直线与圆的典型高考真题讲解

合集下载

直线和圆的方程 高中数学-例题课后习题详解-选必一复习参考题 2

直线和圆的方程 高中数学-例题课后习题详解-选必一复习参考题 2

复习参考题2一.选择题.1.直线3210x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】A【解析】【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果.【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A.2.设直线l 的方程为x -y sin θ+2=0,则直线l 的倾斜角α的范围是()A.[0,π] B.,42ππ⎡⎤⎢⎥⎣⎦ C.3,44ππ⎡⎤⎢⎥⎣⎦ D.,42ππ⎡⎫⎪⎢⎣⎭3,24ππ⎛⎤⋃ ⎥⎝⎦【答案】C【解析】【分析】分sin 0θ=和sin 0θ≠两种情况讨论,当sin 0θ=时,2πα=;当sin 0θ≠时,结合sin θ的范围,可得斜率的取值范围,进而得到倾斜角α的范围.【详解】直线l 的方程为sin 20x y θ-+=,当sin 0θ=时直线方程为2x =-,倾斜角2πα=当sin 0θ≠时,直线方程化为12sin sin y x θθ=+,斜率in 1s k θ=,因为[)(]sin 1,00,1θ∈- ,所以(][),11,k ∈-∞-+∞ ,即(][)tan ,11,α Î-¥-+¥,又因为[)0,απ∈,所以3,,4224ππππα⎡⎫⎛⎤∈⎪ ⎢⎥⎣⎭⎝⎦综上可得3,44ππα⎡⎤∈⎢⎥⎣⎦故选:C3.与直线3450x y -+=关于x 轴对称的直线的方程为()A.3450x y +-=B.3450x y ++=C.3450x y -+= D.3450x y --=【答案】B【解析】【分析】把方程中y 换成y -,整理即得.【详解】直线3450x y -+=关于x 轴对称的直线的方程为34()50x y --+=,即3450x y ++=.故选:B .4.已知下列各组中的两个方程表示的直线平行,求a 的值:(1)23x y a +=,4630x y +-=;(2)210x ay +-=,(31)10a x ay ---=;(3)(1)2x a y a ++=-,2416ax y +=-.【答案】(1)32a ≠;(2)0a =或16a =;(3)1a =【解析】【分析】(1)根据平行得出23463a =≠可求;(2)可得0a =满足,0a ≠时,311121a a a ---=≠-;(3)可得0a =不满足,0a ≠时,1122416a a a +-=≠-.【详解】(1)若方程23x y a +=,4630x y +-=表示的直线平行,则23463a =≠,解得32a ≠;(2)当0a =时,方程210x ay +-=化为1x =,方程(31)10a x ay ---=化为1x =-,此时两直线平行,符合题意;当0a ≠时,要使直线平行,则满足311121a a a ---=≠-,解得16a =,这是0a =或16a =;(3)当0a =时,方程(1)2x a y a ++=-化为20x y +-=,方程2416ax y +=-化为4y =-,此时两直线不平行,不符合题意;当0a ≠时,要使直线平行,则满足1122416a a a +-=≠-,解得1a =,综上,1a =.5.已知下列各组中的两个方程表示的直线垂直.求a 的值(1)41ax y +=,(1)1a x y -+=-;(2)22x ay +=,21ax y +=;(3)(32)(14)80a x a y ++-+=,(52)(4)70a x a y -++-=.【答案】(1)2a =±;(2)0a =;(3)0a =或1a =.【解析】【分析】当直线以一般方程形式给出时,两直线垂直,可利用公式12120A A B B +=,求实数a 的取值.【详解】(1)因为两直线垂直,所以()41110a a -+⨯=,即24410a a --=,解得:2a =±;(2)由条件可知,220a a +=,得0a =;(3)由条件可知,()()()()32521440a a a a +-+-+=,即20a a -=,解得:0a =或1a =.6.求平行于直线20x y --=,且与它的距离为【答案】20,60x y x y -+=--=【解析】【分析】设该直线为0x y c -+=,利用平行线间的距离公式可得结果.【详解】因为所求直线平行于直线20x y --=,所以可设该直线为0x y c -+=,又因为所求直线与直线20x y --=的距离为,=可得24c +=,解得2,6c c ==-,所以平行于直线20x y --=,且与它的距离为20,60x y x y -+=--=.【点睛】本题主要考查直线平行的性质以及平行线间的距离公式,意在考查对所学知识的掌握与应用,属于基础题./7.已知平行四边形的两条边所在直线的方程分别是,,且它的对角线的交点是M (3,3),求这个平行四边形其它两边所在直线的方程.【答案】其他两边所在直线的方程是3x-y-16=0,x+y-11=0.【解析】【详解】试题分析:依题意,由方程组x+y−1=0,3x−y+4=0,可解得平行四边形ABCD 的顶点A 的坐标,再结合对角线的交点是M (3,3),可求得C 点坐标,利用点斜式即可求得其他两边所在直线的方程.试题解析:联立方程组x+y−1=0,3x−y+4=0,解得x=−34,y=74,所以平行四边形ABCD 的顶点A (−34,74),设C (x 0,y 0),由题意,点M (3,3)是线段AC 的中点,∴x 0−34=6,y 0+74=6,解得x 0=274,y 0=174,∴C (274,174),由已知,直线AD 的斜率k AD =3.∵直线BC ∥AD ,∴直线BC 的方程为3x-y-16=0,由已知,直线AB 的斜率k AB =-1,∵直线CD ∥AB ,∴直线CD 的方程为x+y-11="0,"因此,其他两边所在直线的方程是3x-y-16=0,x+y-11=0.考点:1.直线的一般式方程与直线的平行关系;2.直线的一般式方程.8.求下列各圆的方程:(1)圆心为()5,3M -且过点()8,1A --;(2)过()2,4A -,()1,3B ,()2,6C 三点;(3)圆心在直线350x y +-=上,且经过原点和点()3,1-.【答案】(1)()()225325x y ++-=(2)()2255x y +-=(3)2252539x y ⎛⎫-+= ⎪⎝⎭【解析】【分析】(1)根据圆心为()5,3M -且过点()8,1A --,求得半径即可;(2)设圆的方程为:()()222x a y b r -+-=,将()2,4A -,()1,3B ,()2,6C ,代入求解;(3)先求得以原点和点()3,1-为端点的线段的垂直平分线,再与350x y +-=联立,求得圆心即可.【小问1详解】解:因为圆心为()5,3M -且过点()8,1A --,所以圆的半径为5r ==,所以圆的方程为:()()225325x y ++-=;【小问2详解】设圆的方程为:()()222x a y b r -+-=,因为过()2,4A -,()1,3B ,()2,6C 三点,所以()()()()()()222222222241326a b r a b r a b r ⎧++-=⎪⎪-+-=⎨⎪-+-=⎪⎩,解得2055a b r =⎧⎪=⎨⎪=⎩,所以圆的方程为:()2255x y +-=;【小问3详解】以原点和点()3,1-为端点的线段的垂直平分线为:350x y --=,又圆心在直线350x y +-=上,由350350x y x y --=⎧⎨+-=⎩,解得530x y ⎧=⎪⎨⎪=⎩,所以圆心为5,03⎛⎫ ⎪⎝⎭,半径为53r =,所以圆的方程为:2252539x y ⎛⎫-+= ⎪⎝⎭.9.m 为何值时,方程222422210x y x my m m +-++-+=表示圆?并求半径最大时圆的方程.【答案】当()1,3m ∈-时,方程表示圆,当半径最大时,圆的方程为()()22214x y -++=.【解析】【分析】根据方程表示圆可得出关于实数m 的不等式,可解出实数m 的取值范围,求出圆的半径的表达式,利用二次函数的基本性质可求得圆的半径的最大值,求得此时m 的值,即可得出圆的方程.【详解】若方程222422210x y x my m m +-++-+=表示圆,则()()222244422148120m m m m m -+--+=-++>,整理得2230m m --<,解得13m -<<.设圆222422210x y x my m m +-++-+=的半径为r ,则22r ==,所以,当1m =时,圆222422210x y x my m m +-++-+=的半径取最大值,此时,圆的方程为224210x y x y +-++=,即()()22214x y -++=.10.判断圆2264120x y x y +-++=与圆22142140x y x y +--+=是否相切.【答案】是,两圆内切【解析】【分析】求出两圆圆心及半径,判断圆心距与半径和与差的关系来确定两圆的位置关系.【详解】2264120x y x y +-++=,即22(3)(2)1x y -++=,圆心为(3,2)-,半径为1;22142140x y x y +--+=,即22(7)(1)36x y -+-=,圆心为(7,1),半径为6;圆心距为5d ===,半径之和为7,之差为5,故两圆内切.11.若函数()y f x =在x a =及x b =之间的一段图象可以近似地看作线段,且a c b ≤≤,求证:[]()()()()c a f c f a f b f a b a-≈+--【答案】证明见详解.【解析】【分析】作图利用三角形相似,得比例CE AE BF AF=即可证明.【详解】证明:设()()()()()(),,,,,,A a f a B b f b C c f c 作AF BF ⊥如图所示:在AFB △中,有CE AE BF AF=,则()()()()f c f a c a f b f a b a --≈--所以[]()()()()c a f c f a f b f a b a-≈+--12.求点()2,1P --到直线:(13)(1)240l x y λλλ+++--=(λ为任意实数)的距离的最大值.13【解析】【分析】将直线方程变形为()()2340x y x y λ+-++-=,得直线系恒过点()1,1A ,由此得到P 到直线l 的最远距离为PA ,再利用两点间的距离公式计算可得.【详解】解:∵直线:(13)(1)240l x y λλλ+++--=,∴可将直线方程变形为()()2340x y x y λ+-++-=,∴20340x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,由此可得直线系恒过点()1,1A 则P 到直线l 的最近距离为A ,此时直线过P .P 到直线l 的最远距离为PA ,此时直线垂直于PA .∴max d PA ===.13.过点P (3,0)作一条直线,使它夹在两直线l 1:2x -y -2=0和l 2:x +y +3=0间的线段AB 恰好被点P 平分,求此直线的方程.【答案】8240x y --=【解析】【分析】根据题意,设出直线l 1上的一点P 1,求出P 1关于点P 的对称点P 2;由P 2在直线l 2上,求出点P 1,即得所求的直线方程.【详解】方法一:若直线AB 无斜率,则其方程为x =3,它与两直线的交点分别为(3,4),(3,-6),这两点的中点为(3,-1)不是点P ,不合题意.所以直线AB 必有斜率,设为k (k ≠2且k ≠-1),则直线AB 的方程为y =k (x -3).由3,220,y kx x y =-⎧⎨--=⎩解得y 1=42k k -,由3,30,y kx x y =-⎧⎨++=⎩解得y 2=61k k -+.据题意122y y +=0,即42k k -+61k k -+=0,解得k =0或8.当k =0时,它与两直线的交点分别为(1,0),(-3,0),这两点的中点并不是点P ,不符合题意,舍去.当k =8时,它与两直线的交点分别为(113,163),(73,-163),这两点的中点是点P ,符合题意.∴直线AB 的方程为y =8(x -3),即8x -y -24=0.方法二:()()()20000,3,3,06-3l M x x M P N x x --∴+在直线上任取一点点关于的对称点,在直线1l 上,把()006-3N x x +点,代入1l 方程220x y --=,解得073x =716,33M ⎛⎫∴- ⎪⎝⎭,16038733l k --∴==-,即直线1l 方程为:824y x =-.14.已知直线:280l x y --=和(2,0)A -,()2,4B 两点,若直线l 上存在点P 使得PA PB +最小,求点P 的坐标.【答案】(2,3)-【解析】【分析】先判断两点是在直线同侧还是异侧,再求A 关于直线的对称点得解【详解】因为(208)(288)0----->,所以,A B 在直线同侧,设点(2,0)A -关于直线280x y --=对称的点坐标为(,)A a b ',则280222a b b a -⎧--=⎪⎪⎨⎪=-⎪+⎩,即(2,8)A '-,可知PA PB A B +≥',即三点,,A P B '共线时,||||PA PB +最小,连接A B '交直线于点P ,点P 即为所求,A B ' 直线方程2x =,联立求得P 点坐标(2,3)-.15.求圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长.【答案】【解析】【分析】首先利用两圆相减,求公共弦所在直线方程,再利用弦长公式求解公共弦长.【详解】()()2222101005550x y x y x y +--=⇔-+-=,即圆心是()5,5,半径r =()()2222624003150x y x y x y +-+-=⇔-++=,圆心()3,1-,半径r =,=<+,两圆相交,两圆相减得3100x y +-=,此直线是两圆相交公共弦所在直线方程,()()2222101005550x y x y x y +--==-+-=,即圆心是()5,5,半径r =,圆心到直线3100x y +-=的距离d==所以公共弦长l ===.16.已知圆224x y +=与圆224440x y x y ++-+=关于直线l 对称,求直线l 的方程.【答案】20x y -+=【解析】【分析】求得两圆的圆心,可得过两圆心直线的斜率和中点坐标,根据对称性可得直线l 斜率,从而求得直线l 的方程.【详解】解:圆221:4C x y +=,圆心为1C ()0,0,半径12r =圆222:4440C x y x y ++-+=,经整理为()()22224x y ++-=,其圆心为2C ()2,2-,半径22r =;故12C C 中点为()1,1C -,而1220120C C k -==---,由对称性知121l C C k k ⋅=-,1l k ∴=:11l y x ∴-=+即直线l 的方程为20x y -+=.17.求与圆C :22(2)(6)1x y ++-=关于直线3−4+5=0对称的圆的方程.【答案】22(4)(2)1x y -++=.【解析】【分析】利用两圆圆心关于直线3450x y -+=对称求出对称圆的圆心即可得解.【详解】圆22:(2)(6)1C x y ++-=的圆心的坐标是()2,6-,半径长1r =.设所求圆C '的方程是22()()1x a y b -+-=,由圆C '与圆C 关于直线3450x y -+=对称知,直线3450x y -+=是两圆连心线的垂直平分线.所以有642326345022b a a b -⎧=-⎪⎪+⎨-+⎪⋅-⋅+=⎪⎩,解此方程组,得4,2a b ==-.所以与圆22:(2)(6)1C x y ++-=关于直线3450x y -+=对称的圆的方程是22(4)(2)1x y -++=.【点睛】关键点点睛:利用两圆圆心关于直线3450x y -+=对称求解是解题关键.18.求圆心在直线y =-2x 上,并且经过点A(2,-1),与直线x +y =1相切的圆的方程.【答案】圆的方程为:2(1)x -+22(y )+=2【解析】【详解】设圆心为S ,则k SA =1,∴SA 的方程为:y +1=x -2,即y =x -3,和y =-2x 联立解得x =1,y =-2,即圆心(1,-2)∴r故所求圆的方程为:2(1)x -+22(y )+=2\19.如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线具有什么关系?为什么?【答案】对角线互相垂直【解析】【分析】设有四边形ABCD ,由条件得知2222A CB CD AD B ++= ,则由向量的运算规律得0BD AC ⋅= .【详解】解:如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线互相垂直.证明如下:设有四边形ABCD ,由条件得知2222A CB CD AD B ++= 则()()2222AB AD AC AC AB AD+--+= ∴AD AC AB AC ⋅=⋅ ,()0AD AB AC -⋅= ∴0BD AC ⋅=.即BD AC ⊥20.求由曲线22x y x y +=+围成的图形的面积.【答案】2π+【解析】【分析】先看当0x ≥,0y ≥时整理曲线的方程,表示出图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆,进而利用三角形面积公式和圆的面积公式求得二者的面积,相加即可.【详解】解:当0x ≥,0y ≥时,22111()()222x y -+-=,表示的图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆∴1114112222S ππ⎛⎫=⨯⨯+⨯⨯=+ ⎪⎝⎭故围成的图形的面积为:2π+21.一条光线从点()2,3A -射出,经x 轴反射后,与圆22:(3)(2)1C x y -+-=相切,求反射后光线所在直线的方程【答案】3460x y --=或4310x y --=.【解析】【分析】设出反射光线斜率,得出反射光线方程,利用圆心到反射光线的距离为半径建立关系可求得斜率,得出方程.【详解】点()2,3A -关于x 轴的对称点为()2,3--,设反射光线的斜率为k ,则可得出反射光线为()32y k x +=+,即230kx y k -+-=,因为反射光线与圆相切,则圆心()3,2到反射光线的距离d r =1=,解得43k =或34,则反射直线的方程为3460x y --=或4310x y --=.22.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点.(2)直线l 被圆C 截得的弦何时最长、何时最短?并求截得的弦长最短时m 的值以及最短弦长.【答案】(1)证明见解析;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,此时34m =-,最短弦长为【解析】【分析】(1)直线l 的方程可化为(27)(4)0x y m x y +-++-=,要使直线l 恒过定点,则与参数的变化无关,从而可得27040x y x y +-=⎧⎨+-=⎩,易得定点;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长;当直线l CP ⊥时,直线被圆截得的弦长最短,即得解.【详解】(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=,联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩.所以直线恒过定点P (3,1).(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,直线l 的斜率为21121,1312CP m k k m +-=-==-+-由211(112m m +-⋅-=-+解得34m =-此时直线l 的方程是250x y --=圆心(1,2)C 到直线250x y --=的距离为d ==,||||AP BP ==,所以最短弦长是||2||AB AP ==。

