山东日照中考数学试题
2023年山东省日照市中考数学试卷(含答案)055140
2023年山东省日照市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 某地区一月份的平均气温为,三月份的平均气温为,则三月份的平均气温比一月份的平均气温高( )A.B.C.D.2. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等腰三角形B.平行四边形C.等边三角形D.矩形3. 年,中国青年科学家李栋首创的新型超分辨成像技术,使显微镜的分辨率达到了其中数据用科学计数法表示是( )A.B.C.D.4. 下图是由个相同的小立方体搭成的几何体,则下列说法正确的是( )A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图面积一样大5.如图,直线,则的度数是( )−19C ∘2C ∘17C∘21C∘−17C∘−21C∘20180.000000097m 0.0000000970.97×10−79.7×10−80.97×1079.7×1086a//b ∠AA.B.C.D.6. 若为正整数,则表示的是( )A.个相加B.个相加C.个相乘D.个相乘7. 在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每家共出元,那么还缺少元钱;如果每家共出元,又多了元钱.问共有多少人家,每头牛的价钱是多少元?若设有户人家,则可列方程为( )A.B.C.D.8. 为了有效地利用土地,安徽省各大中城市兴建高楼,如图,小明在某高楼前点测得楼顶的仰角为,向高楼前进米到点,又测得仰角为,则该高楼的高度大约为( )A.米B.米C.米D.米9. 在中,,,,则的长是( )A.B.C.D.10. 已知关于的方式方程的解是非负数,那么的取值范围是( )A.28∘31∘39∘42∘k ()k 322()k 33()k 22()k 35k 7190330927030x x+330=x−3019072709x−330=x+3019072709+330=−307×190x 9×270x−330=+307×190x 9×270x D 30∘60C 45∘821635270Rt △ABC ∠C =90∘a =1c =2b 13–√25–√x =3x−a x−313a a >1B.且C.且D.11. 在抛物线上有,和三点,若抛物线与轴的交点在正半轴上,则,和的大小关系为 A.B.C.D.12. 如图,智能机器人从平面直角坐标系的原点出发,向上走个单位长度到达点,再向左走个单位长度到达点,再向下走个单位长度到达点,再向右走个单位长度到达点,再向上走个单位长度到达点,…以此规律走下去,当智能机器人到达点时,它的坐标为( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 因式分解:=________.14. 已知点的坐标为在第二象限,则的取值范围是_______.15. 如图,双曲线与直线交于点,,并且点的坐标为,点的纵坐标为.根据图象信息可得关于的方程的解为________,________.16. 如图,内接于,平分交边于点,交于点,过点作a ≥1a ≠3a ≥1a ≠9a ≤1y=a −2ax−3a x 2A(−0.5,)y 1B(2,)y 2C(3,)y 3y y 1y 2y 3()<<y 2y 1y 3<<y 3y 2y 1<<y 3y 1y 2<<y 1y 2y 301A 11A 22A 32A 43A 5A 2021(505,506)(−505,505)(506,−506)(−506,506)x−4x 3P (a −2,3a)a y =m x y =kx+b M N M (1,3)N −1x =kx+b m x =x 1=x 2△ABC ⊙O AD ∠BAC BC E ⊙O D D ⊙O的切线,作作于点,设的半径为.则下列结论正确的是________(写出所有正确结论的序号)①;②;③;④若,则.”B 卡 ..________第题图三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17. 计算和解方程.;.18. 某工厂甲、乙两个部门各有员工人,为了了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下:【收集数据】从甲、乙两个部门各随机抽取名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:【整理、描述数据】按分数段整理以上两组样本数据后,绘制甲、乙两部门员工成绩的频数分布图(如图)(说明:测试成绩分及以上为优秀,分为良好,分为合格)【分析数据】两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲乙________________________请将上述不完整的频数分布图补充完整;请分别求出乙部门员工测试成绩的平均数,中位数和众数填入表中;请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工约有________人;②你认为甲,乙哪个部门员工的生产技能水平较高,请说明理由,(至少从两个不同的角度说明推断的合理性) 19. 如图,在中,对角线与相交于点,=,过点作交于点.(1)求证:;(2)若=,,求线段的长. 20. 