工况图: 汽轮发电机组的功率与汽耗量之间的关系曲线称汽轮发电机组的工 况图,也称汽耗线。通过汽轮机变工况计算或汽轮机热力试验确定。 一、节流配汽凝汽式汽轮机工况图 汽轮机功率(发电机出线端) D0 H t r ,el
汽轮机的变工况
二、缺点:
1)负荷变动时,汽包内压力和温度随着变化,汽包的应力问题 比定压运行严重,成为限制机组负荷变动速度的主要因素 2)机组负荷变动,是靠锅炉调整燃烧和给水进行的,而锅炉是 热惯性大的设备,所以,负荷响应的速度慢 3)低负荷时降低了主蒸汽压力,从而降低了机组的循环热效率
G01 G0
p021
p
2 g1
T0
p02 pg2 T01
G01、P01、T01 、Pg1 变工况下级组流量、初压、初温、背压 G0、P0、T0、Pg1 设计工况下级组流量、初压、初温、背压
若不考虑温度变化(滑压运行):
G01 G0
p021 pg21
p02
p
2 g
1.级组的临界工况
• 某级处于临界状态,或者级后压力很低:
一、与定压运行相比,滑压运行的效益主要表现在: 1)由于压力随负荷降低,蒸汽的比热减小,过热热减小。所以 过热蒸汽温度在较宽的负荷范围内都维持了稳定(例如:在40100%MCR内可维持额定温度); 2)由于汽轮机节流损失小,高压缸排汽温度稳定(亚临界机组, 负荷从100%降低到50%MCR,高缸排汽温度只降低了60度左右, 所以再热气温也容易维持稳定);
变工况
汽轮机的设计值:效率最高
设计工况:经济工况
设计功率:经济功率
运行中参数不可能始终保持设计值→变工况→汽机热力 过程变化(流量、压力、温度、比焓降、效率等)、零 部件受力变化、热应力/热膨胀/热变形情况变化 典型变工况:启动、停机、故障
一、级组的变工况
一、定压运行与滑压运行
定压运行:汽轮机在不同工况运行时,依靠改变调节汽门的开 度来改变级组的功率。而汽轮机前的新奇压力和新汽温度维持 不变。(汽机主调锅炉跟随,汽轮机通过改变调门位置改变电 负荷,锅炉维持主蒸汽压力——炉跟机)
第三章 汽轮机的变工况特性-第一节 喷嘴的变工况特性
第三章 汽轮机的变工况特性汽轮机的热力设计就是在已经确定初终参数、功率和转速的条件下,计算和确定蒸汽流量,级数,各级尺寸、参数和效率,得出各级和全机的热力过程线等。
汽轮机在设计参数下运行称为汽轮机的设计工况。
由于汽轮机各级的主要尺寸基本上是按照设计工况的要求确定的,所以一般在设计工况下汽轮机的内效率达最高值,因此设计工况也称为经济工况。
汽轮机运行时所发出的功率,将根据外界的需要而变化,汽轮机的初终参数和转速也有可能变化,从而引起汽轮机的蒸汽流量和各级参数、效率等变化。
汽轮机在偏离设计参数的条件下运行,称为汽轮机的变工况。
,汽轮机工况变动时,各级蒸汽流量、压力、温度、比焓降和效率等都可能发生变化,零、部件的受力、热膨胀和热变形也都有可能变化。
为了保证汽轮机安全、经济地运行,就必须弄清汽轮机的变工况特性。
电站汽轮机是固定转速汽轮机,限于篇幅,这里仅讨论等转速汽轮机的变工况。
主要讨论蒸汽流量变化和初终参数变化时的变工况,其中也就包含了功率变化问题。
汽轮机变工况是以级的交工况和喷嘲、动叶的变工况为基础的,因此,必须首先介绍喷嘴、动叶的变工况。
第一节 喷嘴的变工况特性缩放嘴嘴的交工况已由流体力学介绍道了,其中一个重要概念,就是缩放喷嘴背压逐渐高于设计值时,将先在喷嘴出口处,后在喷嘴渐放段内产生冲波(或称激波)。