2020年高考真题分类汇编专题10直线和圆pdf

2020年高考真题分类汇编专题10直线和圆pdf

10 直线和圆1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y ,则()()22341x y -+-=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-= C. 210x y -+= D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l 的距离为2221125221d ⨯++==>+,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而24PA MP =-,当直线MP l ⊥时,min 5MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.3.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A.55B.255C.355D.455【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为22555d -==;所以,圆心到直线230x y --=的距离为255. 故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.4.(2020•江苏卷)在平面直角坐标系xOy 中,已知3(0)2P ,,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________. 【答案】105【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值. 【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则231||=236,||144AB d PC -=+= 所以2221236(1)(36)(1)2PABSd d d d ≤⋅-+=-+ 令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去)当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为105, 故答案为:105【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题. 5.(2020•天津卷)已知直线380x y -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式22||2AB r d =-,即可求得r . 【详解】因为圆心()0,0到直线380x y -+=的距离8413d ==+, 由22||2AB r d =-可得22624r =-,解得=5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题. 6.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =234x -图像上的点,则|OP |=( ) A .222B .4105C .7D .10【答案】D【解析】根据题意可知,点P 既在双曲线的一支上,又在函数234y x =-的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-的图象上,所以,由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+=.故选:D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.7.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______. 【答案】 (1).33 (2). 233-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C 到直线的距离等于半径,即22||11b k =+,22|4|11k b k +=+,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得323,33k b ==-.故答案为:323;33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.。

高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)考向一 求圆的方程【母题来源】2022年高考全国乙卷(理科)【母题题文】过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【试题解析】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭; 【命题意图】本题考查圆的一般方程的形式,通过解方程组求一般方程中的系数. 【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为低档题,是历年高考的热点. 常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的一般方程的形式; (2)解方程组;(3)一般式转化为标准式. 考向二 直线与圆的位置关系【母题来源】2022年高考全国甲卷(文科)【母题题文】 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.【答案】22(1)(1)5x y -++=【试题解析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R , 2222(3)(12)(2)-+-=+-=a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.【命题意图】本题考查直线与圆的位置关系,通过圆心到直线的距离与半径的关系求解.【命题方向】这类试题在考查题型选择、填空题出现,多为低档题,是历年高考的热点.常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的标准方程; (2)求出圆心到直线的距离;(3)由直线与圆的位置关系确定圆心到直线的距离与半径之间的关系. 真题汇总及解析一、单选题1.(湖北省新高考联考协作体2021-2022学年高二下学期期末数学试题)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案. 【详解】直线()2140x m y +++=与直线320x my --=垂直, 则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件. 故选:B.2.(2022·四川乐山·高一期末)圆222440x y x y +-+-=关于直线10x y +-=对称的圆的方程是( ) A .22(3)16x y -+= B .22(3)9x y +-= C .22(3)16x y +-= D .22(3)9x y -+= 【答案】D 【解析】【分析】先求得圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标,进而即可得到该圆的方程. 【详解】圆222440x y x y +-+-=的圆心坐标为(1,2)-,半径为3 设点(1,2)-关于直线10x y +-=的对称点为(,)m n ,则211121022n m m n +⎧=⎪⎪-⎨+-⎪+-=⎪⎩ ,解之得30m n =⎧⎨=⎩ 则圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标为(3,0) 则该圆的方程为22(3)9x y -+=, 故选:D .3.(2022·四川成都·模拟预测(文))直线410mx y m 与圆2225x y +=相交,所得弦长为整数,这样的直线有( )条 A .10 B .9 C .8 D .7【答案】C 【解析】 【分析】求出过定点(4,1)32(5,6),最长的弦长为直径10,则弦长为6的直线恰有1条,最长的弦长为直径10,也恰有1条,弦长为7,8,9的直线各有2条,即可求出答案. 【详解】直线410mx y m 过定点(4,1),圆半径为5, 最短弦长为2251732(5,6),恰有一条,但不是整数;弦长为6的直线恰有1条,有1条斜率不存在,要舍去; 最长的弦长为直径10,也恰有1条; 弦长为7,8,9的直线各有2条,共有8条, 故选:C .4.(2022·广西柳州·模拟预测(理))已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点23AB =k =( ) A .15B .43C .12D .512【答案】B 【解析】 【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k-=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解方程即可求出答案. 【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k -=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解得:43k =. 故选:B.5.(2022·全国·模拟预测)直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( ) A .25B .4 C .3D .22【答案】A 【解析】 【分析】直接利用直线被圆截得的弦长公式求解即可. 【详解】由题意圆心()1,2C ,圆C 的半径为3, 故C 到:3410l x y +-=22381234+-=+,故所求弦长为2223225-=故选:A.6.(2022·全国·模拟预测)若圆()()()22140x a y a -+-=>与单位圆恰有三条公切线,则实数a 的值为( ) A 3B .2 C .2D .23【答案】C 【解析】 【分析】两圆恰有三条公切线,说明两圆为外切关系,圆心距12d r r =+. 【详解】由题,两圆恰有三条公切线,说明两圆为外切关系(两条外公切线,一条内公切22121a +=+,结合0a >解得22a =故选:C.7.(2022·湖南岳阳·模拟预测)已知点A (2,0),B (0,﹣1),点P 是圆x 2+(y ﹣1)2=1上任意一点,则PAB △ 面积最大值为( ) A .2 B .45C .51D .52【答案】D 【解析】 【分析】结合点到直线距离公式及图形求出圆上点P 到直线AB 距离的最大值,由此可求PAB △面积的最大值.【详解】 由已知=5AB要使PAB △的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为21x y+=-1,即x ﹣2y ﹣2=0, 圆心(0,1)到直线AB 的距离为d 022455--==, 故P 到直线AB 451, 所以PAB △面积的最大值为()114551=522AB d ⎫⨯⨯+⎪⎪⎝⎭故选:D .8.(2022·河南安阳·模拟预测(理))已知圆22:(2)(6)4-+-=C x y ,点M 为直线:80l x y -+=上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( )A .22(7)(1)4-+-=x yB .22(1)(7)4-+-=x yC .22(7)(1)2-+-=x yD .22(1)(7)2-+-=x y【答案】D 【解析】 【分析】根据给定条件,利用切线长定理求出四边形CAMB 周长最小时点M 的坐标即可求解作答. 【详解】圆22:(2)(6)4-+-=C x y 的圆心(2,6)C ,半径2r =,点C 到直线l 的距离22221(1)d ==+-依题意,CA AM ⊥,四边形CAMB 周长2222||2||42424CA AM CM CA d +=+-+-242(22)48=+-=,当且仅当CM l ⊥时取“=”,此时直线:80CM x y +-=,由8080x y x y -+=⎧⎨+-=⎩得点(0,8)M ,四边形CAMB 的外接圆圆心为线段CM 中点(1,7)222(1)(7)2-+-=x y .故选:D9.(2022·全国·模拟预测(理))已知圆C 过圆221:42100C x y x y ++--=与圆222:(3)(3)6C x y ++-=的公共点.若圆1C ,2C 的公共弦恰好是圆C 的直径,则圆C的面积为( ) A .115πB .265πC 130πD .1045π【答案】B【解析】 【分析】根据题意求解圆1C ,2C 的公共弦方程,再计算圆2C 中的公共弦长即可得圆C 的直径,进而求得面积即可 【详解】由题,圆1C ,2C 的公共弦为2242100x y x y ++--=和22(3)(3)6x y ++-=的两式相减,化简可得2110x y -+=,又()23,3C -到2110x y -+=的距离()2232311512d --⨯+==+-,故公共弦长为22262655⎛⎫-= ⎪⎝⎭,故圆C 265C 的面积为265π故选:B10.(2022·广东·深圳市光明区高级中学模拟预测)已知圆:C 22(1)4x y -+=与抛物线2(0)y ax a =>的准线相切,则=a ( ) A .18B .14C .4D .8【答案】A 【解析】 【分析】求出抛物线的准线方程,利用圆与准线相切可得124a-=,求解即可. 【详解】因为圆:C 22(1)4x y -+=的圆心为(1,0),半径为2r =抛物线2(0)y ax a =>的准线为14y a=-,所以124a -=,即18a =, 故选:A.二、填空题11.(2022·江苏南京·模拟预测)已知ABC 中,()30A -,,()3,0B ,点C 在直线3yx 上,ABC 的外接圆圆心为()0,4E ,则直线EC 的方程为______. 【答案】344y x =+ 【解析】 【分析】圆心E 到点B 的距离即为半径,可得到外接圆的方程,联立圆的方程与直线的方程,得到C 点坐标,利用直线方程两点式即可求解. 【详解】因为ABC 的外接圆圆心为()0,4E ,所以ABC 22345+=, 即ABC 的外接圆方程为()22425x y +-=.联立()223425y x x y =+⎧⎪⎨+-=⎪⎩,解得47x y =⎧⎨=⎩,或30x y =-⎧⎨=⎩, 所以()4,7C 或()3,0C -(与A 点重合),舍, 所以直线EC 的方程为747440y x --=--,即344y x =+. 故答案为:344y x =+.12.(2022·天津二中模拟预测)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________. 34【解析】 【分析】将圆2C 的方程写成标准形式,然后根据两圆外切,可得圆心距离为半径之和,可得m ,接着计算2C 到直线的距离,最后根据圆的弦长公式计算可得结果. 【详解】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m()()224030225-+--=-m ,解得16m = 所以2:C ()()22439x y -++=2C 到直线的距离为2243211-=+d 2C 的半径为R 则直线:0l x y +=被圆2C 所截的弦长为22129342-=-R d 故答案为: 3413.(2022·安徽·合肥市第八中学模拟预测(文))直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________.【答案】1 【解析】 【分析】求出直线MN 过定点A (1,1),进而判断点A 在圆内,当OA MN ⊥时,|MN |取最小值,利用两直线斜率之积为-1计算即可. 【详解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1), 因为22113+<,即点A 在圆223x y +=内. 当OA MN ⊥时,|MN |取最小值,由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,∴1m =, 故答案为:1.14.(2022·上海静安·模拟预测)已知双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,右焦点和圆心重合,则该双曲线的标准方程为____________.【答案】22154x y -=【解析】 【分析】根据已知条件得出双曲线的渐近线方程及圆的圆心和半径,进而得出双曲线的焦点坐标,利用双曲线的渐近线与圆相切,得出圆心到渐近线的距离等于半径,结合双曲线中,,a b c 三者之间的关系即可求解. 【详解】由题意可知,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=.由圆C 的方程为()2234x y -+=,得圆心为()3,0C ,半径为2r =.因为右焦点和圆心重合,所以双曲线右焦点的坐标为3,0.3c =又因为双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,22302b a a b ⨯±⨯=+22c=,解得2b =.所以222945a c b =-=-=,所以该双曲线的标准方程为22154x y -=.故答案为:22154x y -=.15.(2022·全国·哈师大附中模拟预测(理))已知函数()22x xe ef x e -=(其中e是自然对数的底数),若在平面直角坐标系xOy 中,所有满足()()0f a f b +>的点(),a b 都不在圆C 上,则圆C 的方程可以是______(写出满足条件的一个圆的方程即可).【答案】221x y +=(答案不唯一) 【解析】 【分析】根据题意,得到()(2)0f x f x +-=,且关于点(1,0)中心对称,得到2a b +>,进而化简得到2x y +≤,即可得到答案. 【详解】由题意,函数222e e ()e e ex x x xf x --==-在R 上单调递增,且()(2)0f x f x +-=, 所以曲线()y f x =关于点(1,0)中心对称,所以()()0f a f b +>,即2a b +>, 在平面直角坐标系xOy 中所有满足()()0f a f b +>,即2a b +>的点(,)a b 都不在圆C 上,所以圆C 上的点都满足2x y +≤,即圆C 在2x y +≤表示的半平面内, 故圆C 可以是以原点为圆心,半径为1的圆,圆C 的方程可以为221x y +=. 故答案为:221x y +=(答案不唯一).三、解答题16.(2022·江苏·南京市天印高级中学模拟预测)已知动点(),M x y 是曲线C 上任一点,动点M 到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,圆M 的方程为()2221x y +-=.(1)求C 的方程,并说明C 是什么曲线;(2)设1A 、2A 、3A 是C 上的三个点,直线12A A 、13A A 均与圆M 相切,判断直线23A A 与圆M 的位置关系,并说明理由. 【答案】(1)答案见解析(2)若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切,理由见解析 【解析】 【分析】(1)由抛物线的定义可得出曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,进而可求得曲线C 的方程;(2)分析可知直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,其中1x 、2x 、3x 两两互不相等,利用二次方程根与系数的关系以及点到直线的距离公式以及几何法判断可得出结论.(1)解:由题设知,曲线C 上任意到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,因此,曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,故曲线C 的方程为2x y =.(2)解:若直线23A A 的斜率不存在,则直线23A A 与曲线C 只有一个交点,不合乎题意,所以,直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,则1x 、2x 、3x 两两互不相等,则1222121212A Ax x k x x x x -==+-,同理1313A A k x x =+,2323A A k x x =+, 所以直线12A A 方程为()()21121y x x x x x -=+-,整理得()12120x x x y x x +--=,同理可知直线13A A 的方程为()13130x x x y x x +--=, 因为直线12A A 与圆M ()12212211x x x x +=++,整理可得()222121211230x x x x x -++-=,同理可得()222131311230x x x x x -++-=,所以2x 、3x 为方程()2221111230x x x x x -++-=的两根,则11x ≠±,所以,1232121x x x x +=--,21232131x x x x -=-,圆心M 到直线23A A ()2211221231222123122111321211112111x x x x x x x x x x x x +-+-+-===+++⎛⎫+- ⎪--⎝⎭,所以直线23A A 与圆M 相切. 综上,若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程; (2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.17.(2022·四川成都·模拟预测(理))点P 为曲线C 上任意一点,直线l :x =-4,过点P 作PQ 与直线l 垂直,垂足为Q ,点()1,0F -,且2PQ PF =. (1)求曲线C 的方程;(2)过曲线C 上的点()()000,1M x y x ≥作圆()2211x y ++=的两条切线,切线与y 轴交于A ,B ,求△MAB 面积的取值范围.【答案】(1)22143x y +=(2)212S ⎡∈⎢⎣ 【解析】 【分析】(1)设点(),P x y ,通过2PQ PF =得到等式关系,化简求得曲线方程; (2)设切线方程()00y y k x x -=-,通过点到切线的距离,化简成k 的一元二次方程,再韦达定理得出12,k k 与00,x y 的等式关系,再求出||AB 弦长,消去12,k k ,再求面积即可.(1)设(),P x y ,由2PQ PF =,得()2241x x y +=++22143x y +=,所以曲线C 的方程为22143x y +=;(2)设点()00,M x y 的切线方程为()00y y k x x -=-(斜率必存在),圆心为()1,0F -,r =1所以()1,0F -到()00y y k x x -=-的距离为:00211k y kx d k-+-==+平方化为()()2220000022110x x k x y k y +-++-=,设P A ,PB 的斜率分别为1k ,2k则()0012200212x y k k x x ++=+,201220012y k k x x -=+ 因为P A :()010y y k x x -=-,令x =0有010A y y k x =-,同理020B y y k x =-所以()()()()222200000201212120414214A B x y x x y AB y y x k k x k k k k +-+-=-=-=+-=又因为22004123y x =-代入上式化简为0062x AB x +=+ 所以3200000006611122222MABx x x S x AB x x x ++=⋅⋅=⋅=++△[]01,2x ∈ 令()3262x x f x x +=+,[]1,2x ∈,求导知()f x 在[]1,2x ∈为增函数,所以2126S ∈⎢⎣.18.(2022·陕西·交大附中模拟预测(理))已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-=(2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程; (2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围.(1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意;所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=, 23111+=+k k ,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=.(2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO 可得()222232x y x y +-+整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,()221233a a ≤+-,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.。