用火柴棒拼成如图所示的几何图形.倒由根火柴棒拼成,图由根火柴棒拼成,图由根火柴棒拼成A AF ⊥BC F ⊙O R,AF =h MN//BC △BDE ∼△BCA AB ⋅AC =2R ⋅h ∠BAC =2a =2cosαAB+AC ADA o TE F Yc M D N16(1)sin −++tan 60∘12−−√4()12−245∘(2)5+3x =0x 2200208070−7960−6978.3577.575(1)(2)(3)▱ABCD AC BD O ∠CAB ∠ACB B BE ⊥AB AC E AC ⊥BD AB 14cos ∠CAB =78OE 16211316⋯⋯(1)图由________根火柴棒拼成.(2)根据规律猜想并用含的代数式表示图火柴棒的根数.21. 如图,在四边形中,,为中点,过作交于点,连接交于点,连接交于点,若,求证:.22. 如图,已知抛物线=经过点,,交轴于另一点,其顶点为.(1)求抛物线的解析式;(2)点为抛物线上一点,直线交轴于点,若与相似,求点坐标;(3)如果点在轴上,点在直线上,那么在抛物线上是否存在点,使得以,,,为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.4n n ABFC ∠BAC =∠BFC =∠BCN =90∘E BC C CN ⊥BC AF N EN BF M CM AN G AB =AF MG =GC y −+bx+c x 2A(−3,0)C(0,3)x B D P CP x E △CAE △OCD P F y M AC N C F M N参考答案与试题解析2023年山东省日照市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】有理数的减法【解析】根据题意用三月份的平均气温减去一月份的平均气温列式计算求解.【解答】解:.故选.2.【答案】D【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答3.【答案】B【考点】科学记数法—表示较小的数【解析】此题暂无解析【解答】解:用科学计数法表示是.故选.4.2−(−19)=2+19=21C∘B 0.0000000979.7×10−8BB【考点】简单组合体的三视图【解析】此题暂无解析【解答】解:主视图是第一层三个小正方形,第二层中间一个小正方形,主视图的面积是;俯视图是第一层左边一个小正方形,第二层三个小正方形,第三层中间一个小正方形,俯视图的面积是;左视图第一层三个小正方形,第二层中间一个小正方形,左视图的面积是.所以俯视图的面积最大.故选.5.【答案】C【考点】三角形的外角性质平行线的性质【解析】此题暂无解析【解答】解:∵,∴.∵,∴.故选.6.【答案】C【考点】幂的乘方及其应用【解析】幂的乘方,底数不变,指数相乘,据此判断即可.【解答】解:,即表示的是个相乘.故选.7.【答案】A454B a//b ∠1=70∘∠1=∠A+31∘∠A =−=70∘31∘39∘C =⋅()k 32k 3k 3()k 322()k 3C由实际问题抽象出一元一次方程数学常识【解析】设有户人家,根据题意可得每头牛的价钱是,由每头牛的价钱不变可得方程.【解答】设有户人家,则.8.【答案】A【考点】解直角三角形的应用-仰角俯角问题【解析】由于是和的公共直角边,可在中,根据的正切值,用表示出的长;同理可在中,根据的度数,用表示出的长;根据,即可求得的长.【解答】解:设楼高为.则,在中有:.解得.故选.9.【答案】B【考点】勾股定理【解析】根据勾股定理即可求解.【解答】解:在中,,,,∴.故选.10.【答案】C【考点】x x+330x−3019072709x x+330=x−3019072709AB Rt △ABD Rt △ABC Rt △ABC ∠ACB AB BC Rt △ABD ∠D AB BD CD =BD−BC AB AB x AB =CB =x Rt △ADB =DB AB 60+x x =tan60°=3–√x ≈82m A Rt △ABC ∠C =90∘a =1c =2b ===−c 2a 2−−−−−−√−2212−−−−−−√3–√B分式方程的解解一元一次不等式【解析】根据分式方程的解法即可求出的取值范围.【解答】,,∴,由于该分式方程有解,令代入,∴,∵该方程的解是非负数解,∴,∴,∴的范围为:且,11.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据解析式得出抛物线的对称轴,由抛物线与轴的交点在正半轴可得,即抛物线开口向下,根据二次函数的性质可得答案.【解答】解:∵抛物线的对称轴为,且抛物线与轴的交点在正半轴上,∴,即,∴当时,随的增大而增大;当时,随的增大而减小,且抛物线上的点离对称轴的水平距离越远,函数值越小,∴.故选.12.【答案】A【考点】规律型:点的坐标【解析】此题暂无解析【解答】解:观察图象可知,下标为偶数时在二四象限,下标为奇数时在一三象限,a 3(3x−a)=x−39x−3a =x−38x =3a −3x =3a −38x =3a −38x−3≠0a ≠9≥03a −38a ≥1a a ≥1a ≠9y a <0x =−=1−2a 2ay −3a >0a <0x <1y x x >1y x <<y 3y 1y 2C除以余数是的在第一象限,除以余数是的在第三象限,观察图形和已知条件可得点的坐标为,的坐标为的坐标为,的坐标为,每个点一循环.因为,所以在第一象限,坐标为.