超音速汽流经过冲波,流速大为降低,损失很大。
所以,缩放喷嘴处于背压高于设计值的工况下运行时效率很低。
缩放喷嘴的速度系数ϕ与压比n ε、膨胀度f 的关系如图3.1.1所示。
膨胀度cn A Af =,表示缩放喷嘴出口而积n A ,与喉部临界截面而积c A 之比。
每条曲线上ϕ最高的点(图示a,b,c,d)是该缩放喷嘴的设计工况点。
由图可见,缩放喷嘴设计压比n ε越小,膨胀度f 越大,而f 越大的缩放喷嘴在实际压比1n ε增大时,ϕ降得越多,因而喷嘴效率也降得越多。
渐缩喷嘴背压高于设计值时不会出现冲波,速度系数ϕ仍然较高,如图3.1.1中最上面一根虚线所示,因而变工况效率仍然较高,仅在n ε小于临界压比时,ϕ与效率才下降。
汽轮机原理思考题1
汽轮机原理思考题11.汽轮机有那些⽤途,我国的汽轮机是如何进⾏分类的,其型号和型式如何表⽰?汽轮机的⽤途:把蒸汽的热能转化为机械能⽤于发电;除此之外,还⽤于⼤型舰船的动⼒装备,并⼴泛作为⼯业动⼒源,⽤于驱动⿎风机、泵、压缩机等设备。
汽轮机的分类:A、按做功原理分类:冲动式汽轮机、反动式汽轮机。
B、按热⼒过程特性分类:凝汽式汽轮机、背压式汽轮机、调整抽汽式汽轮机、中间再热式汽轮机。
C、按蒸汽压⼒分类:低压汽轮机,新汽压⼒1.2~2MPa中压汽轮机,新汽压⼒2.1~4.0MPa⾼压汽轮机,新汽压⼒8.1~12.5MPa超⾼压汽轮机,新汽压⼒12.6~15.0MPa亚临界压⼒汽轮机,新汽压⼒15.1~22.5MPa超临界压⼒汽轮机,新汽压⼒⼤于22.1MPa超超临界压⼒汽轮机,新汽压⼒27MPa以上或蒸汽温度超过600/620℃汽轮机的型号表⽰:我国制造的汽轮机的型号有三部分。
第⼀部分:由汉语拼⾳表⽰汽轮机的形式(如表⼀),由数字表⽰汽轮机的容量(MW);第⼆部分:⽤⼏组由斜线分隔的数字分别表⽰新蒸汽参数、再热蒸汽参数、供热蒸汽参数等;第三部分:⼚家设计序号。
2.汽轮机课程研究的主要内容有那些,如何从科学研究及⼯程应⽤的不同⾓度学习该课程?研究内容:(1)绪论:本课程的主要内容及在⽣产实践中的应⽤;国内外汽轮机的展及应⽤;汽轮机的型式、分类及型号;汽轮机装置及现代⼤型单元制机组的概念;本课程的学习要求及学习⽅法。
(2)汽轮机级的⼯作原理:⼀元流动的⼏个主要⽅程及应⽤;蒸汽在喷嘴及动叶中的流动、速度三⾓形及计算;级的轮周功率和轮周效率;级内损失和级的相对内效率;级的热⼒设计原理。
(3)多级汽轮机:多级汽轮机的⼯作过程及其特点;进、排汽机构的流动阻⼒损失;汽轮机及其装置的经济性评价指标;轴封及其系统;轴向推⼒及平衡;汽轮机的极限功率及其影响因素。
(4)汽轮机变⼯况特性:喷嘴变⼯况时流量与压⼒的关系;级与级组的变⼯况特性;配汽⽅式对汽轮机变⼯况运⾏经济性和安全性的影响;滑压运⾏经(5)汽轮机的凝汽设备:凝汽设备的⼯作原理及任务;凝汽器的真空与传热;凝汽器的结构布置;抽⽓器;凝汽器变⼯况。
汽轮机原理-第三章
2 k 1 2k * * k k p0 0 n n k 1 * * p0 0
n cr 时 G Gcr 0.648An
在流量与出口压力的关系 曲线图中,BC段近似于椭圆 曲线,则:
G G cr n cr 1 cr
G 0.648An G1 1 p G
* 0 * 0