高考数学真题题型分类解析专题专题07 直线与圆

高考数学真题题型分类解析专题专题07 直线与圆

高考数学真题题型分类解析高考数学真题题型分类解析 专题07直线与圆直线与圆命题解读考向考查统计1.高考对直线的考查,重点是直线的倾斜角与斜率、直线方程的求法、两条直线的位置关系、距离公式、对称问题等。

2.高考对圆的考查,重点是圆的标准方程与一般方程的求法,除了待定系数法外,要特别要重视利用几何性质求解圆的方程。

同时,除了直线与圆、圆与圆的位置关系的判断,还特别要重视直线与圆相交所得弦长及相切所得切线的问题。

3.其他就是直线、圆与其他知识点的交汇。

直线与圆的位置关系2023·新高考Ⅰ卷,62022·新高考Ⅱ卷,152023·新高考Ⅱ卷,152024·新高考Ⅱ卷,10(多选题的一个选项中考查)圆与圆的位置关系2022·新高考Ⅰ卷,14直线的斜率2022·新高考Ⅱ卷,3命题分析2024年高考新高考Ⅰ卷未直接考查直线与圆的相关知识点,Ⅱ卷在多选题的一个选项中考到了直线与圆相切的问题,其实在压轴题中也有直线斜率的影子,后续专题再呈现。

其实直线与圆直接考查的话,难度一般是较易的,一般计算不出错即可。

在一些上难度的题型中,往往有直线斜率的一些影子。

直线与圆考查应关注:直线、圆的方程及位置关系,直线方程的求解、直线过定点问题的求解、含参直线方程中参数取值范围求解、直线与圆的位置关系中涉及的弦长与切线方程的求解。

以常规题型、常规解法为主要方向,常结合基本不等式、函数、三角形面积等知识考查最值问题。

预计2025年高考还是主要考查直线与圆的位置关系。

试题精讲一、多选题1.(2024新高考Ⅱ卷·10)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个一、单选题1.(2023新高考Ⅰ卷·6)过点()0,2−与圆22410x y x +−−=相切的两条直线的夹角为α,则sin α=( )A .1B2.(2022新高考Ⅱ卷·3)图1是中国称为步,垂直距离称为举,图2是某古1111,,,OD DC CB BA 是相等的步,相邻桁的成公差为0.1的等差数列,且直线A .0.75B .0.8C .0.85D .0.93.(2022新高考Ⅰ卷·14)写出与圆是中国古代建筑中的举架结构,,,,AA BB CC DD ′′′′是桁是某古代建筑屋顶截面的示意图.其中111,DD CC 邻桁的举步之比分别为1111111,0.5,DD CC BB k OD DC CB ==OA 的斜率为0.725,则3k =( )与圆221x y +=和22(3)(4)16x y −+−=都相切的一条直是桁,相邻桁的水平距离1,,BB AA 是举,1231,AAk k BA ==.已知123,,k k k 一条直线的方程.由图像可知由图像可知,,共有三条直线符合条件又由方程22(3)(4)16x y −+−=和x 即为过两圆公共切点的切线方程即为过两圆公共切点的切线方程,,又易知两圆圆心所在直线OC 的方程为直线OC 与直线10x +=的交点为条件条件,方程为(当切线为l时,因为14 3OOk=,所以O到l的距离||19116td==+,解得当切线为m时,设直线方程为kx由题意211344pkk p=+++=,解得kp.(新高考卷)设点有公共点,则a的取值范围是.5.(2023新高考Ⅱ卷·15)已知直线:10l x my −+=与2:14C x y −+= 交于A ,B 两点,写出满足“ABC面积为85”的m 的一个值.一、直线的倾斜角和斜率1、直线的倾斜角若直线l 与x 轴相交,则以x 轴正方向为始边,绕交点逆时针旋转直至与l 重合所成的角称为直线l 的倾斜角,通常用,,, αβγ表示(1)若直线与x 轴平行(或重合),则倾斜角为0 (2)倾斜角的取值范围[0),∈απ 2、直线的斜率设直线的倾斜角为α,则α的正切值称为直线的斜率,记为tan =k α (1)当2=πα时,斜率不存在;所以竖直线是不存在斜率的(2)倾斜角α与斜率k 的关系当0=k 时,直线平行于轴或与轴重合;当0>k 时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0<k 时,直线的倾斜角为钝角,倾斜角随k 的增大而增大; 3、过两点的直线斜率公式已知直线上任意两点,11(),A x y ,22(),B x y 则2121−=−y y k x x (1)直线的斜率是确定的,与所取的点无关.(2)若12=x x ,则直线AB 的斜率不存在,此时直线的倾斜角为90° 4、三点共线两直线,AB AC 的斜率相等→、、A B C 三点共线;反过来,、、A B C 三点共线,则直线,AB AC 的斜率相等(斜率存在时)或斜率都不存在.二、直线的方程1、直线方程的五种形式在已知曲线类型的前提下,求曲线(或直线)方程的思路通常有两种:(1)直接法:寻找决定曲线方程的要素,然后直接写出方程,例如在直线中,若用直接法则需找到两个点,或者一点一斜率(2)间接法:若题目条件与所求要素联系不紧密,则考虑先利用待定系数法设出曲线方程,然后再利用条件解出参数的值(通常条件的个数与所求参数的个数一致) 3、线段中点坐标公式若点12,P P 的坐标分别为1122()(),,,x y x y 且线段12PP 的中点M 的坐标为(),x y ,则121222+= + = x x x y y y ,此公式为线段12PP 的中点坐标公式. 4、两直线的夹角公式若直线11y k x b =+与直线22y k x b =+的夹角为α,则2112tan 1k k k k α−=+.三、两直线平行与垂直的判定两条直线平行与垂直的判定以表格形式出现,如表所示. 两直线方程平行垂直11112222:0:0++=++=l A x B y C l A x By C1221122100且−=−≠A B A B B C B C12120+=A A B B111222::=+=+l y k x b l y k x b (斜率存在)11,22::==l x x l x x (斜率不存在)1212,=≠k k b b 或 1212,,==≠x x x x x x121=−i k k 或12与k k 中有一个为0,另一个不存在.四、三种距离1、两点间的距离平面上两点111222(,),(,)P x y P x y 的距离公式为12||=P P. 特别地,原点O (0,0)与任一点P (x ,y )的距离||=OP 2、点到直线的距离点000(,)P x y 到直线:0++=l Ax By C 的距离=d 特别地,若直线为l :x =m ,则点000(,)P x y 到l 的距离0||=−d m x ;若直线为l :y =n ,则点000(,)P x y 到l 的距离0||=−d n y 3、两条平行线间的距离已知12,l l 是两条平行线,求12,l l 间距离的方法:(1)转化为其中一条直线上的特殊点到另一条直线的距离.(2)设1122:0,:0++=++=l Ax By C l Ax By C ,则1l 与2l 之间的距离=d注:两平行直线方程中,x ,y 前面对应系数要相等. 4、双根式双根式()=±f x 型函数求解,首先想到两点间的距离,或者利用单调性求解.五、圆1、圆的四种方程(1)圆的标准方程:222()()−+−=x a y b r ,圆心坐标为(a ,b ),半径为(0)>r r(2)圆的一般方程:22220(40)++++=+−>x y Dx Ey F D E F ,圆心坐标为,22−− D E ,半径r(3)圆的直径式方程:若1122(,),(,)A x y B x y ,则以线段AB 为直径的圆的方程是1212()()()()0−−+−−=x x x x y y y y2、点与圆的位置关系判断(1)点00(,)P x y 与圆222()()−+−=x a y b r 的位置关系: ①222()()−+−>⇔x a y b r 点P 在圆外; ②222()()−+−=⇔x a y b r 点P 在圆上; ③222()()−+−<⇔x a y b r 点P 在圆内.(2)点00(,)P x y 与圆220++++=x y Dx Ey F 的位置关系:①2200000++++>⇔x y Dx Ey F 点P 在圆外; ②2200000++++=⇔x y Dx Ey F 点P 在圆上; ③2200000++++<⇔x y Dx Ey F 点P 在圆内.六、直线与圆的位置关系1、直线与圆的位置关系判断(1)几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =:d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离(2)代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++= −+−= , 消元得到一元二次方程20p x q x t ++=,20p x q x t ++=判别式为∆,则:0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.七、两圆位置关系的判断用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则:d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r −<<+⇔两圆相离 d R r =−⇔两圆内切;0d R r ≤<−⇔两圆内含(0d =时两圆为同心圆)设两个圆的半径分别为R r ,,R r >,圆心距为d ,则两圆的位置关系可用下表来表示: 位置关系 相离 外切 相交 内切 内含几何特征 d R r >+d R r =+R r d R r −<<+d R r =−d R r <−代数特征 无实数解 一组实数解 两组实数解 一组实数解 无实数解 公切线条数 4321【直线与圆常用结论直线与圆常用结论】】一、直线1、点关于点对称点关于点对称的本质是中点坐标公式:设点11(),P x y 关于点00(),Q x y 的对称点为22(),′P x y ,则根据中点坐标公式,有12012022+=+ = x x x y y y 可得对称点22(),′P x y 的坐标为0101(22),−−x x y y 2、点关于直线对称点11(),P x y 关于直线:0++=l Ax By C 对称的点为22(),′P x y ,连接′PP ,交l 于M 点,则l 垂直平分′PP ,所以′⊥PP l ,且M 为′PP 中点,又因为M 在直线l 上,故可得12121022′⋅=− ++++= l PP k k x x y y AB C ,解出22(),x y 即可.3、直线关于点对称法一:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;法二:求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 4、直线关于直线对称求直线1:0++=l ax by c ,关于直线2:0++=l dx ey f (两直线不平行)的对称直线3l 第一步:联立12,l l 算出交点00(),P x y第二步:在1l 上任找一点(非交点)11(),Q x y ,利用点关于直线对称的秒杀公式算出对称点22(),′Q x y 第三步:利用两点式写出3l 方程 5、常见的一些特殊的对称点(),x y 关于x 轴的对称点为(),−x y ,关于y 轴的对称点为(),−x y .点(),x y 关于直线=y x 的对称点为(),y x ,关于直线=−y x 的对称点为(),−−y x . 点(),x y 关于直线=x a 的对称点为(2),−a x y ,关于直线=y b 的对称点为(2),−x b y . 点(),x y 关于点(),a b 的对称点为(22),−−a x b y .点(),x y 关于直线+=x y k 的对称点为(),−−k y k x ,关于直线−x y =k 的对称点为(),+−k y x k . 6、过定点直线系过已知点00(),P x y 的直线系方程00()−=−y y k x x (k 为参数). 7、斜率为定值直线系斜率为k 的直线系方程=+y kx b (b 是参数). 8、平行直线系与已知直线0++=Ax By C 平行的直线系方程0++=Ax By λ(λ为参数). 9、垂直直线系与已知直线0++=Ax By C 垂直的直线系方程0−+=Bx Ay λ(λ为参数). 10、过两直线交点的直线系过直线1111:0++=l A x B y C 与2222:0++=l A x B y C 的交点的直线系方程:111222()0+++++=A x B y C A x B y C λ(λ为参数).二、圆1、圆的参数方程①222(0)+=>x y r r 的参数方程为cos sin = =x r y r θθ(θ为参数);②222()()(0)−+−=>x a y b r r 的参数方程为cos sin =+ =+x a r y b r θθ(θ为参数).注意:对于圆的最值问题,往往可以利用圆的参数方程将动点的坐标设为(cos ,sin )++a r b r θθ(θ为参数,,()a b 为圆心,r 为半径),以减少变量的个数,建立三角函数式,从而把代数问题转化为三角问题,然后利用正弦型或余弦型函数的有界性求解最值. 2、关于圆的切线的几个重要结论(1)过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2)过圆222()()x a y b r −+−=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r −−+−−=(3)过圆220x y D x E y F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4)求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x −=−,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.一、单选题1.(2024·江西新余·二模)已知直线0x ay −=交圆C:2220x y y +−−=于M ,N 两点,则“MCN △为正三角形”是“0a =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2024·陕西西安·三模)若过点0,1P 可作圆22240x y x y a +−−+=的两条切线,则a 的取值范围是( ) A .()3,+∞B .()1,3−C .()3,5D .()5,+∞【答案答案】】C【分析分析】】根据点在圆外即可求解.【详解详解】】圆22240x y x y a +−−+=,即圆()()22125x y a −+−=−,则50a −>,解得5a <.的距离的最大值为( ) A .1B .2C .3D .44.(2024·四川成都·三模)已知直线1:10l x ay −+= 与:11C x a y −+−= 相交于 A B , 两点,若ABC 是直角三角形,则实数 a 的值为( )A .1 或 1−B 或C .17− 或 1−D .17− 或5.(2024·湖南邵阳·三模)已知直线l :1x y +=,过直线l 上的任意一点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,则APB ∠的最大值为( ) A .3π4B .2π3C .π2D .π6当OP 最小时最小时,,则sin APO ∠又因为OP 的最小值即为圆心此时2sin ,2APO APO ∠=∠故选故选::C . 6.(2024·重庆·二模)已知圆:O 若92PA PB ⋅= ,则OP =( ) A B .3C .设,APO BPO OP α∠=∠=则23sin ,cos x xxαα==cos cos212sin APB ∠α==−3,x y P +=是圆O 外一点,过点P 作圆O 的两条切线7.(2024·北京·三模)已知圆()2:11C x y +−=和两点()()(),0,,00A t B t t −>,若圆C 上存在点P ,使得0PA PB ⋅=,则t 的取值范围为( )A .(]0,1B .[]1,3C .[]2,3D .[]3,4故选故选::B A .()2,6B .()3,5C .()()2,35,6∪D .()()2,36,+∞∪9.(2024·北京·三模)已知直线,圆:16O x y +=,下列说法错误..的是()A .对任意实数a ,直线l 与圆O 有两个不同的公共点;B .当且仅当12a =−时,直线l 被圆O 所截弦长为C .对任意实数a ,圆O 不关于直线l 对称;D .存在实数a ,使得直线l 与圆O 相切.10.(2024·江西鹰潭·三模)已知m ∈R ,直线1:20l mx y m ++=与2:40l x my m −+=的交点P 在圆C :()()()222340x y r r −+−=>上,则r 的最大值是( )A ....【答案答案】】D【分析分析】】根据两直线方程可知两直线分别过定点且垂直根据两直线方程可知两直线分别过定点且垂直,,可求得P 点轨迹方程点轨迹方程,,再由圆与圆的位置关系找出圆心距与两圆半径之间的关系可得结果.二、多选题11.(2024·湖南长沙·三模)已知圆 ()22:24C x y ++=,直线 ()():1210l m x y m m ++−+=∈R ,则( )A .直线 l 恒过定点 ()1,1−B .当0m =时,圆C 上恰有三个点到直线l 的距离等于 1 C .直线l 与圆C 可能相切D .若圆C 与圆 22280x y x y a +−++=恰有三条公切线,则8a =12.(2024·山西临汾·三模)已知,E F 是以为半径的圆上任意两点,且满足,P是EF 的中点,若存在关于()3,0对称的,A B 两点,满足0PA PB ⋅=,则线段AB 长度的可能值为( )A .3B .4C .5D .613.(2024·河南郑州·三模)已知直线:10l ax by ++=(,a b 不同时为0),圆22:20C x y x +−=,则( )A .当221b a −=时,直线l 与圆C 相切B .当2a b +=−时,直线l 与圆C .当1,1a b ==−时,与圆C 外切D .当1,1a b ==−时,直线l 与坐标C 不可能相交外切且与直线l 相切的动圆圆心的轨迹是一条抛物线与坐标轴相交于,A B 两点,则圆C 上存在点P 抛物线满足0PA PB ⋅=14.(2024·山东青岛·三模)已知动点M N , 分别在圆()()221:121C x y −+−= 和 ()()222:343C x y −+−=上,动点P 在 x 轴上,则( )A .圆2C 的半径为3B .圆1C 和圆2C 相离C .PM PN +的最小值为D.过点P 做圆1C15.(2024·浙江温州·二模)已知圆1与圆2相交于122C AB C AB S S =△△,则实数a 的值可以是( )A .10B .2C .223D .14316.(2024·浙江绍兴·三模)已知M ,N 为圆224x y +=上的两个动点,点1,1P −,且PM PN ⊥,则()A .max2PM =B .maxMN=C .PMN 外接圆圆心的轨迹方程为22113222x y++−=D .PMN 重心的轨迹方程为22551666x y++−=对于C 中,设PMN 的外接圆的圆心则有22(1)(1)4(x y ++−=−即22113()()222x y ++−=,对于D 中,设PMN 的重心为点由C 项知PMN 的外接圆的圆心点三、填空题17.(2024·广东汕头·三模)已知圆(i )则圆C 的标准方程为;(ii )若直线AB 关于y a =对称的直线知圆C 经过()2,0A ,()0,2B ,()2,4C 三点, 的直线与圆C 有公共点,则a 的取值范围是.18.(2024·天津和平·三模)已知圆C 以点1,1为圆心,且与直线相切,则满足以上条件的圆C 的半径最大时,圆C 的标准方程为.19.(2024·内蒙古呼和浩特·二模)点1,P a −关于直线0x y −=的对称点在圆22(2)(4)13x y −+−=内,则实数a 的取值范围是.因为(),1Q a −在圆22(2)(4)13x y −+−=的内部的内部,,所以22(2)(14)13a −−+−<,解得40a -<<,即实数a 的取值范围是()4,0−. 故答案为故答案为::()4,0−.20.(2024·湖南·二模)已知直线l 是圆22:1O x y +=的切线,点()2,1A −和点()0,3B 到l 的距离相等,则直线l 的方程可以是.(写出一个满足条件的即可)。