故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】点的坐标解一元一次不等式组【解析】根据第二象限的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点在第二象限,得解得.故答案为:.15.【答案】,【考点】反比例函数与一次函数的综合【解析】首先把点代入中,求出反比例函数解析式,再利用反比例函数解析式求出点坐标,求关于的方程的解就是看一次函数与反比例函数图象交点横坐标就是的值.4143A 1(0,1)A 2(−1,1),A 3(−1,−1)A 4(1,−1)42021=505×4+1A 2021(505,506)A x(1+2x)(1−2x)0<a <2P (a −2,3a){a −2<0,3a >0,0<a <20<a <2−31M y =m x N x =kx+b m x x解:∵在反比例函数图象上,∴,∴反比例函数解析式为:.∵也在反比例函数图象上,点的纵坐标为.∴,∴,∴关于的方程的解为:;.故答案为:;.16.【答案】【考点】切线的判定相似三角形的性质与判定勾股定理相似三角形的判定与性质圆的综合题【解析】此题暂无解析【解答】三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.【答案】解:原式.,因式分解得:,∴或,即,.【考点】特殊角的三角函数值实数的运算零指数幂、负整数指数幂解一元二次方程-因式分解法【解析】直接特殊角的三角函数值,根式,负指数幂化简,即可得到答案;因式分解即可解出方程.M(1,3)m=1×3=3y =3x N N −1x =−3N(−3,−1)x =kx+b m x −31−31(1)=−++13–√223–√422=4+1=5(2)5+3x =0x 2x(5x+3)=0x =05x+3=0=0x 1=−x 235(1)(2)解:原式.,因式分解得:,∴或,即,.18.【答案】解:如图,平均数:中位数:将这组数据从小到大排列第,个数据分别是,,则中位数是,众数:这组数据出现次数最多的数是,则众数是,填表如下:部门平均数中位数众数甲乙①估计乙部门生产技能优秀的员工人数是人.②甲:、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;乙:、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.【考点】频数(率)分布直方图算术平均数中位数众数【解析】此题暂无解析【解答】解:如图,(1)=−++13–√223–√422=4+1=5(2)5+3x =0x 2x(5x+3)=0x =05x+3=0=0x 1=−x 235(1)(2)×(92+71+83+81+72+81+91+83+75+82120+80+81+69+81+73+74+82+80+70+59)=781011808180.5818178.3577.5757880.581(3)200×=12012201∘2∘1′2∘(1)平均数:中位数:将这组数据从小到大排列第,个数据分别是,,则中位数是,众数:这组数据出现次数最多的数是,则众数是,填表如下:部门平均数中位数众数甲乙①估计乙部门生产技能优秀的员工人数是人.②甲:、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;乙:、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;、乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.19.【答案】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.【考点】平行四边形的性质解直角三角形菱形的判定与性质【解析】(1)根据=利用等角对等边得到=,从而判定平行四边形是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在中和在中求得和,从而利用=求解即可.【解答】∵=,∴=,∴是菱形.∴;(2)×(92+71+83+81+72+81+91+83+75+82120+80+81+69+81+73+74+82+80+70+59)=781011808180.5818178.3577.5757880.581(3)200×=12012201∘2∘1′2∘∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154∠CAB ∠ACB AB CB ABCD Rt △AOB Rt △ABE AO AE OE AE−AO ∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD ∠CAB ==AO 7在中,,=,∴=,在中,,=,∴=,∴==.20.【答案】.解:由得出的规律可知:图火柴棒的根数为:.【考点】规律型:图形的变化类【解析】本题考查了图形的变化规律.【解答】解:由图可知:图由根火柴棒拼成,图由根火柴棒拼成,图由根火柴棒拼成……,∴由此可以得出规律,图形标号每增加,就增加根火柴,∴根据此规律可得出图形的火柴棒的根数为:,故答案为:.解:由得出的规律可知:图火柴棒的根数为:.21.