2、喷嘴前后压力同时变化时
* * * G1 1 p01 01 1 p01 * * * G p p0 0 0 * * T0* 1 p01 G1cr p01 * * * T01 p0 Gcr p0
4 2
0 G1
8 G Q GⅢ GⅣ GⅡ I U
G 0.8G L M
V N
0.4G
J
K
喷嘴调节方式与节流调节方式的比较: 1)机组在低负荷时由于调节汽门中节流损失较大, 因此采用节流调节方式不经济,应采用喷嘴调节方式 2)采用节流调节方式,结构比较简单 为了综合节流调节和喷嘴调节的优点,担任基本 负荷的机组往往设计成在低负荷下采用喷嘴调节方式, 而在高负荷时采用节流调节方式,从而提高机组的经 济性。
2
G Gcr A G1 C Pcr P P1 P1=Pc B
1
2
2
n cr 1 1 cr
β即为彭台门系数,此时通过喷嘴的任意流量G可表示为:
G Gc 0.648 An
* * p0 0
当蒸汽的参数发生改变时,喷嘴流量为: 1、当初压不变时
' p 2)凡全开调节汽门后的喷嘴组前压力均为 0 不变;
3)四个调节汽门依次开启,没有重叠度;
汽轮机变工况
第三章第三章汽轮机的变工况chapter 3 The changing condition of Steam turbine设计工况:运行时各种参数都保持设计值。
变工况:偏离设计值的工况。
经济功率:汽轮机在设计条件下所发出的功率。
额定功率:汽轮机长期运行所能连续发出的最大功率。
研究目的:不同工况下热力过程,蒸汽流量、蒸汽参数的变化,不同调节方式对汽轮机工作的影响;保证机组安全、经济运行。
第一节喷嘴的变工况The changing condition of a nozzle分析:喷嘴前后参数与流量之间的变化关系一、渐缩喷嘴的变工况The changing condition of a contracting nozzle试验:调整喷嘴前后阀门,改变初压和背压,测取流量的变化。
(一)(一)初压P*0不变而背压P1变化(1)(1)εn=1,P1= P*0,G=0,a-b,d(2)(2)0<εn<εcr,G<G cr,a-b1-c1,1(3)(3)εn=εcr,G=G cr,a-b2-c2,e(4)(4)ε1d<εn<εcr,G=G cr,a-b3-c3,3(5)(5)εn=ε1d,G=G cr,a-c4,4(6)(6)εn<ε1d,G=G cr,a-c4-c5,5列椭圆方程:(二)(二)流量网图改变p*0可得出一系列曲线,即流量网图横坐标:ε1= p1/p*0m;纵坐标:βm=G/G 0m;参变量:ε0= p*01 /p*0mp*0m、G*0m:分别为初压最大值和与之相应的临界流量的最大值。
例1:已知:p0 =9MPa ,p01 =7.2MPa,p1 =6.3MPa,p11 =4.5MPa求:流量的变化。
解:取=9Mpa原工况:ε0= p0 /p0m =1,ε1=p1 /p0m=0.7查出:βm =G/G0m=0.94新工况:ε01= p01 /p0m =0.8,ε11=p11 /p0m=0.5查出:βm1 =0.78则:例2:已知:p0 =1MPa ,p01 =0.9MPa,p1 =0.7 MPa,p11 =0.8Mpa,t0 =320℃,t01 =305℃求:流量的变化。
5.2变工况-级组-复件剖析.