2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)

2024高考数学常考题型  第18讲 直线与圆常考6种题型总结(解析板)

第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

新教材高考数学第二章直线和圆的方程4圆的方程精讲含解析新人教A版选择性必修第一册

新教材高考数学第二章直线和圆的方程4圆的方程精讲含解析新人教A版选择性必修第一册

圆的方程考点一 圆的方程【例1】(1)(2019·河北新华.石家庄二中高一期末)过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程是() A .()()22314x y -++= B .()()22314x y ++-= C .()()22114x y -+-=D .()()22114x y +++=(2)(2020·海林市朝鲜族中学高一期末)圆心为()3,1,半径为5的圆的标准方程是( ) A .()()22315x y +++= B .()()223125x y +++= C .()()22315x y -+-= D .()()223125x y -+-=【答案】(1)C (2)D【解析】(1)本题作为选择题,可采用排除法,根据圆心在直线20x y +-=上,排除B 、D , 点()1,1B -在圆上,排除A 故选C(2)∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()223125x y -+-=,故选:D .【一隅三反】1.(2020·河南濮阳.高一期末(理))设(2,1),(4,1)A B -,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+= B .22(3)8x y -+= C .22(3)2x y ++= D .22(3)8x y ++=【答案】A【解析】AB 的中点坐标为(3,0),圆的半径为||2AB r ===所以圆的方程为22(3)2x y -+=.故选:A.2.(2020·广东东莞四中高一月考)圆心为()1,2-,且与x 轴相切的圆的标准方程为( ) A .()()22122x y -+=+ B .()()22124x y -++= C .()()22122x y ++-= D .()()22124x y ++-=【答案】B【解析】因为圆心为()1,2-,圆与x 轴相切,所以圆的半径为2, 所以圆的标准方程为()()22124x y -++=,故选:B3.(2020·河北运河.沧州市一中高一期末)已知点()3,6A ,()1,4B ,()1,0C ,则ABC ∆外接圆的圆心坐标为( ) A .()5,2 B .()5,2-C .()2,5D .()5,2-【答案】A【解析】线段AB 中点坐标为()2,5,线段AB 斜率为64131-=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+.线段AC 中点坐标为()2,3,线段AC 斜率为60331-=-,所以线段AC 垂直平分线的斜率为13-,故线段AC 的垂直平分线方程为()1323y x -=--,即11133y x =-+.由75111233y x x y y x =-+⎧=⎧⎪⇒⎨⎨==-+⎩⎪⎩.所以ABC ∆外接圆的圆心坐标为()5,2.故选:A 考点二 根据圆的方程求参数【例2】(2020·西夏.宁夏大学附属中学高一期末)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( ) A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <23【答案】D【解析】由题意可得圆的标准方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【一隅三反】1.(2020·全国高二)已知m 是实常数,若方程22240x y x y m ++++=表示的曲线是圆,则m 的取值范围为( ) A .(),20-∞ B .(),5-∞ C .()5,+∞ D .()20,+∞【答案】B【解析】由于方程22240x y x y m ++++=表示的曲线为圆,则222440m +->,解得5m <. 因此,实数m 的取值范围是(),5-∞.故选:B. 2.(2020·浙江丽水.高二期末)“12m >”是“2222530x y mx m m +---+=为圆方程”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【解析】方程2222530x y mx m m +---+=表示圆需满足()()22245+30,3m m m m ---->∴<-或1>2m ,所以“12m >”是“2222530x y mx m m +---+=为圆方程”的充分不必要条件,故选:A.3.(2020·河北新乐市第一中学高二月考)已知方程()()2224232141690x y m x my m+-++++=─表示一个圆,则实数m 的取值范围为( ) A .1(,1)7-B .1(,1)7-C .1(,)(1,)7-∞-⋃+∞D .1(,1)(,)7-∞-⋃+∞【答案】B【解析】由题意可得()()()22244341441690m m m ++⨯--+>,所以()()7110m m +-<,解得117m -<<.故选:B .考点三 点与圆的位置关系【例3】(2020·黑龙江南岗哈师大附中高二月考)点P (m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上 D .不确定【答案】A【解析】因为a 2+52=a 2+25>24,所以点P 在圆外.【一隅三反】1.(2020·莆田第七中学高一月考)点()1,1在圆()2211x y +-=的( )A .圆上B .圆内C .圆外D .无法判定【答案】A【解析】将点()1,1的坐标代入圆()2211x y +-=的方程即()221111+-=,∴点()1,1在圆()2211x y +-=上,故选:A2.(2020·江苏泗洪。

2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题11  直线与圆(解析版)

