医学统计学总结重点笔记复习

合集下载

《医学统计学》复习重点总结

《医学统计学》复习重点总结

计量数据比较的统计公式
X 0 t Sx
样本均数与标准值的比较 *配对数据的比较(不做方 差齐性检验 *两样本均数的比较,例数 较小时(做方差齐性检验)
d d t Sd
X1 X 2 t S x1 x2
t检验与可信区间公式小结
X1 X 2 t , SX1X 2
两独立样本均数的t n1 n2 2 检验公式
病变性质
肿瘤
恶性
1.层次不清,结构混乱,难于理解 2.线条过多,不符要求
修改后:
表 10 病变性质 良性肿瘤 恶性肿瘤﹡ 囊肿 瘤样病变 合 计
口腔颌面部不同病变构成情况 例 数 674 558 192 168 1592 构成比(%) 42.34 35.05 12.06 10.55 100.00
﹡包括癌437例,肉瘤101例,果用统计表表达。
统计表类型:
简单表和组合表
统计图: 要求掌握图形选择. 如线图、直条图、直方图、构成图
例: 简单表格式
某地1980年男女HBsAg阳性率的比较 性别 调查例数 男 4234 女 4530 合计 8764 阳性数 303 181 484 阳性率% 7.16 4.00 5.52
第14章基于秩次的统计方法
掌握概念: 1)何为非参数统计? 2) 什么样数据适合采用秩和检验,以及秩和 检验的优缺点。 3)秩和检验有那几种检验方法?
注意:结果(y)数据为等级时,两组比较采 用秩和检验效率高于χ2检验,应首选秩和检验.
表 某病两组疗效的比较 比较组 无效 有效 显效 痊愈 合计 试验组 18( 31.6) 18 (31.6) 15(26.3) 6 (10.5) 57 对照组 21 (46.7) 15( 33.3) 8(17.8) 1( 2.2) 45 Total 39 33 23 7 102

医学统计学重点总结

医学统计学重点总结
小结:
(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)

医科大学医学统计学重点知识总结

医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。

医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。

变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。

注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。

有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。

样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。

在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

2024年度-医学统计学重点笔记一复习必备

2024年度-医学统计学重点笔记一复习必备
u分布
即标准正态分布,当样本量足够大时(n>30),t分布近似u分布。
14
总体均数置信区间估计
置信区间的概念
按一定的置信水平(1-α),根据样 本统计量估计总体参数所在的范围。
置信区间的计算
根据样本均数、标准差和样本量计算 置信区间。常用的置信水平为95%和
99%。
置信区间的意义
表示总体参数有100(1-α)%的可能性 落在此区间内。
适用条件
01
R×C列联表资料,即多行多列列联表,用于分析两个多分类变
量之间的关联。
检验统计量
02
卡方值,计算公式为χ2=∑(O-E)2/E,其中O为观察频数,E为
理论频数。
拒绝域
03
根据自由度和显著性水平确定拒绝域,自由度为(R-1)(C-1)。
29
配对设计四格表资料卡方检验
01
适用条件
配对设计四格表资料,即两个相 关样本的二分类变量之间的关联 分析。
26
06
卡方检验
27
四格表资料卡方检验
适用条件
四格表资料,即2×2列联表,用于分析两个二分类变量之间的关联。
检验统计量
卡方值,计算公式为χ2=(ad-bc)2N/(a+b)(c+d)(a+c)(b+d),其 中N为样本总量。
拒绝域
根据自由度和显著性水平确定拒绝域,自由度为1。
28
R×C列联表资料卡方检验
正态分布在医学中的应用 许多医学指标如身高、体重、血压等服从或近似服从正态 分布;在估计医学参考值范围、质量控制等方面有广泛应 用。
正态性检验方法 图形法(直方图、P-P图、Q-Q图)、计算法(偏度系数 和峰度系数检验、Shapiro-Wilk检验、KolmogorovSmirnov检验等)。