设为 c0 0 ,则有 c1t 21 m ht
代入连续性方程得
G’
G
n An
1 v2' t
2ht
v2' t v1t
1 m
上式中括号内部分为假想级的理想比焓降全部发生在
喷嘴内时的假想流量,用G’表示,
v2' t 为由级的入口状态等比熵膨胀到P2的假想出口比容。
喷嘴斜切部分不发生膨胀,喷嘴出口面积An不变):
设计工况: 变工况:
两式相比有
Gc1 p001 T00
Gc
p00 T001
2 / k
k 1/ k
n1
n1
2 / k
k 1/ k
n
n
等于流过动叶的流量之比
Gc1 p001
Gc
p00
T00 T001
2 / k
,则仿照喷嘴的变工况公式,以动叶的相对热力参数 带入,得到变工况前后动叶临界流量的比值:
Gc1 p101 T10 p11 T1
Gc
p10 T101
p1 T11
略去温度影响,得
Gc1 p101 p11
Gc
p10
p1
动叶前参数不易获得
由于叶顶漏汽不大,可认为喷嘴流量等于动叶流量 。这时喷嘴在设计工况和变工况下的连续方程之比为( 设计工况和变工况下,喷嘴均为亚临界工况,故蒸汽在
k 1/ k
n1
n1
2 / k
k 1/ k
n
n
p11 p1
T1 T11
对于实际汽轮机,动叶为临界而喷嘴为亚临界的情
况,仅出现在汽轮机的末两级,此处蒸汽温度已经很低
汽轮机原理 第五章 汽轮机的变工况特性
k 1 k
0 p0 p 0 0 p01 p01
第一节 喷嘴的变工况特性
近似认为
T00 T0 ,有 0 T01 T01
Gc1 p01 Gc p0
忽略温度变化则有:
T0 T01
Gc1 p01 Gc p0
结论:喷嘴的临界流量正比于初压或滞止初压,反比于喷嘴前热力 学温度的平方根或滞止热力学温度的平方根。
第二节 级与级组的变工况特性 1.2 动叶为临界 如级变工况前后喷嘴均为亚临界,动叶均为临界,则仿照喷嘴的变 工况公式,以动叶的相对热力参数带入,得到变工况前后动叶临界流量 的比值:
0 G c1 p11 0 Gc p1
T10 p11 0 T11 p1
T1 T11
略去温度影响,得
0 G c1 p11 p11 0 Gc p1 p1
第一节 喷嘴的变工况特性
虚线BO, 虽然对于渐缩喷嘴没有实际 意义,但对于缩放喷嘴是有实际意义的。 CBO曲线上各点,表示蒸汽初参数、物性 和喷嘴出口面积给定时,不同背压时,各 缩放喷嘴的设计工况点。 喷嘴入口蒸汽参数不变,背压越低, 喷嘴的膨胀度f=An/Ac就会越大,出口截面 积An维持不变,喷嘴喉部截面Ac也就越小。 当P1→0时,f→∞, Ac →0,Gc→0。
n
2 k
n
k 1 k
2
以椭圆公式代替精确公式计算流量比的误差(‰)
压比 误差 0.600 -0.35 0.700 -2.26 0.750 -3.34 0.800 -4.36 0.850 -5.96 0.875 -6.64 0.900 -7.56 0.925 -7.99 0.950 -8.66 0.975 -9.33 0.985 -9.60 0.990 -11.2 1.000 0
第三章 汽轮机的变工况特性-第二节 级与级组的变工况特性
第二节 级与级组的变工况特性在了解喷嘴与动叶的变工况特性后,就可分析级与级组的变工况特性。
一、级内压力与流量的关系分级内为临界工况与亚临界工况两种情况来讨论。
1.级内为临界工况级内的喷嘴叶栅或动叶栅两者之一的流速达到或超过临界速度,就称该工况为级的临界工况。
1)级的工况变化前后喷嘴流速均达到或超过临界值时,不论动叶中流速是否达到临界值,此级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比,即01001010000011T T P P T T P P G G c == (3.2.1) 若不考虑温度变化,则00100011p pp p G G C c == (3.2.2)2)级的工况变化前后喷嘴流速均未达到临界值而动叶内流速均达到或超过临界值时,只要采用动叶的相对热力参数,喷嘴变工况的结论都可用在动叶上,故1111111101010111T T P P T T p p G G c c == (3.2.3) 若不考虑温度变化,则11101111p pp p G G c c == (3.2.4)若冲动级动叶顶部采用曲径汽封,则叶顶漏汽量极小,漏汽效率近于[]491,其他情况下叶顶漏汽也不大。