专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。

高考数学复习考点题型专题讲解20 直线与圆

高考数学复习考点题型专题讲解20 直线与圆

高考数学复习考点题型专题讲解专题20 直线与圆高考定位考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以选择题、填空题的形式出现.1.(2020·全国Ⅲ卷)点(0,-1)到直线y=k(x+1)距离的最大值为( )A.1B. 2C.3D.2答案 B解析记点A(0,-1),直线l:y=k(x+1),由l恒过定点B(-1,0),当AB⊥l时,点A(0,-1)到直线y=k(x+1)的距离最大,最大值为 2.故选B.2.(2022·北京卷)若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=( )A.12B.-12C.1D.-1答案 A解析依题意可知圆心坐标为(a,0),又直线2x+y-1=0是圆的一条对称轴,所以2a+0-1=0,所以a=12,故选A.3.(多选)(2021·新高考Ⅰ卷)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则( )A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3 2D.当∠PBA最大时,|PB|=3 2答案ACD解析设圆(x-5)2+(y-5)2=16的圆心为M(5,5),半径为4,由题意知直线AB的方程为x4+y2=1,即x+2y-4=0,则圆心M到直线AB的距离d=|5+2×5-4|5=115>4,所以直线AB与圆M相离,所以点P到直线AB的距离的最大值为4+d=4+115,又4+115<5+1255=10,故A正确;易知点P到直线AB的距离的最小值为d-4=115-4,又115-4<1255-4=1,故B不正确;过点B作圆M的两条切线,切点分别为N,Q,如图所示,连接MB,MN,MQ,则当∠PBA 最小时,点P与N重合,|PB|=|MB|2-|MN|2=52+(5-2)2-42=32;当∠PBA 最大时,点P 与Q 重合,|PB |=32,故C ,D 都正确.综上,选ACD. 4.(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为________.答案 (x -2)2+(y -3)2=13或(x -2)2+(y -1)2=5或(x -43)2+(y -73)2=659或(x -85)2+(y -1)2=16925解析 依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0. 若过(0,0),(4,0),(-1,1),则⎩⎨⎧F =0,16+4D +F =0,1+1-D +E +F =0,解得⎩⎨⎧F =0,D =-4,E =-6,满足D 2+E 2-4F >0,所以圆的方程为x 2+y 2-4x -6y =0, 即(x -2)2+(y -3)2=13; 若过(0,0),(4,0),(4,2),则⎩⎨⎧F =0,16+4D +F =0,16+4+4D +2E +F =0, 解得⎩⎨⎧F =0,D =-4,E =-2,满足D 2+E 2-4F >0,所以圆的方程为x 2+y 2-4x -2y =0, 即(x -2)2+(y -1)2=5;若过(0,0),(-1,1),(4,2),则⎩⎨⎧F =0,1+1-D +E +F =0,16+4+4D +2E +F =0,解得⎩⎪⎨⎪⎧F =0,D =-83,E =-143,满足D 2+E 2-4F >0, 所以圆的方程为x 2+y 2-83x -143y =0,即⎝ ⎛⎭⎪⎫x -432+⎝ ⎛⎭⎪⎫y -732=659;若过(-1,1),(4,0),(4,2),则⎩⎨⎧1+1-D +E +F =0,16+4D +F =0,16+4+4D +2E +F =0,解得⎩⎪⎨⎪⎧F =-165,D =-165,E =-2,满足D 2+E 2-4F >0, 所以圆的方程为x 2+y 2-165x -2y -165=0, 即⎝⎛⎭⎪⎫x -852+(y -1)2=16925.5.(2022·新高考Ⅰ卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程________.答案 x =-1或7x -24y -25=0或3x +4y -5=0(答案不唯一,只需写出上述三个方程中的一个即可)解析 如图,因为圆x 2+y 2=1的圆心为O (0,0),半径r 1=1,圆(x -3)2+(y -4)2=16的圆心为A (3,4),半径r 2=4,所以|OA |=5,r 1+r 2=5,所以|OA |=r 1+r 2,所以两圆外切,公切线有三种情况: ①易知公切线l 1的方程为x =-1.②另一条公切线l 2与公切线l 1关于过两圆圆心的直线l 对称. 易知过两圆圆心的直线l 的方程为y =43x ,由⎩⎨⎧x =-1,y =43x 得⎩⎨⎧x =-1,y =-43,由对称性可知公切线l 2过点⎝ ⎛⎭⎪⎫-1,-43.设公切线l 2的方程为y +43=k (x +1),因为点O (0,0)到l 2的距离为1, 所以1=⎪⎪⎪⎪⎪⎪k -43k 2+1,解得k =724,所以公切线l 2的方程为y +43=724(x +1),即7x -24y -25=0.③还有一条公切线l 3与直线l :y =43x 垂直,设公切线l 3的方程为y =-34x +t ,易知t >0,因为点O (0,0)到l 3的距离为1, 所以1=|t |⎝ ⎛⎭⎪⎫-342+(-1)2,解得t =54或t =-54(舍去),所以公切线l 3的方程为y =-34x +54,即3x +4y -5=0.综上,所求直线方程为x=-1或7x -24y -25=0或3x +4y -5=0.热点一 直线的方程及应用1.已知直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为零),直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为零),则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2(A 2+B 2≠0). 3.点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2(A 2+B 2≠0). 例1 (1)已知直线3x +2y -3=0与直线6x +my +7=0互相平行,则它们之间的距离是( )A.4B.132C.21313D.71326(2)已知直线l 1:mx +y -1=0,l 2:(2m +3)x +my -1=0,m ∈R ,则“m =-2”是“l 1⊥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B (2)A解析(1)由直线3x+2y-3=0与6x+my+7=0互相平行,得m=4,所以两直线方程分别为3x+2y-3=0与3x+2y+72=0,所以它们之间的距离是⎪⎪⎪⎪⎪⎪72-(-3)32+22=132.故选B.(2)若l1⊥l2,则m(2m+3)+m=0,解得m=0或m=-2,所以“m=-2”是“l1⊥l2”的充分不必要条件.故选A.易错提醒 1.求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;求解两条直线平行问题时,要注意排除两条直线重合的情况.2.求两平行直线间的距离时,需注意直线方程中x,y对应的系数相等.训练1 (1)已知直线l1:x+(2a-1)y+2a-3=0,l2:ax+3y+a2+4=0,则“l1∥l2”是“a=32”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(多选)(2022·南通模拟)已知直线l过点(3,4),点A(-2,2),B(4,-2)到l的距离相等,则l的方程可能是( )A.x-2y+2=0B.2x-y-2=0C.2x+3y-18=0D.2x-3y+6=0答案 (1)C (2)BC解析 (1)若l 1∥l 2,则a (2a -1)=3, 且a 2+4≠a (2a -3), 解得a =32,所以充分性成立;当a =32时,l 1:x +2y =0,l 2:x +2y +256=0,显然l 1∥l 2,所以必要性成立. 故“l 1∥l 2”是“a =32”的充要条件.(2)A ,B 在直线l 同侧时,k l =k AB =-2-24+2=-23,∴l :y =-23(x -3)+4,即2x +3y -18=0,A ,B 在直线l 异侧时,l 过AB 中点M (1,0),∴k l =0-41-3=2,∴l :y =2(x -3)+4,即2x -y -2=0,故选:BC.热点二 圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎪⎫-D2,-E 2,半径为r =D 2+E 2-4F2.例2 (1)(多选)(2022·潍坊调研)设圆A :x 2+y 2-2x -3=0,则下列说法正确的是( ) A.圆A 的半径为2B.圆A 截y 轴所得的弦长为2 3C.圆A 上的点到直线3x -4y +12=0的最小距离为1D.圆A 与圆B :x 2+y 2-8x -8y +23=0相离(2)(2022·全国甲卷)设点M 在直线2x +y -1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为________.答案 (1)ABC (2)(x -1)2+(y +1)2=5解析 (1)把圆A 的方程x 2+y 2-2x -3=0化成标准方程为(x -1)2+y 2=4, 所以圆A 的圆心坐标为(1,0),半径为2,A 正确; 圆A 截y 轴所得的弦长|CD |=2×4-1=23,B 正确; 圆心(1,0)到直线3x -4y +12=0的距离为3,故圆A 上的点到直线3x -4y +12=0的最小距离为3-2=1,C 正确;圆B :x 2+y 2-8x -8y +23=0的圆心为(4,4),半径为3,根据(4-1)2+42=5可知,圆A 与圆B 外切,D 错误.故选ABC. (2)法一 设⊙M 的方程为(x -a )2+(y -b )2=r 2,则⎩⎨⎧2a +b -1=0,(3-a )2+b 2=r 2,a 2+(1-b )2=r 2,解得⎩⎨⎧a =1,b =-1,r 2=5,∴⊙M 的方程为(x -1)2+(y +1)2=5.法二 设⊙M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则M (-D 2,-E2),∴⎩⎪⎨⎪⎧2·(-D 2)+(-E2)-1=0,9+3D +F =0,1+E +F =0,解得⎩⎨⎧D =-2,E =2,F =-3,∴⊙M 的方程为x 2+y 2-2x +2y -3=0,即(x -1)2+(y +1)2=5. 规律方法 解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.训练2 (1)已知圆C 与x 轴的正半轴相切于点A ,圆心在直线y =2x 上,若点A 在直线x -y -4=0的左上方且到该直线的距离等于2,则圆C 的标准方程为( ) A.(x -2)2+(y +4)2=4B.(x +2)2+(y +4)2=16 C.(x -2)2+(y -4)2=4D.(x -2)2+(y -4)2=16(2)已知直线l 过点A (a ,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( )A.32B.±3 2C.±2D.± 2 答案 (1)D (2)D解析 (1)∵圆C 的圆心在直线y =2x 上, ∴可设C (a ,2a ),又圆C 与x 轴的正半轴相切于点A , ∴a >0,且圆C 的半径r =2a ,A (a ,0). ∵点A 到直线x -y -4=0的距离d =2, ∴d =|a -0-4|1+1=2,解得a =6或a =2, ∴A (2,0)或A (6,0),又点A 在直线x -y -4=0的左上方, ∴A (2,0),∴C (2,4),r =4,∴圆C 的标准方程为(x -2)2+(y -4)2=16.故选D. (2)因为直线l 过点A (a ,0)且斜率为1, 所以其方程为y =x -a , 即x -y -a =0.因为圆x 2+y 2=4上恰有3个点到l 的距离为1, 所以圆心到直线的距离为1, 即|-a |2=1,解得a =± 2.故选D. 热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离. 判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎨⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.考向1 直线与圆的位置关系例3 (1)(2022·北京石景山区二模)已知圆C :(x -3)2+y 2=9,过点D (1,2)的直线l 与圆C 交于A ,B 两点,则弦AB 长度的最小值为( ) A.1 B.2 C.3 D.4(2)(2022·新高考Ⅱ卷)设点A (-2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎦⎥⎤13,32解析 (1)根据题意圆C :(x -3)2+y 2=9,圆心C (3,0),半径为3,点D (1,2)在圆C 的内部.当直线DC 垂直于直线l 时,即点D 为AB 的中点时,弦AB 最短. ∵|DC |=(3-1)2+(0-2)2=22, ∴|AB |min =2r 2-|DC |2=29-8=2. 故选B.(2)法一 由题意知点A (-2,3)关于直线y =a 的对称点为A ′(-2,2a -3), 所以k A ′B =3-a 2,所以直线A ′B 的方程为y =3-a2x +a ,即(3-a )x -2y +2a =0. 由题意知直线A ′B 与圆(x +3)2+(y +2)2=1有公共点, 易知圆心为(-3,-2),半径为1, 所以|-3(3-a )+(-2)×(-2)+2a |(3-a )2+(-2)2≤1,整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,32.法二 易知(x +3)2+(y +2)2=1关于y 轴对称的圆的方程为(x -3)2+(y +2)2=1,由题意知该对称圆与直线AB 有公共点.直线AB 的方程为y =a -32x +a ,即(a -3)x -2y +2a =0,又对称圆的圆心为(3,-2),半径为1, 所以|3(a -3)+(-2)×(-2)+2a |(a -3)2+(-2)2≤1, 整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,32.法三 易知(x +3)2+(y +2)2=1关于y 轴对称的圆的方程为(x -3)2+(y +2)2=1, 由题意知该对称圆与直线AB 有公共点. 设直线AB 的方程为y -3=k (x +2), 即kx -y +3+2k =0,因为对称圆的圆心为(3,-2),半径为1, 所以|5k +5|k 2+(-1)2≤1,解得-43≤k ≤-34,又k =a -32,所以-43≤a -32≤-34, 解得13≤a ≤32,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,32.考向2 圆与圆的位置关系例4 (1)(2022·台州调研)已知圆O 1:x 2-2ax +y 2+a 2-1=0与圆O 2:x 2+y 2=4有且仅有两条公共切线,则正数a 的取值范围为( ) A.(0,1) B.(0,3) C.(1,3) D.(3,+∞)(2)(多选)已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2-6x +2y -40=0,则( )A.两圆相交B.公共弦长为410C.两圆相离D.公共弦长为210 答案 (1)C (2)AB解析 (1)由题意知圆O 1与圆O 2相交,圆O 1:x 2-2ax +y 2+a 2-1=0的圆心(a ,0),半径为1.所以1<a 2<3,又a >0,解得a ∈(1,3), 故选C.(2)由题意知,圆C 1的标准方程为(x -5)2+(y -5)2=50, ∴圆心为C 1(5,5),半径为r 1=52, 圆C 2的标准方程为(x -3)2+(y +1)2=50, ∴圆心为C 2(3,-1),半径为r 2=52, ∴两圆的圆心距d =(5-3)2+[5-(-1)]2=210, ∴|r 1-r 2|<d <r 1+r 2,∴两圆相交,故选项A 正确,选项C 错误; 设两圆的公共弦长为L , 则⎝ ⎛⎭⎪⎫L 22+⎝ ⎛⎭⎪⎫d 22=r 2(r =r 1=r 2), ∴L =410,故选项B 正确,选项D 错误.故选AB.规律方法 1.与圆的弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.2.两圆相交公共弦的方程可通过两圆方程相减求得,进而在一个圆内,利用垂径定理求公共弦长.训练3(多选)(2022·武汉模拟)已知直线l:kx-y-k+1=0,圆C的方程为(x-2)2+(y+2)2=16,则下列选项正确的是( )A.直线l与圆一定相交B.当k=0时,直线l与圆C交于两点M,N,点E是圆C上的动点,则△MNE面积的最大值为37C.当l与圆有两个交点M,N时,|MN|的最小值为2 6D.若圆C与坐标轴分别交于A,B,C,D四个点,则四边形ABCD的面积为48答案AC解析∵直线l:kx-y-k+1=0过定点P(1,1).又(1-2)2+(1+2)2=10<16,∴点P在圆内,因此直线与圆一定相交,故A正确;当k=0时,直线y=1,代入圆的方程得(x-2)2+(1+2)2=16,解得x=2±7,因此|MN|=27,∵圆心为(2,-2),圆半径为r=4,∴圆心到直线l的距离为d=3,因此E到直线l的距离的最大值为h=4+3=7,∴△MNE面积最大值为S=12×7×27=77,故B错误;当l与圆有两个交点M,N时,|MN|最小,PC⊥l,|PC|=(1-2)2+(1+2)2=10,因此|MN |min =242-(10)2=26,故C 正确;在圆方程(x -2)2+(y +2)2=16中分别令x =0和y =0可求得圆与坐标轴的交点坐标为A (2-23,0),B (2+23,0),C (0,-2+23),D (0,-2-23), ∴|AB |=43,|CD |=43,四边形ABCD 的面积为S =12×43×43=24,故D 错误.故选AC. 热点四 隐圆问题在解决某些解析几何问题时,题设条件看似与圆毫无关系,但通过对题目条件的分析、转化后,会发现此问题与圆有关,进而利用圆的性质解题,一般我们称之为隐圆问题. 例5(2022·济南模拟)已知直线kx -y +2k =0与直线x +ky -2=0相交于点P ,点A (4,0),O 为坐标原点,则tan∠OAP 的最大值为( )A.2-3B.33 C.1 D. 3答案 B解析 直线kx -y +2k =0恒过定点M (-2,0),直线x +ky -2=0恒过定点N (2,0), 又易知两直线垂直,故P 点轨迹是以(0,0)为圆心,2为半径的圆,除去与x 轴的交点, 于是得x 2+y 2=4(x ≠±2),如图,观察图形可知,射线AP 绕点A 旋转∠OAP ∈⎝ ⎛⎭⎪⎫0,π2,当旋转到与圆O :x 2+y 2=4相切时,∠OAP 最大,因为|OA|=4,AP′为切线,点P′为切点,|OP′|=2,∠OP′A=π2,则∠OAP′=π6,所以∠OAP最大值为π6,所以(tan∠OAP)max=tan π6=33.规律方法确定隐圆的几种方法:(1)借助圆的定义;(2)借助距离的平方和为常数;(3)借助平面向量的数量积为定值;(4)借助距离比值为常数(PAPB=λ,λ>0且λ≠1,动点P的轨迹为阿波罗尼斯圆).训练4 在平面直角坐标系xOy中,已知圆C:(x-a)2+(y-a+2)2=1,点A(0,2),若圆C上存在点M,满足|MA|2+|MO|2=10,则实数a的取值范围是________.答案[0,3]解析设M(x,y),由|MA|2+|MO|2=10可得x2+(y-2)2+x2+y2=10,即x2+(y-1)2=4,则点M在圆x2+(y-1)2=4上,由题目条件可知点M在圆C:(x-a)2+(y-a+2)2=1上,所以两圆相交或相切,则2-1≤(a-0)2+(a-2-1)2≤1+2,解得0≤a≤3.一、基本技能练1.过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( )A.x-y+1=0B.x+y-3=0C.2x-y=0或x+y-3=0D.2x-y=0或x-y+1=0答案 D解析当直线过原点时,满足题意,方程为y=2x,即2x-y=0;当直线不过原点时,设方程为xa+y-a=1,∵直线过(1,2),∴1a-2a=1,∴a=-1,∴方程为x-y+1=0,故选D.2.已知圆C:x2+y2=r2(r>0),直线l:x+3y-2=0,则“r>3”是“直线l与圆C相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由题意知圆心(0,0)到直线x+3y-2=0的距离d=|-2|1+3=1,当r>3时,直线与圆相交,当直线与圆相交,则d=1<r,故“r>3”是“直线l与圆C相交”的充分不必要条件.故选A.3.(2022·厦门模拟)已知O为坐标原点,直线l:y=kx+(2-2k)上存在一点P,使得|OP|=2,则k的取值范围为( )A.[3-2,3+2]B.(-∞,2-3]∪[2+3,+∞)C.[2-3,2+3]D.(-∞,3-2]∪[3+2,+∞)解析 点O (0,0)到直线l :y =kx +(2-2k )的距离d =|2-2k |k 2+1. 由题意得坐标原点到直线l 距离d ≤|OP |, 所以|2-2k |k 2+1≤2, 解得2-3≤k ≤2+3,故k 的取值范围为[2-3,2+3],故选C.4.(2022·北京海淀区一模)已知直线l :ax +by =1是圆x 2+y 2-2x -2y =0的一条对称轴,则ab 的最大值为( )A.14B.12 C.1 D. 2 答案 A解析 圆x 2+y 2-2x -2y =0的圆心为(1,1),直线l :ax +by =1是圆x 2+y 2-2x -2y =0的一条对称轴. 可得a +b =1, 则ab ≤⎝⎛⎭⎪⎫a +b 22=14, 当且仅当a =b =12时,取等号.所以ab 的最大值为14,故选A.5.(2022·西安模拟)过点P (5,1)作圆C :x 2+y 2+2x -4y +1=0的割线l 交圆C 于A ,B 两点,点C 到直线l 的距离为1,则PA →·PB →的值是( ) A.32 B.33 C.6 D.不确定解析 由题意,可得向量PA →与PB →共线且方向相同,圆C 的圆心为(-1,2),半径为2,如图所示,其中PD 为切线,根据切割线定理,则PA →·PB →=|PA →|·|PB →|=|PD →|2=|PC →|2-|CD →|2=62+12-22=33.故选B.6.(2022·广州二模)已知直线x +y +1=0与x +2y +1=0相交于点A ,过点A 的直线l 与圆M :x 2+y 2+4x =0相交于点B ,C ,且∠BMC =120°,则满足条件的直线l 的条数为( )A.0B.1C.2D.3 答案 B解析 由题意得点A (-1,0),圆M :x 2+y 2+4x =0的标准方程为(x +2)2+y 2=4,圆心(-2,0),半径r =2, 由∠BMC =120°,可得圆心M 到直线l 的距离d =1,直线l 过点A (-1,0), 当直线l 的斜率不存在时,直线l 的方程为x =-1, 圆心M 到直线l 的距离d =1,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +1),即kx -y +k =0. 圆心M (-2,0)到直线l 的距离d =|-2k -0+k |k 2+1=|-k |k 2+1=1,此方程无解.故满足条件的直线l 的条数为1,故选B.7.已知两条直线l 1:2x -3y +2=0,l 2:3x -2y +3=0,有一动圆(圆心和半径都在变动)与l 1,l 2都相交,并且l 1,l 2被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹方程为( )A.(y-1)2-x2=65B.x2-(y-1)2=65C.y2-(x+1)2=65D.(x+1)2-y2=65 答案 D解析设动圆圆心P(x,y),半径为r,则P到l1的距离d1=|2x-3y+2|13,P到l2的距离d2=|3x-2y+3|13,因为l1,l2被截在圆内的两条线段的长度分别是定值26,24.∴2r2-d21=26,2r2-d22=24,化简后得r2-d21=169,r2-d22=144,相减得d22-d21=25,将d1,d2代入距离公式后化简可得(x+1)2-y2=65,故选D.8.(2022·江门模拟)已知M是圆C:x2+y2=1上一个动点,且直线l1:mx-ny-3m+n =0与直线l2:nx+my-3m-n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是( )A.[3-1,23+1]B.[2-1,32+1]C.[2-1,22+1]D.[2-1,33+1]答案 B解析依题意,直线l1:m(x-3)-n(y-1)=0恒过定点A(3,1),直线l2:n(x-1)+m(y-3)=0恒过定点B(1,3),显然直线l1⊥l2,因此,直线l1与l2交点P的轨迹是以线段AB为直径的圆,其方程为:(x-2)2+(y-2)2=2,圆心N(2,2),半径r2=2,而圆C 的圆心C (0,0),半径r 1=1, 如图:|NC |=22>r 1+r 2,所以两圆外离,由圆的几何性质得: |PM |min =|NC |-r 1-r 2=2-1, |PM |max =|NC |+r 1+r 2=32+1,所以|PM |的取值范围是[2-1,32+1].故选B.9.(多选)已知直线l 1:(a +1)x +ay +2=0,l 2:ax +(1-a )y -1=0,则( ) A.l 1恒过点(2,-2)B.若l 1∥l 2,则a 2=12C.若l 1⊥l 2,则a 2=1D.当0≤a ≤1时,直线l 2不经过第三象限 答案 BD解析 l 1:(a +1)x +ay +2=0⇔a (x +y )+x +2=0, 令⎩⎨⎧x +y =0,x +2=0,得⎩⎨⎧x =-2,y =2, 即直线恒过点(-2,2),故A 不正确;若l 1∥l 2,则有(a +1)(1-a )=a 2,解得a 2=12,经检验满足条件,故B 正确;若l 1⊥l 2,则有a (a +1)+a (1-a )=0,解得a =0,故C 不正确; 若直线l 2恒过点(1,1)且不经过第三象限,则当1-a ≠0时,a a -1<0,解得0<a <1,当a=1时,直线l2:x=1,也不过第三象限,当a=0时,直线l2:y=1,也不过第三象限,综上可知,当0≤a≤1时,直线l2不经过第三象限,故D正确.10.(多选)(2022·全国名校大联考)如图,O为坐标原点,B为y轴正半轴上一点,矩形OABC为圆M的内接四边形,OB为直径,|OC|=3|OA|=3,过直线2x+y-4=0上一点P作圆M的两条切线,切点分别为E,F,则下列结论正确的是( )A.圆M的方程为x2+(y-1)2=1B.直线AB的斜率为2C.四边形PEMF的最小面积为2D.PA→·PC→的最小值为4 5答案AD解析由题意可得圆M的直径|OB|=2,线段OB的中点即为圆M的圆心,所以圆M的方程为x2+(y-1)2=1,故A正确;易知∠AOB=π3,从而可得∠xOC=π3,所以直线OC的斜率为k OC=tan π3=3,由AB∥OC可得直线AB的斜率为k AB=k OC=3,故B错误;连接PM,可得Rt△PME≌Rt△PMF,所以四边形PEMF的面积为S=2S Rt△PME=|ME|·|PE|=|PE|=|PM|2-1,当直线PM与直线2x+y-4=0垂直时,|PM|最小,即|PM |min =|2×0+1-4|5=355,所以S min =255,故C 错误;因为PA →·PC →=(PM →+MA →)·(PM →+MC →)=(PM →+MA →)·(PM →-MA →)=PM →2-MA →2=PM →2-1≥95-1=45,故D 正确.故选AD.11.(2022·辽宁六校联考)已知直线l 1:y =(2a 2-1)x -2与直线l 2:y =7x +a 平行,则a =________. 答案 2解析∵两直线平行,∴⎩⎨⎧2a 2-1=7,a ≠-2,解得a =2. 12.过点M (0,-4)作直线与圆C :x 2+y 2+2x -6y +6=0相切于A ,B 两点,则直线AB 的方程为________. 答案x -7y +18=0解析 圆C 的标准方程为(x +1)2+(y -3)2=4,圆心为C (-1,3),半径为2, 由圆的切线的性质可得MA ⊥AC , 则|MA |=|MC |2-22=(-1-0)2+(3+4)2-22=46,所以,以点M 为圆心、以|MA |为半径的圆M 的方程为x 2+(y +4)2=46, 将圆M 的方程与圆C 的方程作差并化简可得x -7y +18=0. 因此直线AB 的方程为x -7y +18=0. 二、创新拓展练13.(多选)(2022·青岛质检)已知圆C1:(x-3)2+(y-1)2=4,C2:x2+(y+3)2=1,直线l:y=k(x-1),点M,N分别在圆C1,C2上.则下列结论正确的有( )A.圆C1,C2没有公共点B.|MN|的取值范围是[1,7]C.过N作圆C1的切线,则切线长的最大值是4 2D.直线l与圆C1,C2都有公共点时,k≥2 3答案AC解析圆C1的圆心C1(3,1),半径r1=2,圆C2的圆心C2(0,-3),半径r2=1.对于选项A,圆心距d=(0-3)2+(-3-1)2=5>r1+r2,所以圆C1,C2外离,选项A正确;对于选项B,|MN|的最小值为d-(r1+r2)=2,最大值为d+(r1+r2)=8,选项B错误;对于选项C,连接C1C2与圆C2交于点N(外侧交点),过N作圆C1的切线,切点为P,此时|NP|最长,在Rt△C1PN中,|NP|=(d+r2)2-r21=62-22=42,选项C正确;对于选项D,直线l方程化为kx-y-k=0,圆心C1到直线l的距离|2k-1|k2+1≤2,解得k≥-3 4,圆心C2到直线l的距离|3-k|k2+1≤1,解得k≥43,所以直线l与圆C1,C2都有公共点时,k≥43,选项D错误.故选AC.14.(多选)(2022·武汉模拟)过点P(1,1)的直线与圆C:(x-2)2+y2=9交于A,B两点,线段MN是圆C的一条动弦,且|MN|=42,则( )A.△ABC面积的最大值为92B.△ABC面积的最大值为14C.|AB|的最小值为27D.|PM→+PN→|的最小值为22-2 答案BCD解析设圆心C到直线AB的距离为d,由题意得0≤d≤2,|AB|=29-d2,则S△ABC=12|AB|·d=12×29-d2·d=9d2-d4=-⎝⎛⎭⎪⎫d2-922+814,当d2=2时,(S△ABC)max=14,故A错误,B正确;由0≤d≤2,|AB|=29-d2知|AB|min=29-2=27,C正确;过圆心C作CE⊥MN于点E,则点E为MN的中点,又|MN|=42,则|CE|=9-8=1,即点E的轨迹为圆(x-2)2+y2=1.因为|PM→+PN→|=2|PE→|,且|PE→|min=|PC|-1=2-1,所以|PM→+PN→|的最小值为22-2,故D正确.因此应选BCD.15.(多选)(2022·南通调研)P是直线y=2上的一个动点,过点P作圆x2+y2=1的两条切线,A,B为切点,则( )A.弦长|AB|的最小值为3B.存在点P,使得∠APB=90°C.直线AB经过一个定点D.线段AB的中点在一个定圆上答案ACD解析 依题意|OP |2=|AP |2+|AO |2=|AP |2+1,设AB ∩OP =C ,则C 为AB 的中点,且OP ⊥AB ,所以|AC |=|AP |·|AO ||OP |=|AP ||OP |,所以|AB |=2|AC |=2|OP |2-|AO |2|OP |=21-1|OP |2,sin∠APB 2=|OA ||OP |=1|OP |, 又|OP |∈[2,+∞),所以sin∠APB 2∈⎝ ⎛⎦⎥⎤0,12,|AB |∈[3,2),所以|AB |min =3,(∠APB )max=60°,故A 正确,B 不正确;设P (t ,2),则|OP |=t 2+4,所以以OP 为直径的圆的方程为⎝⎛⎭⎪⎫x -t 22+(y -1)2=14t 2+1, 则⎝ ⎛⎭⎪⎫x -t 22+(y -1)2-(x 2+y 2)=14t 2+1-1,即tx +2y =1,则直线AB 的方程为tx +2y=1,所以直线AB 过定点M ⎝⎛⎭⎪⎫0,12,故C 正确;又OC ⊥MC ,|OM |=12,所以AB 的中点C 在以OM 为直径的圆上,故D 正确;故选ACD.16.在平面直角坐标系xOy 中,圆x 2+y 2=1交x 轴于A ,B 两点,且点A 在点B 的左侧,若直线x +3y +m =0上存在点P ,使得|PA |=2|PB |,则实数m 的取值范围为________. 答案⎣⎢⎡⎦⎥⎤-133,1解析 由题意得A (-1,0),B (1,0),设P (x ,y ), 则由|PA |=2|PB |,得(x +1)2+y 2=2(x -1)2+y 2, 即⎝⎛⎭⎪⎫x -532+y 2=169, 因此圆⎝⎛⎭⎪⎫x -532+y 2=169与直线x +3y +m =0有交点,即⎪⎪⎪⎪⎪⎪53+m 2≤43,解得-133≤m ≤1.故实数m 的取值范围为⎣⎢⎡⎦⎥⎤-133,1.17.在平面直角坐标系xOy 中,过点A (0,-3)的直线l 与圆C :x 2+(y -2)2=9相交于M ,N 两点,若S △AON =65S △ACM ,则直线l 的斜率为________.答案 ±3147解析 由题意得C (0,2),直线MN 的斜率存在, 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为y =kx -3, 与x 2+(y -2)2=9联立,得(k 2+1)x 2-10kx +16=0,Δ=100k 2-64(k 2+1)=36k 2-64>0, 得k 2>169,x 1+x 2=10k k 2+1,x 1x 2=16k 2+1. 因为S △AON =65S △ACM ,所以12×3×|x 2|=65×12×|2-(-3)|×|x 1|,则|x 2|=2|x 1|,于是x 2=2x 1,所以⎩⎪⎨⎪⎧3x 1=10kk 2+1,2x 21=16k 2+1两式消去x 1得k 2=187,满足Δ>0,所以k =±3147. 18.(2022·浙江五校联考)已知实数x ,y 满足(x -1)2+(y -2)2=1,则z =2x +yx 2+y 2的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤1,115 解析 方程(x -1)2+(y -2)2=1表示的是以C (1,2)为圆心,1为半径的圆,圆心C (1,2)在直线2x +y =0上方,且可知2x +y >0.设圆C 上任意一点P (x ,y ),过点P 作直线2x +y =0的垂线,垂足为H ,则z =2x +y x 2+y 2=5|2x +y |5x 2+y 2=5|PH ||OP |=5sin∠POH .设过坐标原点的切线为y =kx , 由|k -2|k 2+1=1可得k=34, 所以该圆过坐标原点的切线方程为x =0和y =34x ,两个切点分别为P 1(0,2),P 2⎝ ⎛⎭⎪⎫85,65,且∠POH <π2,所以当P (x ,y )在点P 1(0,2)时, sin∠POH 最小,此时z min =1;当P (x ,y )在点P 2⎝⎛⎭⎪⎫85,65时,sin∠POH 最大,此时z max =115, 所以z ∈⎣⎢⎡⎦⎥⎤1,115.。