医学统计学重点终极笔记

医学统计学重点终极笔记

医学统计学重点终极笔记Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。

[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。

样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。

可为两样本或多样本得比较,但样本含量不宜相差太大。

随机区组设计:也称配伍设计,是配对设计的扩展。

配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。

误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。

要尽量查明原因,必须克服。

⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。

譬如操作员技术、电压、环境温度的差异。

没有固定的倾向,时高时低;应采取措施加以控制。

⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。

原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。

医学统计学重点终极笔记

医学统计学重点终极笔记

Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。

[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。

样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。

可为两样本或多样本得比较,但样本含量不宜相差太大。

随机区组设计:也称配伍设计,是配对设计的扩展。

配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。

误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。

要尽量查明原因,必须克服。

⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。

譬如操作员技术、电压、环境温度的差异。

没有固定的倾向,时高时低;应采取措施加以控制。

⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。

原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。

医学统计学知识点汇总

医学统计学知识点汇总

医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。

医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。

以下是医学统计学知识点的一些精华汇总。

1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。

2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。

3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。

4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。

5.参数估计:常用的参数估计方法有点估计和区间估计。

点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。

6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。

常用的假设检验方法有t检验、卡方检验、方差分析等。

7.数据分析:包括描述性统计分析和推断性统计分析。

描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。

8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。

9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。

10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。

11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。

12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。

以上是医学统计学的一些精华知识点的汇总。

医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。

(完整版)医学统计学复习要点

(完整版)医学统计学复习要点

(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。

②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。

③、等级资料,⼜称半定量资料或者有序分类变量。

为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。

2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。

②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。

③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。

④、样本(sample):指的是从总体中随机抽取的部分观察单位。

⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。

⑥、频率(frequency):指的是样本的实际发⽣率。

⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。

⽤⼤写的P表⽰。

3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。

第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。

医学统计学重点整理汇总

医学统计学重点整理汇总

医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。

样本:从总体中随机抽取部分个体的某个变量值的集合。

总体参数:刻画总体特征的指标,简称参数。

是固定不变的常数,一般未知。

统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。

抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。

频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。

称m/n为事件A在n次试验中出现的频率或相对频率。

概率:频率所稳定的常数称为概率。

统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。

统计推断:包括参数估计和假设检验。

用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。

用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。

2.样本特点:足够的样本含量、可靠性、代表性。

3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。

是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。

每个个体都能观察到一个观察指标的数值,有度量衡单位。

(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。

包括二分类资料和多分类资料。

二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。

多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。

4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。

第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。

3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。

医学统计学 (2)重点知识总结

医学统计学 (2)重点知识总结

医学统计学第一章、绪论1、医学统计学★★★:是以医学理论为指导,应用概率论与数理统计的有关原理和方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、如何学好、用好医学统计学?①进行科学的医学科研设计;②掌握资料的收集、处理方法(流行病学);③虽不要求掌握统计公式的数理推导,但必须了解其直观的意义、用途和应用条件;④对于不同类型的数据资料选择合理的统计描述和分析方法;⑤对于统计获得的结果进行合理的解读,不能将医学问题归结到纯粹的数量问题。

3、几个基本概念(1)同质和异质:①具有相同性质的事物称为同质的(homogeneous);否则称为异质的或者间杂(heterogeneous)。

②同质和异质是相对的概念。

③不同质的个体不能笼统地混在一起分析(不同年龄组的男童身高)。

(2)变异★①同质事物之间的差别称为变异(Variation);②由于观察单位通常即观察个体,变异亦称为个体变异;③就每个观察单位而言,观察指标的变异是不可预测的,或者说是随机的;④统计学是探讨变异规律并运用其规律性进行深入分析的一门学科,因此,没有变异就没有统计学。

(3)总体、个体和样本★★★总体(Population):根据研究目的所确定的同质观察单位的全体;分为有限总体(确定的时间和空间范围,如20名患者的血红蛋白含量)和无限总体(没有时间和空间的概念,如辅助疗法对肾移植病人生存时间的影响)。

个体(Individual):是构成总体的最基本观察单位。

样本(Sample):是从总体中按照一定的目的随机抽取的一部分个体。

样本含量(Sample Size):样本中包含的个体个数。

即使是有限的总体,实际研究中也不可能逐一筛查;因此,在实际工作中,从总体中随机抽取一定含量的样本,根据样本所提供的信息推断总体的特征,这是统计推断的基础。

(4)随机★随机(Random):是指机会均等,目的是保证样本对总体的代表性、可靠性。

随机抽样:有相同的机会被抽到。

医学统计学_总结_重点_笔记_复习资料

医学统计学_总结_重点_笔记_复习资料

第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。

可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

总体population根据研究目的而确定的同质观察单位的全体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