为了简化,可以认为喷嘴流量等于动叶流量,这时喷嘴在设计工况和变工况下的连续方程可写成c n n G p A μ=1c n n G p A μ=由于喷嘴在设计工况和变工况下处于亚临界工况,故斜切部分没有偏转,喷嘴出口面积n A 不变。
将上两式相比后代入式(3.2.3)得1c c G G==≈对于动叶处于临界工况的凝汽式汽轮机末级是可行的,例如流量增大20%时,其误差小于0.24%。
则上式变为01010010000011T T P P T T p p G G c c == (3.2.5) 若不考虑温度变化的影响,则00100011p pp p G G c c == (3.2.6)可见级处于临界工况时,级的流量与滞止初压或初压成正比,与滞止初温或初温的平方根成反比;若不考虑温度变化,则流量只与滞止初压或初压成正比。
汽轮机课后思考题与答案
汽轮机课后思考题与答案汽轮机思考题1汽轮机有那些⽤途,我国的汽轮机是如何进⾏分类的,其型号和型式如何表⽰?答:汽轮机除了发电,还被⽤作⼤型舰船动⼒设备,并⼴泛作为⼯业动⼒源,⽤于驱动⿎风机、泵、压缩机等设备。
按做功原理分:冲动式汽轮机、反动式汽轮机。
按热⼒过程特性分:凝汽式汽轮机、背压式汽轮机、调整抽汽式汽轮机、中间再热式汽轮机。
按蒸汽压⼒分:低压汽轮机、中压汽轮机、⾼压汽轮机、超⾼压汽轮机、亚临界压⼒汽轮机、超临界压⼒汽轮机、超超临界压⼒汽轮机。
另外,按⽓缸数可以分为单缸汽轮机和多缸汽轮机;按机组转轴数可以分为单轴汽轮机和双轴汽轮机;按⼯作状况可以分为固定式汽轮机和移动式汽轮机等。
我国制造的汽轮机的型号⼤多包含三部分信息。
第⼀部分信息由汉语拼⾳字母表⽰汽轮机的形式,由数字表⽰汽轮机的容量,即额定功率(MW);第⼆部分信息⽤⼏组由斜线分割的数字分别表⽰新蒸汽参数、再热蒸汽参数、供热蒸汽参数等。
第三部分为⼚家设计序号。
型式表⽰为:热⼒过程特性+做功⽅式+⼏缸⼏排⽓+蒸汽压⼒。
1.汽轮机课程研究的主要内容有那些,如何从科学研究及⼯程应⽤的不同⾓度学习该课程?答:该课程研究主要内容有:汽轮机级内能量转换过程、汽轮机的变⼯况特性等、汽轮机零件强度与振动、⾃动调节基本理论等。
从科学研究⽅⾯,我们需要细致的了解汽轮机做功原理及每个零部件的运动受⼒情况,从⼯程应⽤⽅⾯学习,我们则侧重于汽轮机的安全运⾏过程。
2.研究汽轮机原理要⽤到那些基本假设与基本⽅程,要⽤到那些经验及试验修正?答:基本假设:①流动是稳定的;②绝热;③理想⽓体;④⼀元流。
基本⽅程:①连续⽅程;②状态⽅程;③能量平衡⽅程。
修正系数:速度系数?、动叶速度系数ψ3. 简述汽轮机级的组成及⼯作过程。
答:级是由⼀列环排的静叶栅和动叶栅所组成的做功单元。
当蒸汽通过汽轮机级时,⾸先在喷嘴叶栅中将热能转变成动能,然后在动叶栅中将剩余的热能及动能转变成机械能,使得叶轮和轴转动,从⽽实现汽轮机的利⽤蒸汽做功的任务。
汽轮机的变工况特性
p0*1 p0*
T0* T0*1
G cr1 G cr
p
* 0
1
p
* 0
级的变工况
• 2、级在亚临界工况下工作
G1 G
p021 p221 p02 p22
T0 T01
结论:
G1 G
p021 p221 p02 p22
当级内流动未达到临界状态时,通过该级的流量不仅与级前
压力有关,而且与级后压力有关。
级的变工况
• 弗留格尔公式应用条件
• 1、级组中各级流量相同(有回热抽汽也可应用); • 2、级组中各级的通流面积变工况前后保持不变(结垢
后需修正); • 3、级组中级数不少于3~4级。
• 弗留格尔公式的应用
• 1、监视汽轮机通流部分运行是否正常; • 2、推算不同流量下各级的级前压力。
第二节 变工况下级的比焓降和反动度的变化规律
由于锅炉的热惯性比较大,滑参数对变工况的响应速度有限; 而定参数运行时,汽轮机的功率调节由改变进口蒸汽量来实 现,调节阀门的动作响应快,很快就可以满足工况变化的需 要。