高考数学专题01 直线与圆相结合问题(第五篇)(解析版)

高考数学专题01 直线与圆相结合问题(第五篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第五篇解析几何专题01 直线与圆相结合问题【典例1】【天津市杨村第一中学2020届高三月考】已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过2F 作垂直于x 轴的直线交该椭圆于M ,N 两点,直线1A M 的斜率为12. (Ⅰ)求椭圆的离心率;(Ⅱ)若1A MN ∆的外接圆在M 处的切线与椭圆交另一点于D ,且2F MD ∆的面积为127,求椭圆的方程. 【思路引导】(Ⅰ)先求出左顶点为1A ,右焦点为2F 的坐标,由题意求出M 的坐标,由斜率公式,根据直线1A M 的斜率为12,这样可以求出椭圆的离心率; (Ⅱ)由(Ⅰ),可设出2222143x y c c +=,设1A MN ∆的外接圆的圆心坐标为(,0)T t ,由1||||TA TM =,得2229(2)()4t c t c c +=-+,求得8ct =-,求得切线方程,代入椭圆方程,求出MD ,利用点到直线距离和三角形面积公式,代入可求出,求出c 的值,求得椭圆方程.【详解】(Ⅰ)由题意可知:12(,0),(,0)A a F c -,设(,)M x y ,由题意可知:M 在第一象限,且22221x c x y a b =⎧⎪⎨+=⎪⎩,2,b M c a ⎛⎫∴ ⎪⎝⎭,2221()2b ac a c a a c a a c a --∴===++,2a c ∴=12c e a ∴==; (Ⅱ)由(Ⅰ), 22222243b a c c c c =-=-=,,所以椭圆方程为:2212231,,,(2,0)432x y M c c A c c c ⎛⎫+=- ⎪⎝⎭,设1A MN ∆的外接圆的圆心坐标为(,0)T t ,由1||||TA TM =,得2229(2)()4t c t c c +=-+,求得8ct =-,34238TMck c c ∴==+,切线斜率为:34k =-,切线直线方程为33()24y c x c -=--,即3490x y c +-=代入椭圆方程中,得22718110x cx c -+=,2222184711160c c c ∆=-⨯⨯=>,1115,714D Dc c x y ==,5||7c MD ∴===, 2F 到直线MD 的距离|39|655c c c d -==,2F MD ∆的面积为1||2S MD d =⋅,所以有 212156372757c c c =⨯⨯=,24c ∴=,椭圆方程为:2211612x y +=. 【典例2】【江苏省2019届高三第二学期联合调研测试】在平面直角坐标系xOy 中,过点(01)P ,且互相垂直的两条直线分别与圆O :224x y +=交于点A ,B ,与圆M :22(2)(1)1x y -+-=交于点C ,D .(1)若AB =CD 的长; (2)若CD 中点为E ,求ABE ∆面积的取值范围. 【思路引导】(1)先由AB 的长度求出圆心O 到直线AB 的距离,列方程求出直线AB 的斜率,从而得到直线CD 的斜率,写出直线CD 的方程,用垂径定理求CD 得长度;(2)△ABE 的面积1S AB PE 2=⋅,先考虑直线AB 、CD 平行于坐标轴的情况,不平行时先由垂径定理求出AB ,再在△PME 中用勾股定理求出PE ,将面积S表示成直线AB 斜率k 的函数式,再求其范围.解:(1)因为ABO 半径为2 所以点O 到直线AB 的距离为14显然AB 、CD 都不平行于坐标轴 可设AB :y kx 1=+,即kx y 10-+= 则点O 到直线AB的距离1d 4==,解得k =因为AB ⊥CD ,所以1k CD k=- 所以CD :1y x 1k=-+,即x ky k 0+-= 点M (2,1)到直线CD的距离1d 2=='所以CD ===(2)当AB ⊥x 轴,CD ∥x 轴时,此时AB=4,点E 与点M 重合,PM=2,所以△ABE 的面积S=4 当AB ∥x 轴,CD ⊥x 轴时,显然不存在,舍 当AB 与CD 都不平行于坐标轴时由(1)知AB ===因为d'1=≤,所以23k ≥因为点E 是CD 中点,所以ME ⊥CD ,所以PE ===所以△ABE的面积1S AB PE 2=⋅= 记21t 1k =+,则10t 4<≤则S 4⎫==⎪⎪⎣⎭综上所述:S 4⎤∈⎥⎣⎦【典例3】【广东省广州市普通高中毕业班2020届高三月考】在平面直角坐标系中,动点M 分别与两个定点()2,0A -,()2,0B 的连线的斜率之积为12-. (1)求动点M 的轨迹C 的方程;(2)设过点()1,0-的直线与轨迹C 交于P ,Q 两点,判断直线52x =-与以线段PQ 为直径的圆的位置关系,并说明理由. 【思路引导】(1)根据直接法求轨迹方程,(2)先用坐标表示以线段PQ 为直径的圆方程,再根据圆心到直线52x =-距离与半径大小进行判断. 【详解】(1)设动点M 的坐标为(),x y , 因为2MA yk x =+()2x ≠-,2MB y k x =-()2x ≠, 所以1222MA MBy y k k x x =⨯=-+-,整理得22142x y +=. 所以动点M 的轨迹C 的方程22142x y +=()20x y ≠±≠或.(2)过点()1,0-的直线为x 轴时,显然不合题意. 所以可设过点()1,0-的直线方程为1x my =-,设直线1x my =-与轨迹C 的交点坐标为P ()11,x y ,()22,Q x y ,由221,1,42x my x y =-⎧⎪⎨+=⎪⎩得()222230m y my +--=.因为()()2221220m m ∆=-++>,由韦达定理得1y +2y =222m m +,1y 2y =232m -+. 注意到1x +2x =()122422m y y m -+-=+.所以PQ 的中点坐标为222,22m N m m -⎛⎫⎪++⎝⎭.因为12PQ y y =-== 点N 到直线52x =-的距离为()22252562222m d m m +=-=++.因为2d -()24222920120442PQ m m m ++=>+,即d >2PQ ,所以直线52x =-与以线段PQ 为直径的圆相离.1.【江西省南昌市2020届高三检测】如图,已知圆1F 的方程为2249(1)8x y ++=,圆2F 的方程为221(1)8x y -+=,若动圆M 与圆1F 内切与圆2F 外切.()1求动圆圆心M 的轨迹C 的方程;()2过直线2x =上的点Q 作圆22:2O x y +=的两条切线,设切点分别是,M N ,若直线MN 与轨迹C 交于,E F 两点,求EF 的最小值. 【思路引导】(Ⅰ)设动圆M 的半径为r ,由题动圆M 与圆1F 内切,与圆2F 外切,则12122MF MF F F +=>=,由此即可得到动圆圆心M 的轨迹是以12,F F为焦点,长轴长为的椭圆,进而得到动圆圆心M 的轨迹C 的方程;(Ⅱ)设直线2x =上任意一点Q 的坐标是()2,t ,切点,M N 坐标分别是()33,x y ,()44,x y ;则经过M 点的切线斜方程是332x x y y +=,同理经过N 点的切线方程是442x x y y +=,又两条切线MQ ,NQ 相交于Q ()2,t .可得经过,M N 两点的直线l 的方程是22x ty +=,对t 分类讨论分别求出|EF 的值,即可得到EF 的最小值. 【详解】(Ⅰ)设动圆M 的半径为r ,∵动圆M 与圆1F 内切,与圆2F 外切,∴14MF r =-,且24MF r =+.于是,12122MF MF F F +=>=, 所以动圆圆心M 的轨迹是以12,F F为焦点,长轴长为.从而,1a c ==,所以1b =.故动圆圆心M 的轨迹C 的方程为2212x y +=.(Ⅱ)设直线2x =上任意一点Q 的坐标是()2,t ,切点,M N 坐标分别是()33,x y ,()44,x y ;则经过M 点的切线斜率33x k y =-,方程是332x x y y +=, 经过N 点的切线方程是442x x y y +=,又两条切线MQ ,NQ 相交于Q ()2,t .则有33442222x ty x ty +=⎧⎨+=⎩,所以经过,M N 两点的直线l 的方程是22x ty +=,①当0t =时,有()1,1M ,()1,1N -,1,2E ⎛ ⎝⎭,1,2F ⎛⎫- ⎪ ⎪⎝⎭,则EF = ②当0t ≠时,联立222212x ty x y +=⎧⎪⎨+=⎪⎩,整理得()222816820t x x t +-+-=; 设,E F 坐标分别为()55,x y ,()66,x y ,则5622562168828x x t t x x t ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以)2248t EF t +===>+ 综上所述,当时,EF 有最小值2.2.【2020届陕西省西北工业大学附属中学高三月考】已知抛物线()21:20C x py p =>和圆()222:12C x y ++=,倾斜角为45°的直线1l 过抛物线1C 的焦点,且1l 与圆2C 相切. (1)求p 的值;(2)动点M 在抛物线1C 的准线上,动点A 在1C 上,若1C 在A 点处的切线2l 交y 轴于点B ,设MN MA MB =+u u u u r u u u r u u u r.求证点N 在定直线上,并求该定直线的方程.【思路引导】(1)设出直线1l 的方程为2py x =+,由直线和圆相切的条件:d r =,解得p ; (2)设出(,3)M m -,运用导数求得切线的斜率,求得A 为切点的切线方程,再由向量的坐标表示,可得N 在定直线上;解:(1)依题意设直线1l 的方程为2py x =+, 由已知得:圆222:(1)2C x y ++=的圆心2(1,0)C -,半径r =因为直线1l 与圆2C 相切,所以圆心到直线1:2pl y x =+的距离d ==,=6p =或2p =-(舍去).所以6p =;(2)依题意设(,3)M m -,由(1)知抛物线1C 方程为212x y =,所以212x y =,所以6x y '=,设11(,)A x y ,则以A 为切点的切线2l 的斜率为16x k =,所以切线2l 的方程为1111()6y x x x y =-+. 令0x =,211111111266y x y y y y =-+=-⨯+=-,即2l 交y 轴于B 点坐标为1(0,)y -,所以11(,3)MA x m y =-+u u u r ,1(,3)MB m y =--+u u u r,∴()12,6MN MA MB x m =+=-u u u u r u u u r u u u r, ∴1(,3)ON OM MN x m =+=-u u u ru u u u ru u u u r.设N 点坐标为(,)x y ,则3y =, 所以点N 在定直线3y =上. 3.【重庆市巴蜀中学2020届高三月考】已知圆C 过点()()3153A B ,,,,圆心在直线y x =上. (1)求圆C 的方程;(2)过圆O 1:22(1)1x y ++=上任一点P 作圆C 的两条切线,切点分别为Q ,T ,求四边形PQCT 面积的取值范围. 【思路引导】(1)根据条件设圆的方程为()222()x a y a r -+-=,由题意可解得3,2a r ==,于是可求得圆的方程.(2)根据几何知识可得22PQCT PQC S S PQ ==,故将所求范围的问题转化为求切线长的问题,然后根据切线长的求法可得结论.详解:(1)由题意设圆心为(),C a a ,半径为r , 则圆的标准方程为()222()x a y a r -+-=.由题意得()()222222(3)1(5)3a b r a b r⎧-+-=⎪⎨-+-=⎪⎩,解得32a r =⎧⎨=⎩, 所以圆C 的标准方程为()()22334x y -+-=. (2)由圆的切线的性质得122(2)22PQCT PQCS S PQ PQ==⨯⨯=而PQ =由几何知识可得1111CQ PC CQ -≤≤+, 又15CQ =, 所以46PC ≤≤,故PQ ≤≤所以PQCT S ≤≤即四边形PQCT 面积的取值范围为⎡⎣.。