样本sample从总体中随机抽得的部分观察单位,其实测值的集合。

3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。

P值:P 值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。

P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。

2) 拒绝原假设的最小显著性水平。

3) 观察到的(实例的) 显著性水平。

4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。

小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。

统计学中,一般认为等于或小于0.05或0.01的概率为小概率。

资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

.其变量值是定量的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。

计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。

医学统计学知识点汇集总结

医学统计学知识点汇集总结

医学统计学知识点汇集总结一、医学统计学概述医学统计学是指运用统计学方法和技术研究医学数据,并分析、解释医学现象的学科。

对于医学研究和临床实践来说,统计学扮演了至关重要的角色,它可以帮助我们从数据中找出规律和关联,了解疾病的发病机制、评估治疗效果、预测疾病的发展趋势等。

医学统计学应用广泛,包括流行病学调查、临床试验、疾病筛查、医疗资源分配等方面。

二、基本统计概念1.总体与样本总体是指研究者希望了解的所有个体或事物的集合,而样本是从总体中抽出的一部分个体或事物。

在医学统计学中,我们往往针对总体的某些特征进行研究,但因为总体过于庞大或难以直接观察,所以需要通过样本来间接推断总体特征。

2.描述统计学与推断统计学描述统计学是通过对样本数据进行整理、汇总和展示,来描述总体的特征。

例如,用均值、标准差、百分比等指标来描述样本的中心趋势、离散程度和分布规律。

推断统计学则是通过对样本数据进行分析和推断,来进行总体参数估计、假设检验和区间估计等操作,从样本的情况推断总体的性质。

3.测量尺度在医学统计学中,常用的测量尺度有四种:名义尺度、序数尺度、区间尺度和比率尺度。

名义尺度用于对个体进行分类,如性别、种族等;序数尺度表达了个体之间的顺序关系,如疾病的分期、疼痛的程度等;区间尺度是指定了单位长度的测量尺度,其间隔是均匀的,但没有绝对的零点,如温度;比率尺度有绝对的零点,可以进行加减乘除运算,如年龄、身高、体重等。

4.受试者特征曲线(ROC曲线)受试者特征曲线(Receiver Operating Characteristic Curve,ROC曲线)常用于评价诊断试验的准确性。

横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度),曲线下面积(AUC)为对角线以下的面积,用来评价诊断试验在不同判断标准下的表现。

三、数据的搜集与整理1.样本量计算样本量的大小直接关系到研究结果的可靠性和精度。

样本量计算需要根据预期效应大小、显著性水平、统计功效、数据分析方法等因素来确定。

医学统计学 重点知识总结

医学统计学 重点知识总结

名词解释1、一类错误:拒绝了实际上成立的H。

,这类“弃真”的错误称为I型错误或第一类错误。

2、参数和统计量:这些总体的统计指标或特征值称为参数。

由样本所算出的统计指标或特征值称为统计量。

3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。

4、P值:即概率,反映某一事件发生的可能性大小。

5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。

简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。

百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。

2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。

基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。

结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。

2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。

结论:x2检验结果表明,乙疗法比甲疗法好。

3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。

医学统计学重点重点知识总结

医学统计学重点重点知识总结

医学统计学重点一.选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为µ1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与ɑ的关系,ɑ是人为规定的,它们之间没有关系; P值↑,ɑ↑(×)4.方差分析自由度v的计算,v总=n-1;v组间=组数(k)-1;v组间=v总-v组间5.理论秩和(n(n+1)/2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(×);有95%的总体参数在该区间内(×);该区间包含95%的总体参数(x);该区间有95%的可能包含总体参数。

(x);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(×);回归系数↑,相关系数↑(×);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(1-α)用一个区间估计总体参数所在范围。

这个范围称作可信度为1-α的可信区间,又称置信区间。

3.P值:拒绝H0时所冒的风险(或“作出拒绝H0 而接受H1 ”结论时冒了P风险)4.ɑ(第一类错误):H0真实时被拒绝(或H0真实时,拒绝H0,接受H1)5.β(第二类错误):H0不真实时不拒绝(或H0不真实时,不拒绝H0)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异; 引进回归方程后, Y方面的变异。

三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。

分辨一个样本是否属于某特定总体等。

区间估计(可信区间):按一定的概率或可信度(1-α)用一个区间估计总体参数所在范围。

职称考试卫生统计学重点学习笔记.