二、功率调节方式
节流调节和喷嘴调节两种功率调节方式。 节流调节
节流调节
汽轮机的相对内效率为:
ri
Hi Ht
Hi Ht
Ht Ht
rith
m1 m
工况变动所引起级内反动度的变化
第三节 配汽方式及调节级的变工况特性
一、滑参数运行与定参数运行
P el GHt ri mel
滑参数运行:通过改变整机理想比焓降来调节汽轮机机组的功 率的运行方式; 定参数运行:通过改变流量来调节机组的功率的运行方式。 配汽机构:汽轮机上用于控制进汽量的条件机构。
工况变动时各级比焓降变化
5.1变工况-喷嘴-复件讲解
变工况
运行中参数不可能始终保持设计值,汽轮机发出的功率 随外界需要而变化。 →变工况:汽轮机在偏离设计参数的条件下运行的工况。 →汽机热力过程变化(流量、压力、温度、比焓降、效 率等)、零部件受力变化、热应力/热膨胀/热变形情况变 化 典型变工况:启动、停机、故障 变工况不唯一。变工况的特性影响汽轮机的安全经济运 行。
汽轮机的变工况→级的变工况→喷嘴和动叶的变工况
一、喷嘴的变工况特性
汽轮机内喷嘴有两种型式:渐缩喷嘴和缩放喷嘴。 由于两种喷嘴的结构不同,其变工况特性差别很大。
气体在渐缩喷管中的流动
气体在缩放喷管中的流动
气体在渐缩喷管中的流动
•
渐缩喷管中气体流动分为两种情况: 亚临界工况: pb>pc,此时喷管出口压力p2=pb>pc; 临界工况: pb≤pc,此时,喷管出口压力p2=pc。 pb<pc时, 气体在喷管内不能膨胀到背压 pb,而只膨胀到临界压力pc,气流离开 出口截面后,发生突然膨胀,压力降 低到背压,引起气流损失一部分动能 ,有p2=pc>pb
k 1 k 1
Байду номын сангаас
n
2 k
n
k 1 k
2
表3.1.1 以椭圆公式代替精确公式计算流量比的误差(‰) k=1.3 ε
压比 误差
nc=0.546
0.750
-3.34
0.600
-0.35
0.700
-2.26
0.800
-4.36
0.850
-5.96
0.875
-6.64
0.900
-7.56
0.925
-7.99
0.950
-8.66
汽轮机的变工况课件
总结异常工况处理经验,制定预防措施,降低异常工 况发生概率。
THANKS
感谢观看
改进调节系统性能,实现 更精确的负荷控制和更平 稳的运行过程。
03
汽轮机变工况过程及原理
启动与停机过程
启动过程
包括盘车、冲转、暖机、升速、并网、带负荷等 阶段,需严格控制各阶段的参数变化,确保汽轮 机平稳启动。
停机过程
包括减负荷、解列、打闸停机、惰走、盘车等阶 段,需关注汽缸温度、转子惰走时间等参数,确 保汽轮机安全停机。
研究意义
01
提高汽轮机运行效率
通过对变工况的研究,可以优化汽轮机的运行方式,提高汽轮机的运行
效率和经济性。
02 03
保障电网稳定运行
汽轮机是电网中的重要设备,其稳定运行对于电网的稳定运行具有重要 意义。通过对变工况的研究,可以提出相应的控制措施,保障电网的稳 定运行。
延长汽轮机使用寿命
通过对变工况的研究,可以了解汽轮机在变工况下的运行特性和损伤机 理,提出相应的维护和检修策略,延长汽轮机的使用寿命。
蒸汽参数变化
02
变工况会导致蒸汽参数(如压力、温度等)发生变化,影响汽
轮机的运行状态。
热力循环变化
03
汽轮机的热力循环在变工况下会发生变化,影响机组的热经济
性和安全性。
机械性能变化
轴承载荷变化
变工况下,汽轮机的轴承载荷会发生变化,可能导致轴承的磨损 和损坏。
转子动力学特性变化
汽轮机的转子动力学特性在变工况下会发生变化,可能影响机组 的稳定性和寿命。
05
汽轮机变工况优化控制策略
传统控制方法
节流调节
通过改变汽轮机进汽阀门开度,控制蒸汽流量,从而调节汽轮机的功率输出。操作简单,但节流损失大,效率低 。
汽轮机变工况
忽略,应按弗留格尔公式计算。
pg p0
2
,
pg1 p01
2
就不能
3)对于回热抽汽,可近似应用弗留格尔公式,误差不大。
2020/3/16
15
东方N200
上海N300
哈尔滨N300
2020/3/16
16
2、背压式汽轮机非调节级各级组
背压式汽轮机的特点,背压(汽轮机排汽压力 p g )高于大气