高考数学最新真题专题解析—直线与圆(新高考卷)

高考数学最新真题专题解析—直线与圆(新高考卷)

高考数学最新真题专题解析—直线与圆(新高考卷)【母题来源】2022年新高考I卷【母题题文】写出与圆x2+y2=1和(x−3)2+(y−4)2=16都相切的一条直线的方程【答案】x+1=07x−24y−25=03x+4y−5=0(填一条即可)【分析】本题考查了圆与圆的公切线问题,涉及圆与圆的位置关系、点到直线的距离等知识,属较难题.【解答】解:方法1:显然直线的斜率不为0,不妨设直线方程为x+by+c=0,于是√1+b2=1,√1+b2=4.故c2=1+b2 ①,|3+4b+c|=|4c|.于是3+4b+c=4c或3+4b+c=−4c,再结合 ①解得{b=0c=1或{b=−247c=−257或{b=43c=−53,所以直线方程有三条,分别为x+1=0,7x−24y−25=0,3x+4y−5=0.(填一条即可)方法2:设圆x2+y2=1的圆心O(0,0),半径为r1=1,圆(x−3)2+ (y−4)2=16的圆心C(3,4),半径r2=4,则|OC|=5=r1+r2,因此两圆外切,由图像可知,共有三条直线符合条件,显然 x +1=0 符合题意; 又由方程 (x −3)2+(y −4)2=16 和 x 2+y 2=1 相减可得方程 3x +4y −5=0 ,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线 OC 的方程为 4x −3y =0 ,直线 OC 与直线 x +1=0 的交点为 (−1,−43) ,设过该点的直线为 y +43=k(x +1) ,则|k−43|√k 2+1=1 ,解得 k =724 ,从而该切线的方程为 7x −24y −25=0.( 填一条即可 ) 【母题来源】2022年新高考II 卷【母题题文】设点A(−2,3),B(0,a),直线AB 关于直线y =a 的对称直线为l ,已知l 与圆C:(x +3)2+(y +2)2=1有公共点,则a 的取值范围为 . 【答案】[13,32] 【分析】本题考查直线关于直线对称的直线求法,直线与圆的位置关系的应用,属于中档题. 【解答】解:因为k AB=a−32,所以AB关于直线y=a的对称直线为(3−a)x−2y+2a=0,所以√4+(3−a)2⩽1,整理可得6a2−11a+3⩽0,解得13≤a≤32.【命题意图】考察直线倾斜角与斜率,考察直线方程,考察直线平行与垂直,考察直线交点坐标,点到直线距离公式。