职称考试卫生统计学重点学习笔记.

卫生统计学第一章统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。

2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。

3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。

第二节、统计学的几个重要概念一.资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。

一般有度量衡单位,每个对象之间有量的区别。

2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。

每个对象之间没有量的差异,只有质的不同。

3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。

注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。

二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。

2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。

从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。

四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。

亦称偶然事件。

五、概率描述随机事件发生可能性大小的数值,记作P,其取值范围0≤P≤1,一般用小数表示。

P=0,事件不可能发生必然事件(随机事件的特例);P=1,事件必然发生;P→0,事件发生的可能性愈小;P→1,事件发生的可能性愈大六、小概率事件习惯上将P≤0.05或P≤0.01 的随机事件称小概率事件。

表示某事件发生的可能性很小。

七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。

医学统计学重点知识总结

医学统计学重点知识总结

医学统计学第一章 绪言研究设计、资料分析、结论定量资料:以定量值表达每个观察单位的某项观察指标,如血脂心率等。

定性资料:以定性方式表达每个观察单位的某项观察指标,如血型性别等。

等级资料:以等级方式表达每个观察单位的某项观察指标,如疗效分级等。

总体:是指按研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

(以上均可能考名解)描述某总体特征的指标称为总体参数,简称参数;描述某样本特征的指标称为样本统计量,简称统计量。

概率是随机事件发生可能性大小的一个度量,概率小于或等于0.05时,统计学通常称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生,此即为小概率原理。

定量资料的统计指标(大题):算术均数,几何均数,中位数和百分位数。

同质性与异质性:同质是指观察单位具有相同的性质,是构成研究总体的必备条件;异质性是指性质不同,研究内容不同,对同质性的要求不同。

第二章 个体变异与变量分布变异(名解):是以具有同质性的观察单位为载体,某项观察指标在观察单位之间显示的差别。

【在同质的基础上各观察单位(或个体)之间的差异】 正偏态与负偏态【2.3节为重点,尤其是统计指标与图的关系】几何均数应用于比值数据,中位数适用于偏态分布离散趋势指标(重点简答):全距,四分位数间距,方差,标准差和变异系数,其中常用的是标准差和变异系数。

变异系数(名解):亦称离散系数,是标准差s 与均数x 之比,即XS CV X100%,变异系数常用于比较度量衡单位不同的两组或多组资料的变异度、比较均数相差悬殊的两组或多组资料的变异度。