3、一种工况为临界,另一种为亚临界 这种工况一般只发生在调节级、末级中。没有统一的公式。
2020/3/16
11
二、级组压力与流量的关系
级组:一些流量相等,每级的通流面积保持不变的相邻级的组合。 级组亚临界工况:级组内各级流速均小于临界速度。 级组临界工况:级组内至少有一列叶栅(喷嘴或动叶)的出口流速
例1、故障:运行21个月后功率不断下降。 故障汽轮机参数变化表
流量
功率
调节级后压力 高压缸效率
-17.2%
-16.5%
+21.2%
-12.2%
分析:调节级后压力增加21.2%,既然不是流量增加,就是 压力级通流部分堵塞。 结果是高压缸通流部分严重结垢。
2020/3/16
19
例2、故障:运行三年,在调节汽门的同一开度下,功率渐渐 增加。每个气门开度下,功率都变大。
压,排汽比容小,末级直径较小,末级焓降较小,流速较 低。
一般情况下,背压级组末级也处于亚临界工况。
所以,只能应用弗留格尔公式计算(呈双曲线变化)。
调节抽汽式汽轮机,其调节抽汽口压力基本保持不变,且大 于大气压,所以抽汽口各级都处于亚临界工况,也用弗留 格尔公式计算。
2020/3/16
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 流量锥
在实际计算中,大都采用图解法计算流量,即使用流 量锥或是流量网图。
假设最大初压为p0m,相应的最大临界流量为G0m
?0 ?
p
0 0
p
0 0m
?1 ?
p1
p
0 0
m
?m
?
G G0m
?
G Gc
Gc G0m
?
?? 0
?n ? ?c ?
??
1
?
????
?1 ?0
? ?
?c?0 ? c? 0
p1d ? p1 ? p0*时,流量与压力的关系 为椭圆方程,即
? d
?
G Gcr
?
1?
????
p1 ? p*0 ?
p1d p1d
?2 ???
?
1?
????
?n ? ?1d 1 ? ?1d
?2 ???
1、当初压不变时
? ? ? ? G ? 0 .648
A p* *
d
n cr
00
2、初终参数同时改变时
?
G cr
?
? n ( An ) cr
k ?1
kp
* 0
?
* 0
?? ?
k
2 ?
1
?? k ?
?1
?An
? cr
?
An
k ?1
2 ?? k ? 1 ??k ?1 k ?1? 2 ?
2
k ?1
?k 1d
?
?k 1d
上式近似于椭圆曲线, 则
?An
? cr
?
An
1?
????
?1d
1?
?? ? cr
cr
????2
? 变工况:汽轮机在偏离设计参数的条件下运行的工 况(外界负荷变动、蒸汽参数变动和转速变动)
? 研究意义:
? 了解汽轮机在不同工况下的效率变化,以设法使效率 变化不多。
? 了解汽轮机在不同工况下受力情况,保证机组安全。
第二节 喷嘴的变工况特性
? 渐缩喷嘴初压不变时背压与流量的关系 ? 渐缩喷嘴前后参数都变化时的流量变化 ? 渐缩喷嘴 初压、背压与流量的关系 ? 缩放喷嘴的变工况
? 级内为亚临界工况
级内喷嘴和动叶出口汽流 速度均小于临界速度的工况。
G1 ? G
p021 ? p221 ? T0 p02 ? p22 T01
忽略温度变化: G1 ? G
p021 ? p221 p02 ? p22
说明: (1)级内未达到临界时,通过级的流量不仅与初参 数有关,还与终参数有关; (2)流量偏离设计值越小,误差越小。
二、级组压力与流量的关系
? 几个概念 级组:一些流量相等,通流面积不随工况而变化(或变化 程度相同)的依次串联排列的若干级的组合; 亚临界级组: 级组各级的汽流速度均小于临界速度的级组; 临界工况级组:级组内至少有一列叶栅的出口速度达到或 超过临界速度; 级组临界压比: 临界工况机组中某一级(一般是最末级) 的喷嘴或动叶)流速刚达到临界速度时,级组前后压比称 为~。
? ? ? G1 ? 0.648 1 ? ? ? G 0.648
p
0 01
0
01 ?
p
0 0
0 0
1
p
0 01
p
0 0
? T00 ? ? T001
1 p 01 p0
T0 T01
忽略温度变化
G1
?