2023年新高考数学一轮复习9-2 直线与圆的位置关系(真题测试)含详解

2023年新高考数学一轮复习9-2 直线与圆的位置关系(真题测试)含详解

专题9.2 直线与圆的位置关系(真题测试)一、单选题1.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( ) A .12B .12-C .1D .1-2.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .±1B .C .D .2±3.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4B .5C .6D .74.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .45.(2023·全国·高三专题练习)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( ) A .()()22515x y -++= B .()()225113x y -+-= C .()()224413x y -++=D .()()221652x y -++=6.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.(2020·全国·高考真题(理))若直线l 与曲线y x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +128.(2023·全国·高三专题练习)已知圆C :224210x y x y +--+=,点P 是直线4y =上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为( )A B C D 二、多选题9.(2022·山东青岛·二模)已知22:60C x y x +-=,则下述正确的是( )A .圆C 的半径3r =B .点(在圆C 的内部C .直线:30l x +=与圆C 相切D .圆()22:14C x y '++=与圆C 相交10.(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( ) A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =11.(2022·湖南·邵阳市第二中学模拟预测)已知O 为坐标原点,圆M :()()22cos sin 1x y θθ-+-=,则下列结论正确的是( ) A .圆M 与圆224x y +=内切B .直线cos sin 0x y αα+=与圆M 相离C .圆M 上到直线x y +=的距离等于1的点最多两个D .过直线x y +=P 作圆M 的切线,切点为A ,B ,则四边形PAMB 12.(2022·全国·模拟预测)已知点P 在圆224O x y +=:上,点()30A ,,()04B ,,则( ) A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有3个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是三、填空题13.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.14.(2021·天津·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.15.(2022·全国·高考真题(文))设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.16.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 四、解答题17.(2023·全国·高三专题练习)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=, (1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.18.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长恒为4.(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 19.(2022·辽宁·高三期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -. (1)求线段AB 的垂直平分线方程; (2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =l 的方程.20.(2023·全国·高三专题练习)已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围.21.(2021·河北·沧县中学高三阶段练习)已知圆M 的方程为22315222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(1)求过点39,22⎛⎫⎪⎝⎭N 与圆M 相切的直线l 的方程;(2)过点(1,1)P 作两条相异直线分别与圆M 相交于A ,B 两点,若直线,PA PB 的斜率分别为12,k k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由.22.(2016·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.专题9.2 直线与圆的位置关系(真题测试)一、单选题1.(2022·北京·高考真题)若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( ) A .12 B .12-C .1D .1-【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(),0a ,因为直线是圆的对称轴,所以圆心在直线上,即2010a +-=,解得12a =. 故选:A .2.(2021·北京·高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A.±1 B .C .D .2±【答案】C 【解析】 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN 取得最小值为2,解得m = 故选:C.3.(2020·北京·高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【解析】 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y 1,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号, 故选:A.4.(2020·全国·高考真题(文))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP =根据弦长公式得最小值为2=. 故选:B.5.(2023·全国·高三专题练习)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是( ) A .()()22515x y -++= B .()()225113x y -+-= C .()()224413x y -++= D .()()221652x y -++=【答案】B 【解析】 【分析】数形结合得到过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,利用点到直线距离求出直径,设(),B a b ,列出方程组,求出圆心坐标,得到圆的方程. 【详解】过点()7,2A -作直线2360x y -+=的垂线,垂足为B , 则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB ==(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫⎪⎝⎭,即()5,1, 故该圆为()()225113x y -+-= 故选:B6.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是( ) A .[]26, B .[]48,C.D.⎡⎣【答案】A【解析】 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上 ∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABPSAB d ==∈ 故答案选A.7.(2020·全国·高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -,即00x x -+=, 由于直线l 与圆2215x y +=相切,两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.8.(2023·全国·高三专题练习)已知圆C :224210x y x y +--+=,点P 是直线4y =上的动点,过P 作圆的两条切线,切点分别为A ,B ,则AB 的最小值为( )A B C D 【答案】B 【解析】 【分析】利用面积相等求出4||||||AP AB CP =.设||CP x =,得到||AB =利用几何法分析出min ||3CP =,即可求出AB 的最小值.【详解】圆C :224210x y x y +--+=化为标准方程:()()22214-+-=x y ,其圆心()2,1C ,半径2r =.过点P 引圆C 的两条切线,切点分别为点A 、B ,如图:在△P AC 中,有11||||||||222PACAB SCA AP CP =⨯⨯=⨯⨯,即||||||4AB AP CP =⨯,变形可得:4||||||AP AB CP =.设||CP x =,则||AB ==所以当||CP 的值即x 最小时,24x 的值最大,此时||AB 最小. 而||CP 的最小值为点C 到直线4y =的距离,即min ||3CP =,所以min ||AB ==. 故选:B 二、多选题9.(2022·山东青岛·二模)已知22:60C x y x +-=,则下述正确的是( )A .圆C 的半径3r =B .点(在圆C 的内部C .直线:30l x +=与圆C 相切D .圆()22:14C x y '++=与圆C 相交【答案】ACD 【解析】 【分析】先将圆方程化为标准方程,求出圆心和半径,然后逐个分析判断即可 【详解】由2260x y x +-=,得22(3)9x y -+=,则圆心(3,0)C ,半径13r =, 所以A 正确,对于B,因为点(3=>,所以点(在圆C 的外部,所以B 错误,对于C ,因为圆心(3,0)C到直线:30l x +=的距离为13d r ===,所以直线:30l x +=与圆C 相切,所以C 正确,对于D ,圆()22:14C x y '++=的圆心为(1,0)C '-,半径22r =,因为4CC '==,12124r r r r -<<+,所以圆()22:14C x y '++=与圆C 相交,所以D 正确, 故选:ACD10.(2021·全国·高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA∠最大时,PB =【答案】ACD 【解析】 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误. 【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB4=>,所以,点P 到直线AB 42-<410<,A 选项正确,B 选项错误; 如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.11.(2022·湖南·邵阳市第二中学模拟预测)已知O 为坐标原点,圆M :()()22cos sin 1x y θθ-+-=,则下列结论正确的是( ) A .圆M 与圆224x y +=内切B .直线cos sin 0x y αα+=与圆M 相离C .圆M 上到直线x y +=的距离等于1的点最多两个D .过直线x y +=P 作圆M 的切线,切点为A ,B ,则四边形PAMB 案】ACD 【解析】 【分析】A.计算圆心距离与半径差的大小关系;B.求圆心到直线的距离来判断;C.圆心()cos ,sin M θθ到直线x y +=[]sin 10,24d πθ⎛⎫=+-∈ ⎪⎝⎭来判断;D.过直线x y +=P 作圆M 的切线,切点为A ,B ,四边形PAMB 面积为:2PAMS SMA PA PA ==⋅==MP垂直直线x y +=MP 有最小值,求出MP 的最小值,即可求出四边形PAMB 面积的最小值,即可判断. 【详解】圆M 的圆心()cos ,sin M θθ,半径11r =,而圆224x y +=的圆心()20,0,2O r =, 所以211OM r r ==-,所以圆M 与圆224x y +=内切,A 正确;()cos 1θα=-≤,故圆和直线相切或相交,B 错误;因为圆心()cos ,sin M θθ到直线x y +=sin 14d πθ⎛⎫==+- ⎪⎝⎭, 因为[][][]sin 1,1,sin 12,0,sin 10,2444πππθθθ⎛⎫⎛⎫⎛⎫+∈-+-∈-+-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为圆M 的半径为1,所以上到直线x y +=1的点最多两个,故C 正确;过直线x y +=P 作圆M 的切线,切点为A ,B ,四边形PAMB 面积为:2PAMS SMA PA PA ==⋅==MP垂直直线x y +=MP有最小值,且sin 34MP πθ⎛⎫=+- ⎪⎝⎭, 因为[][][]sin 1,1,sin 34,2,sin 12,4444πππθθθ⎛⎫⎛⎫⎛⎫+∈-+-∈--+-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以min 2MP =,则四边形PAMB面积的最小值为min S ==D 正确.故选:ACD.12.(2022·全国·模拟预测)已知点P 在圆224O x y +=:上,点()30A ,,()04B ,,则( ) A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有3个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是【答案】ACD 【解析】 【分析】对A ,求出直线AB 的方程,算出圆心到该直线的距离,进而通过圆的性质判断答案;对B ,设点()P x y ,,根据AP BP ⊥得到点P 的轨迹方程,进而判断该轨迹与圆的交点个数即可;对C ,设()()1122,,,M x y N x y ,进而得到切线方程MB ,NB ,再根据点B 在两条切线上求得答案;对D ,设()P x y ,,设存在定点()0C t ,,使得点P 在圆O 上任意移动时均有12PC PB =,进而求出点P 的轨迹方程,然后结合点P 在圆O 上求得答案. 【详解】对A ,14312034AB x yl x y +=⇒+-=:,则圆心到直线的距离125d ==,所以点P 到该直线距离的最大值为1222255+=.A 正确; 对B ,设点()P x y ,,则224x y +=,且()()34AP x y BP x y =-=-,,,,由题意()()()222232534340224AP BP x y x y x y x y x y ⎛⎫⋅=-⋅-=+--=⇒-+-=⎪⎝⎭,,,52=,半径和与半径差分别为5951222222+=-=,,于是951222>>,即两圆相交,满足这样条件的点P 有2个.B 错误;对C ,设()()1122,,,M x y N x y ,则直线MB ,NB 分别为112244x x y y x x y y +=+=,,因为点B 在两条直线上,所以1122044044x y x y ⋅+⋅=⋅+⋅=,,于是M N ,都满足直线方程044x y ⋅+⋅=,即直线MN 的方程为1y =.C 正确;对D ,即求122PA PB ⎛⎫+ ⎪⎝⎭的最小值,设存在定点()0C t ,,使得点P 在圆O 上任意移动时均有12PC PB =,设()P x y ,()2223381164x y t y t ++-=-,∵224x y +=, 则有()2211t y t -=-,即()()1210t y t ---=,∴1t =,则()01C ,,所以()222PA PB PA PC AC +=+≥=D 正确. 故选:ACD . 三、填空题13.(2019·浙江·高考真题)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 2m =- r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解. 【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ==14.(2021·天津·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.【解析】 【分析】设直线AB 的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB . 【详解】设直线AB 的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1, 则112b -=,解得1b =-或3b =,所以2AC =,因为1BC =,故AB =15.(2022·全国·高考真题(文))设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++= 【解析】 【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程. 【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R ,R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=16.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 四、解答题17.(2023·全国·高三专题练习)已知三点(2,0),(1,3),(2,2)A B C 在圆C 上,直线:360l x y +-=, (1)求圆C 的方程;(2)判断直线l 与圆C 的位置关系;若相交,求直线l 被圆C 截得的弦长.【答案】(1)22240x y y +--= (2)直线l 与圆C【解析】 【分析】(1)圆C 的方程为:220x y Dx Ey F ++++=,再代入(2,0),(1,3),(2,2)A B C 求解即可; (2)先求解圆心到直线的距离可判断直线l 与圆C 相交,再用垂径定理求解弦长即可(1)设圆C 的方程为:220x y Dx Ey F ++++=,由题意得:24031002280D F D E F D E F ++=⎧⎪+++=⎨⎪+++=⎩, 消去F 得:362D E D E -=⎧⎨-+=-⎩,解得: 02D E =⎧⎨=-⎩, ∴ F =-4, ∴圆C 的方程为:22240x y y +--=.(2)由(1)知: 圆C 的标准方程为:22(1)5x y +-=,圆心(0,1)C,半径r =点(0,1)C 到直线l的距离d r <,故直线l 与圆C 相交,故直线l 被圆C截得的弦长为18.(2022·青海·海东市第一中学模拟预测(文))已知动圆E 过定点()2,0P ,且y 轴被圆E 所截得的弦长恒为4.(1)求圆心E 的轨迹方程.(2)过点P 的直线l 与E 的轨迹交于A ,B 两点,()2,0M -,证明:点P 到直线AM ,BM 的距离相等. 【答案】(1)24y x = (2)证明见解析 【解析】【分析】(1)设(),E x y ,由圆的弦长公式列式可得;(2)设()11,A x y ,()22,B x y ,设():2l y k x =-,直线方程代入抛物线方程,应用韦达定理得12x x +,12x x ,计算0AM BM k k +=,得直线PM 平分AMB ∠,从而得结论,再说明直线l 斜率不存在时也满足. (1)设(),E x y ,圆E 的半径r =E 到y 轴的距离d x =,由题意得224r d =+,化简得24y x =,经检验,符合题意. (2)当直线斜率存在时,设():2l y k x =-,与E 的方程联立,消去y 得,()22224440k x k x k -++=.设()11,A x y ,()22,B x y ,则1221244,4x x k x x ⎧+=+⎪⎨⎪=⎩, ()()()()()()()()12122112121212222222222222AM BM k x k x k x x k x x y yk k x x x x x x ---++-++=+=+=++++++∵()()()()()1221122222240k x x k x x k x x -++-+=-=,∴0AM BM k k +=,则直线PM 平分AMB ∠, 当直线l 与x 轴垂直时,显然直线PM 平分AMB ∠. 综上,点P 到直线AM , BM 的距离相等.19.(2022·辽宁·高三期中)已知圆C 的圆心在x 轴上,且经过点1,0,()(,2)1A B -. (1)求线段AB 的垂直平分线方程; (2)求圆C 的标准方程;(3)若过点(0,2)P 的直线l 与圆C 相交于M N 、两点,且MN =l 的方程. 【答案】(1)1y x =-+ (2)22(1)4x y -+= (3)0x =或3480x y +-= 【解析】【分析】(1)根据已知得到线段AB 中点D 的坐标及AB 的斜率,根据垂直关系得出垂直平分线的斜率,利用点斜式即可求解;(2)设圆C 的标准方程为222()x a y r -+=,由圆心的位置分析可得a 的值,进而计算可得r 的值,据此分析可得答案;(3)设F 为MN 的中点,结合直线与圆的位置关系,分直线l 的斜率是否存在两种情况讨论,综合即可得答案. (1)设AB 的中点为D ,则(0,1)D .由圆的性质,得CD AB ⊥,所以1CD AB k k ⨯=-,得1CD k =-.所以线段AB 的垂直平分线的方程是1y x =-+. (2)设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为()0r r >, 由(1)得直线CD 的方程为1y x =-+,由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =, 所以圆心()1,0C ,||2r CA ==, 所以圆C 的标准方程为22(1)4x y -+=. (3)由(1)设F 为MN 中点,则CF l ⊥,得||||FM FN ==圆心C 到直线l 的距离||1d CF ===,当直线l 的斜率不存在时,l 的方程0x =,此时||1CF =,符合题意; 当直线l 的斜率存在时,设l 的方程2y kx =+,即20kx y -+=, 由题意得d =34k =-;故直线l 的方程为324y x =-+,即3480x y +-=;综上直线l 的方程为0x =或3480x y +-=.20.(2023·全国·高三专题练习)已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-= (2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程;(2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围. (1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意; 所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=,1=,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=. (2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,13≤,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.21.(2021·河北·沧县中学高三阶段练习)已知圆M 的方程为22315222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(1)求过点39,22⎛⎫⎪⎝⎭N 与圆M 相切的直线l 的方程;(2)过点(1,1)P 作两条相异直线分别与圆M 相交于A ,B 两点,若直线,PA PB 的斜率分别为12,k k ,且120k k +=,试判断直线AB 的斜率是否为定值,并说明理由. 【答案】(1)3y x =或39y x =-+(2)定值为13-,理由见解析.【解析】 【分析】(1)设出直线l 的方程,利用圆心到直线的距离等于半径可得答案;(2)由题可设1:(1)1PA y k x =-+,与圆的方程联立,可得点A 坐标,同理可得点B 坐标,将两点坐标代入斜率公式可得答案. (1)显然当l 的斜率不存在时,不符合题意;设39:22⎛⎫=-+ ⎪⎝⎭l y k x ,直线与圆相切,由圆心31,22M ⎛⎫- ⎪⎝⎭到直线l距离===d 3k =或3k =-. 当3k =时,直线l 的方程为3y x =,当3k =-时,直线l 的方程为39y x =-+, 所以直线l 的方程为3y x =或39y x =-+. (2)由题意可设1:(1)1PA y k x =-+由()1221130y k x x y x y ⎧=-+⎨+-+=⎩可得()()222211111233320k x k k x k k +--++-+=, 设()11,A x y ,则2111213211k k x k -+⨯=+,所以211121321k k x k -+=+,()2111112121111k k y k x k -++=-+=+,同理22222222223221,11k k k k B k k ⎛⎫-+-++ ⎪++⎝⎭, 因为120k k +=,所以22111122113221,11k k k k B k k ⎛⎫++--+ ⎪++⎝⎭,所以22111122111221111122112121112132326311AB k k k k k k k k k k k k k k k -++--+-++===--+++--++为定值. 22.(2016·江苏·高考真题)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.【答案】(1)22(6)(1)1x y -+-=;(2)2x −y +5=0或2x −y −15=0.(3)[2221,2221]-+.【解析】 【详解】试题分析:(1)根据直线与x 轴相切确定圆心位置,再根据两圆外切建立等量关系求半径;(2)根据垂径定理确定等量关系,求直线方程;(3)利用向量加法几何意义建立等量关系,根据圆中弦长范围建立不等式,求解即得参数取值范围.试题解析:解:圆M 的标准方程为()()226725x y -+-=,所以圆心M (6,7),半径为5,.(1)由圆心N 在直线x=6上,可设()06,N y .因为N 与x 轴相切,与圆M 外切,所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =.因此,圆N 的标准方程为()()22611x y -+-=.(2)因为直线l ∥OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为y=2x+m ,即2x -y+m=0,则圆心M 到直线l 的距离d ==因为BC OA ==而222,2BC MC d =+() 所以()252555m +=+,解得m=5或m=-15.故直线l 的方程为2x -y+5=0或2x -y -15=0.(3)设()()1122,,,.P x y Q x y因为()()2,4,,0,A T t TA TP TQ +=,所以……① 因为点Q 在圆M 上,所以()()22226725.x y -+-=…….②将①代入②,得()()22114325x t y --+-=.于是点()11,P x y 既在圆M 上,又在圆()()224325x t y -++-=⎡⎤⎣⎦上, 从而圆()()226725x y -+-=与圆()()224325x t y -++-=⎡⎤⎣⎦有公共点,所以5555,-≤+解得22t -≤+因此,实数t 的取值范围是22⎡-+⎣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
返回导航
下一页
第二部分 专题五 解析几何
19
(2)轴对称问题的两种类型及求解方法
点关于直 线的对称
直线关于
若两点 P1(x1,y1)与 P2(x2,y2)关于直线 l:Ax+By+C=0 对称,则线
段 P1P2 的中点在对称轴 l 上,而且连接 P1,P2 的直线垂直于对称轴 l.
由方程组Axy22·--x1+yx211·x2+-BAB·y=1+2-y21+,C
上一页
返回导航
下一页
第二部分 专题五 解析几何
15
4.已知直线 l 过直线 l1:x-2y+3=0 与直线 l2:2x+3y-8=0 的交点,且点 P(0,4) 到直线 l 的距离为 2,则直线 l 的方程为__________________.
上一页
返回导航
下一页
第二部分 专题五 解析几何
16
第二部分 专题五 解析几何
11
3.(2016·高考全国卷Ⅲ)已知直线 l:mx+y+3m- 3=0 与圆 x2+y2=12 交于 A,B 两 点,过 A,B 分别作 l 的垂线与 x 轴交于 C,D 两点.若|AB|=2 3,则|CD|=________.
上一页
返回导航
下一页
第二部分 专题五 解析几何
5.(一题多解)已知直线 l:x-y-1=0,l1:2x-y-2=0.若直线 l2 与 l1 关于直线 l 对称, 则直线 l2 的方程是________. 解析:法一:l1 与 l2 关于 l 对称,则 l1 上任意一点关于 l 的对称点都在 l2 上,故 l 与 l1 的交点(1,0)在 l2 上. 又易知(0,-2)为 l1 上的一点,设其关于 l 的对称点为(x,y),则 x2y+-x 2y×-2 12- =1-=10,,解得xy==--11., 即(1,0),(-1,-1)为 l2 上两点,故可得 l2 的方程为 x-2y-1=0.
上一页
返回导航
下一页
第二部分 专题五 解析几何
17
法二:设 l2 上任一点为(x,y),其关于 l 的对称点为(x1,y1),则由对称性可知 x+2 x1-y+2 y1-1=0, xy--yx11×1=-1, 解得xy11==xy+-11,. 因为(x1,y1)在 l1 上, 所以 2(y+1)-(x-1)-2=0,即 l2 的方程为 x-2y-1=0. 答案:x-2y-1=0
上一页
返回导航
下一页
第二部分 专题五 解析几何
18
■规律方法 (1)两直线的位置关系问题的解题策略 求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条 件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑 用数形结合的方法去研究或直接用直线的一般式方程判断.
8
题型二 直线与圆、圆与圆的位置关系
1.(2018·高考全国卷Ⅲ)直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆(x
-2)2+y2=2 上,则△ABP 面积的取值范围是( )
A.[2,6]
B.[4,8]
C.[ 2,3 2]
D.[2 2,3 2]
上一页
返回导航
下一页
第二部分 专题五 解析几何
9
2.(2015·高考全国卷Ⅱ)过三点 A(1,3),B(4,2),C(1,-7)的圆交 y 轴于 M,N 两点,
则|MN|=( )
A.2 6
B.8
C.4 6
D.10
上一页
返回导航
下一页
第二部分 专题五 解析几何
10
解析:选 C.设圆的方程为 x2+y2+Dx+Ey+F=0,
则D4D++3E2E++FF++102= 0=0, 0,解得DE==4-,2,
A.12,14
B.14,12

C.

43,0

D.0,

3

4
上一页
返回导航
下一页
第二部分 专题五 解析几何
28
【解析】 因为点 P 是直线x4+2y=1 上的一动点,所以设 P(4-2m,m).因为 PA,PB 是圆 x2+y2=1 的两条切线,切点分别为 A,B,所以 OA⊥PA,OB⊥PB,所以点 A,B 在以 OP 为直径的圆 C 上,即弦 AB 是圆 O 和圆 C 的公共弦.所以圆心 C 的坐标是 2-m,m2 ,且半径的平方 r2=(4-2m4)2+m2, 所以圆 C 的方程为(x-2+m)2+y-m2 2=(4-2m4)2+m2,①
上一页
返回导航
下一页
第二部分 专题五 解析几何
6
解:(1)由题意得 F(1,0),l 的方程为 y=k(x-1)(k>0). 设 A(x1,y1),B(x2,y2). 由yy=2=k4(xx-1),得 k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故 x1+x2=2kk2+2 4.
1.若方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆,则实数 a 的取值范围是( )
A.(-∞,-2)
B.-23,0
C.(-2,0)
D.-2,23
上一页
返回导航
下一页
第二部分 专题五 解析几何
25
2.经过原点且与直线 x+y-2=0 相切于点(2,0)的圆的标准方程是( )
即 y=-x+5.设所求圆的圆心坐标为(x0,y0),则(x0+1)2=(y0-x20+1)2+16, 解得xy00==23,或xy00==-11,6. 因此所求圆的方程为(x-3)2+(y-2)2=16 或(x-11)2+(y+6)2=144.
上一页
返回导航
下一页
第二部分 专题五 解析几何
12
[研考点考向·破重点难点]
考点1 直线的方程
[考法全练]
1.若平面内三点 A(1,-a),B(2,a2),C(3,a3)共线,则 a=(
A.1± 2或 0
B.2-2 5或 0
C.2±2 5
) D.2+2 5或 0
上一页
返回导航
下一页
第二部分 专题五 解析几何
13
2.若直线 mx+2y+m=0 与直线 3mx+(m-1)y+7=0 平行,则 m 的值为( )
上一页
返回导航
下一页
第二部分 专题五 解析几何
22
(2)证明:设过 A,B 两点的圆的方程为 x2+y2-mx+Ey+2m=0, 将点 C(0,2m)代入可得 E=-1-2m, 所以过 A,B,C 三点的圆的方程为 x2+y2-mx-(1+2m)y+2m=0, 整理得 x2+y2-y-m(x+2y-2)=0. 令xx2++2yy2--2y==00,,可得xy==10,或xy==4525,, 故过 A,B,C 三点的圆过定点(0,1)和25,45.
A.(x-1)2+(y+1)2=2
B.(x+1)2+(y-1)2=2
C.(x-1)2+(y+1)2=4
D.(x+1)2+(y-1)2=4
上一页
返回导航
下一页
第二部分 专题五 解析几何
26
3.(2019·安徽合肥模拟)已知圆 M:x2+y2-2x+a=0,若 AB 为圆 M 的任意一条直径,
且O→A·O→B=-6(其中 O 为坐标原点),则圆 M 的半径为( )
上一页
返回导航
下一页
第二部分 专题五 解析几何
23
■规律方法 求圆的方程的 2 种方法
通过研究圆的性质、直线和圆、圆与圆的位置关系,从而求得圆的基本量和 几何法
方程 代数法 用待定系数法先设出圆的方程,再由条件求得各系数,从而求得圆的方程
上一页
返回导航
下一页
第二部分 专题五 解析几何
24
[对点训练]
D-7E+F+50=0.
F=-20.
所以圆的方程为 x2+y2-2x+4y-20=0.
令 x=0,得 y=-2+2 6或 y=-2-2 6,
所以 M(0,-2+2 6),N(0,-2-2 6)或 M(0,-2-2 6),N(0,-2+2 6),
所以|MN|=4 6,故选 C.
上一页
返回导航
下一页
A.7
B.0 或 7
C.0
D.4
上一页
返回导航
下一页
第二部分 专题五 解析几何
14
3.已知点 A(1,2),B(2,11),若直线 y=m-m6 x+1(m≠0)与线段 AB 相交,则实数 m 的取值范围是( )
A.[-2,0)∪[3,+∞)
B.(-∞,-1]∪(0,6]
C.[-2,-1]∪[3,6]
4
2.(2015·高考全国卷Ⅰ)一个圆经过椭圆1x62+y42=1 的三个顶点,且圆心在 x 轴的正半轴
上,则该圆的标准方程为________.
上一页
返回导航
下一页
第二部分 专题五 解析几何
5
3.(2018·高考全国卷Ⅱ)设抛物线 C:y2=4x 的焦点为 F,过 F 且斜率为 k(k>0)的直线 l 与 C 交于 A,B 两点,|AB|=8. (1)求 l 的方程; (2)求过点 A,B 且与 C 的准线相切的圆的方程.
D.[-2,0)∪(0,6]
解析:选 C.由题意得,两点 A(1,2),B(2,11)分布在直线 y=m-m6 x+1(m≠0)的两
侧(或其中一点在直线上),所以m-m6 -2+12m-m6 -11+1≤0,解得-2≤m≤-1 或 3≤m≤6,故选 C.
=0. 可得到点
P1
关于
l
对称的点
P2
的坐标(x2,y2) (其中 B≠0,x1≠x2)
有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平
相关文档
最新文档