如何正确使用相对数(选择或简答):1,计算相对数的分母不宜过小。

2,分析时不能以构成比代替率。

3,对观察单位数不等的几个率,不能直接相加求其平均率(或称总率)。

4,计算率时要注意资料的同质性,对比分析时应注意资料的可比性。

医学统计知识点总结

医学统计知识点总结

医学统计知识点总结在医学领域中,统计学的应用非常广泛,它可以帮助医生和研究人员分析和解释医学数据,研究疾病的发病机制以及评估治疗方法的有效性。

本文将重点总结医学统计学中的重要知识点,包括描述统计学和推论统计学。

描述统计学描述统计学是研究数据集中各变量的集中趋势和离散程度的方法。

主要包括以下几个方面的内容。

1. 数据的整理和呈现在医学研究中,首先需要对收集到的数据进行整理和呈现。

常用的方法包括频数分布表、直方图、饼图、条形图等,这些方法可以直观地展示各变量的分布情况。

2. 中心趋势的度量中心趋势代表着数据集中值的位置,主要包括均值、中位数和众数。

均值是各观测值之和除以观测次数,中位数是按数值大小排列后位于中间位置的值,众数是出现次数最多的值。

3. 离散程度的度量离散程度描述了数据集中值的分散程度,通过方差和标准差进行度量。

方差是各观测值与均值之差的平方和的平均值,标准差是方差的平方根。

推论统计学推论统计学可以根据样本数据推断总体的特征,包括参数估计和假设检验两个方面。

1. 参数估计参数估计是根据样本数据估计总体特征的值,主要包括点估计和区间估计。

点估计是用样本数据求得总体参数的估计值,例如用样本均值估计总体均值。

区间估计是用样本数据求得总体参数的估计区间,例如用置信区间估计总体均值。

2. 假设检验假设检验是通过样本数据推断总体参数是否符合某种假设,主要包括参数检验和非参数检验。

参数检验是对总体参数进行检验,例如对总体均值或总体比例进行检验。

非参数检验是不对总体参数进行具体假设的检验,例如对数据分布进行检验。

医学研究设计医学研究设计是医学统计学中非常重要的一部分,它关系到研究的可靠性和准确性。

主要包括以下几种设计。

1. 随机化对照试验随机化对照试验是医学研究设计中最可靠的一种设计,它可以有效地减少随机误差和系统误差。

研究对象被随机分配到不同的处理组中,其中一个组作为对照组,另一个组接受实验处理。

2. 横断面研究横断面研究是在特定时间点对研究对象进行一次观察,了解其疾病或特征的分布情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章第一1选2)是根据研究目的确定的同质观察单位(研究对象)的全体,population总体:总体(实际上是某一变量值的集合。

可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

总体population根据研究目的而确定的同质观察单位的全体。

)。

样样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

从总体中随机抽得的部分观察单位,其实测值的集合。

样本sample13选(即在大量重复试验中出现的频率非常低)的事件小概率事件:我们把概率很接近于0 称为小概率事件。

值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得P 值:P认为有高 P ≤0.01 P 到的P 值反应结果真实程度,一般以≤ 0.05 认为有统计学意义,或0.01。

度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05值是:P 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。

2) 拒绝原假设的最小显著性水平。

实例的) 显著性水平。

3) 观察到的( 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。

小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。

统计学中,一 0.01的概率为小概率。

般认为等于或小于0.05或 1)资料的类型(3选)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称1(其变量值是定量.为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

、红细胞(kg)的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重12L分)、血压(KPa(10/)等。

)、脉搏(次/计数numerical quantitative data数值变量资料计量资料measurement data定量资料variable为观测每个观察单位某项指标的大小,而获得的资料。

)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料2()。

计数资料亦称定性资料或分类资料。

其观察值是定性的,表现为互不相count data(容的类别或属性。

如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、 O 四种血型的人数等。

ABA、B、、无效的人数;调查一批少数民族居民的unordered qualitative data定性资料无序分类变量资料enumeration data计量资料nominal variable名义变量资料categorical variable为将观察单位按某种属性或类别分组计数,分组汇总各组观察单位数后而得到的资料。

.)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察3()。

等级资料又称有序变量。

如患者的治疗结果可ordinal data单位数,称为等级资料(分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但等。

、+++这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为 +、++等级资料ranked data半定量资料semi-quantitative data有序分类变量ordinalcategorical variable资料为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位后而得到的资料。

等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。

等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。

两种误差(2选1)抽样误差(sampling error )由于抽样而引起的总体指标(参数)与样本指标(统计数)之间的差异。

抽样误差是由个体变异或其它随机因素造成的,是不可避免的,但误差分布有规律可循,可进行估计和分析。

系统误差(systematic error):由于测量仪器结构本身的问题、刻度不准确或测量环境改变等原因,在多次测量时所产生的,总是偏大或总是偏小的误差,称为系统误差。

它带有规律性,经过校正和处理,通常可以减少或消除。

统计的步骤(考填空题,四个空)统计工作的步骤1.设计:设计内容包括资料收集、整理和分析全过程总的设想和安排。

设计是整个研究中最关键的一环,是今后工作应遵循的依据。

2.收集资料:应采取措施使能取得准确可靠的原始数据。

3.整理资料:简化数据,使其系统化、条理化,便于进一步分析计算。

4.分析资料:计算有关指标,反映事物的综合特征,阐明事物的内在联系和规律。

分析资料包括统计描述和统计推断。

实验设计的基本原则(考填空题,三个空)随机化原则、对照的原则、重复的原则。

2选1参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。

总体参数是固定的常数。

多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。

统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。

样本统计量可用来估计总体参数。

总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。

第二章频数表的制作步骤以及频数分布表的用途(问答题)频数分布表的编制步骤:例:某市1982年50名7岁男童的身高(cm)资料如下,试编制频数表。

114.4 117.2 122.7 124.0 114.0 110.8 118.2 116.7118.1118.9123.5 118.3 120.3 116.2 114.7 119.7 114.8 119.6113.2 120.0119.8 116.8 119.8 122.5 119.7 120.7 114.3 122.0117.0 122.5119.7 124.9 126.1 120.0 124.6 120.0 121.5 114.3124.1 117.2120.2 120.8 126.6 121.5 126.1 117.7 124.1 128.3121.8 118.71、找出观察值中的最大值(largest value)、最小值(smallest value),求极差(range)。