?1
p
0 01
?
?1
p 01
G
?
p
0 0
? p0
三、渐缩喷嘴 初压、背压与流量的关系
? 函数 G ? f ( p0 , p1) 关系曲线(流量网图)
???? 2
?
?m ?0
相对初压 相对背压
?m、?1、 ?0之间关系的三维显示为流量锥,二维表
示为流量网图。( oad为等腰直角三角形)
?m
d
c
?0
b ?1
a
流量锥
四、缩放喷嘴的变工况
? n ? ?1d G ? ? n An
2k k?1
p
* 0
?
* 0
?????
2
k 1d
?
k?1
?k 1d
????
???? 2
?
????
p1
p
0 0
? ?
pc pc
???? 2
?
1
?
?? G ?
Gc
1
?
????
?n ? ?c 1? ?c
???? 2
G
Gcr A G1
B
pc p1 p1=p0
C p
二、渐缩喷嘴前后参数都变化时的流量变化
? 设计工况和变工况下喷、渐缩喷嘴初压不变时背压与流量的关系
其初压及出口面积不变时,通过喷嘴的流量为:
?n ? ?c时 ? G ? ? n An
2k k ?1
p
0 0
v00
?????
2
k n
?
k ?1
?k n
????
? n? ?c时 ? G ? Gc ? 0.648 An
p
0 0
/
v00
将BC段用椭圆曲线近似
????
G Gc
Gc
p00 T001
p0 T01
忽略温度变化:
Gc1 Gc
?
p001 p00
?
p01 p0
结论:
1、不同工况下喷嘴临界流量正比于滞止初压或初压,反比 与喷嘴前滞止热力学温度或热力学温度平方根。
2、在电站汽轮机中只有凝汽式汽轮机的最末一、二级和调 节级的喷嘴可能超过音速。
? 设计工况和变工况下喷嘴均为亚临界工况
? 工况变化前后级组均为临界工况
Gc1 ? p01 T0 Gc p0 T01
Gc1 ? p01 Gc p0
结论:
级组为临界工况时,级组流量与级前压力成正比,与 级前绝对温度的平方根成反比;若不考虑温度变化, 则级组流量只与级组前压力成正比。
? 工况变化前后级组均为亚临界工况
斯托陀拉实验
级数—无穷大
汽轮机原理 Steam Turbine Theory
第三章 汽轮机的变工况特性
主要内容
? 概述 ? 喷嘴的变工况特性 ? 级与级组的变工况特性 ? 配汽方式及其对定压运行机组变工况的影响 ? 滑压运行的经济性与安全性 ? 初终参数变化对汽轮机工作的影响 ? 汽轮机的工况图
第一节 概 述
? 设计工况:指汽轮机在设计参数下运行的工况,也 称经济工况。
G1
?
? d1
p
* 01
T
* 0
G
?1
p
* 0
T
* 01
p 1 在 0 ~ p 1d 时, ? d 1 ? ? d ? 1
G 1 ? G cr 1 ?
p
* 01
T
* 0
G
G cr
p
* 0
T
* 01
第三节、级与级组的变工况特性
? 级内压力与流量的关系 ? 级组压力与流量的关系 ? 各级的p0-G曲线 ? 压力与流量关系式的应用 ? 级的比焓降和反动度变化规律 ? 撞击损失
G1 ? G
p021 ?
p
2 g1
T0
p02
?
p
2 g
T1
不考虑温度变化: G1 ? G
p021 ?
一、级内压力与流量的关系
? 级内为临界工况
级内的喷嘴或动叶栅两者之一的流速达到或超过临界速度。
Gc1 ? p001 T00 ? p01 T0
Gc
p00 T001
p0 T01
结论:级处于临界工况时,级的流量与滞止初压或初 压成正比,与滞止初温或初温的平方根成反比;不考 虑温度变化时,流量只于滞止初压或初压成正比 。