极差等于最大值减最小值。

本例最大值=128.3,最小值=110.8,则极差=128.3-110.8=17.5(cm ) 2、确定分组数和组距(class interval)。

组数的多少是根据例数的多少来确定的,以能够反映出频数分布的特征为原则,一般分10—15组。

组距为相邻两组的间隔,组距=极差/组数。

本例拟分10组,则组距=17.5/10=1.75≈2,为划记方便,可取稍大或稍小的数(当然本例组距也可取1.5)。

3、确定组段。

第一组段包括要最小值,取较最小值稍小且划分方便的数,本例取“110~”。

最后组段包括最大值并写出其上限值。

4、划记。

将各观察值以划“正”字的方法,一笔代表一例,划在相应组段中。

例如第一个数l14.4应在组段“114~”处划,第二个数117.2应在“116~”处划,以此类推。

5、统计各组段的频数。

全部数据划记完后,清点各组段的人数。

根据编制出的频数表即可了解该数值变量资料的频数分布特征。

频数分布表的用途1、描述资料的分布特征和分布类型。

频数分布有两个重要特征:集中趋势和离散趋势。

大部分观察值向某一数值集中的趋势称为集中趋势,常用平均数指标来表示,各观察值之间大小参差不齐。

频数由中央位置向两侧逐渐减少,称离散趋势,是个体差异所致,可用一系列的变异指标来反映。

2、便于进一步计算有关指标或进行统计分析。

当数据较多且需手工计算时,常先编制频数表,再进行统计计算。

3、发现特大、特小的可疑值。

如果频数表的一端或两端出现连续几个组段的频数为零后,又出现少数几个特大值或特小值,使人怀疑其是否准确,需进一步检查和核对并做相应处理。

4、据此绘制频数分布图。

描述数据分布集中趋势的指标和描述数据分布离散程度的指标(考选择或者填空)2.描述数据分布集中趋势的指标算术均数、几何均数、中位数。

3.描述数据分布离散程度的指标极差、四分位数间距、方差、标准差、变异系数。

正态分布的特征(考选择题υ、σ对图形的影响)服从正态分布的变量的频数分布由υ、σ完全决定。

(1) υ是正态分布的位置参数,描述正态分布的集中趋势位置。

正态分布以 x =υ为对.。

称轴,左右完全对称。

正态分布的均数、中位数、众数相同,均等于υσ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,(2)数据分布越集中。

σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

标准正态分布(填空)2,通1 1.标准正态分布是一种特殊的正态分布,标准正态分布的υ0,σ2NZu)。

,)表示服从标准正态分布的变量,记为υ~1(常用0(或正态分布的应用(简答)某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。

其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。

1. 估计频数分布一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。

2. 制定参考值范围(1)正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

(2)百分位数法常用于偏态分布的指标。

表3-1中两种方法的单双侧界值都应熟练掌握。

3. 质量控制:为了控制实验中的测量(或实验)误差,常以作为上、下警戒值,以作为上、下控制值。

这样做的依据是:正常情况下测量(或实验)误差服从正态分布。

4. 正态分布是许多统计方法的理论基础。

检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。

许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。

医学参考值范围的制定(计算题)确定参考值范围的单双侧:一般生理物质指标多为双侧、毒物指标则多为单侧。

确定百分位点:一般取95%或99%。

例题某市 20 岁男学生 160 人的脉搏数(次/分钟),经正态性检验服从正态分布。

求得= 76.10,S =9.32。

试估计脉搏数的95%、99%参考值范围。

正常值范围为:±1.96 S=76.10 ± 1.96(脉搏数的解:95%9.32)=57.83~94.37±2.58 S =76.10 ± 2.58脉搏数的99%(正常值范围为:9.32)=52.05~100.37第三章标准误的概念,计算公式。

相关文档
最新文档