【答案】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154(1)21(2)(1)n 6+5(n−1)=5n+1(1)1621131615416+5=2121(2)(1)n 6+5(n−1)=5n+1E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC∵,∴,∴,∴.∵,∴,,∴,∴,∴.【考点】四点共圆圆的综合题【解析】如图,过点作于,连接,易证、、、四点共圆,、、、四点共圆,根据圆周角定理可得,,从而可得,即可得到,则有.易证点为过、、、的圆的圆心,根据垂径定理可得.即可得到,由此可证到,则有.根据圆内接四边形对角互补可得,根据平角的定义可得,根据等角的补角相等可得.由可得,从而可得,则有.由可得,,根据等角的余角相等可得,则有,即可得到.【解答】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.22.AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE E A B F C AH =HF =AF 12==AC BM AH BE AF BC △CAF ∽△MBC ∠ACF =∠BMC ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC【答案】∵抛物线=经过点,,∴,解得.故此抛物线解析式为:=;∵==,∴顶点.∵,,,∴,==,,==,∴点只能在点左边.①若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴;②若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴.因此,或;在抛物线上存在点,使得以,,,为顶点的四边形是菱形.①若为对角线,则与互相垂直平分时,四边形为菱形,∵===,∴=,∴,四边形为正方形,∴点与顶点重合,∵,∴,,∴菱形的周长为;②若为菱形的一边,则,,=时,四边形为菱形.过作于,设直线交轴于,,则,.∴===,∵,=,∴==,∴,又∵==,∴,y −+bx+c x 2A(−3,0)C(0,3){ −9−3b +c =0c =3{ b =−2c =3y −−2x+3x 2y −−2x+3x 2−(x+1+4)2D(−1,4)A(−3,0)C(0,3)D(−1,4)AC =32–√OA OC 3CD =2–√∠OCD ∠CAE 135∘E A △CAE ∽△DCO ==CA AE DC CO 2–√3AE 9OE 12E(−12,0)C(0,3)=x+3y CE 14 y =−−2x+3x 2=x+3y CE 14 =−x 194=y 13916{ =0x 2=3y 2P(−,)943916△CAE ∽△OCD ==CA AE OC CD 32–√AE 2OE 5E(−5,0)C(0,3)=x+3y CE 35 y =−−2x+3x 2=x+3y CE 35 =−x 1135=y 13625{ =0x 2=3y 2P(−,)1353625P(−,)943916(−,)1353625N C F M N CF CF NM CNFM ∠NCF ∠FCM ∠ACO 45∘∠NCM 90∘CN ⊥CM CNFM N D D(−1,4)N(−1,4)CN =2–√CNFM 42–√CF MN //CF CM//FN NM NF CNFM F FH ⊥NM H NM x G N(m,−−2m+3)m 2M(m,m+3)G(m,0)NM |m+3−(−−2m+3)|m 2|+3m|m 2NF CM//FN ∠ACO 45∘∠NFH ∠FNH 45∘NF =FH 2–√FH OG |m||+3m|=|m|m 22–√−3−–√−3+–√∴=或=,∴,或,∴菱形周长为或因此,存在菱形,其周长为或或.【考点】二次函数综合题【解析】(1)根据待定系数法可求抛物线的解析式;(2)分两种情况:①若;②若;进行讨论即可求解;(3)分两种情形:①若为对角线,则与互相垂直平分时,四边形为菱形;②若为菱形的一边,则,,=时,四边形为菱形;进行讨论即可解决问题.【解答】∵抛物线=经过点,,∴,解得.故此抛物线解析式为:=;∵==,∴顶点.∵,,,∴,==,,==,∴点只能在点左边.①若,则,∴=,∴=,∴.∵,∴.m −3−2–√m −3+2–√NF =3+22–√NF =3−22–√12+82–√12−82–√42–√8+122–√12−82–√△CAE ∽△DCO △CAE ∽△OCD CF CF NM CNFM CF MN //CF CM//FN NM NF CNFM y −+bx+c x 2A(−3,0)C(0,3){ −9−3b +c =0c =3{ b =−2c =3y −−2x+3x 2y −−2x+3x 2−(x+1+4)2D(−1,4)A(−3,0)C(0,3)D(−1,4)AC =32–√OA OC 3CD =2–√∠OCD ∠CAE 135∘E A △CAE ∽△DCO ==CA AE DC CO 2–√3AE 9OE 12E(−12,0)C(0,3)=x+3y CE 14y =−−2x+32联立,解得,(舍去),∴;②若,则,∴=,∴=,∴.∵,∴.联立,解得,(舍去),∴.因此,或;在抛物线上存在点,使得以,,,为顶点的四边形是菱形.①若为对角线,则与互相垂直平分时,四边形为菱形,∵===,∴=,∴,四边形为正方形,∴点与顶点重合,∵,∴,,∴菱形的周长为;②若为菱形的一边,则,,=时,四边形为菱形.过作于,设直线交轴于,,则,.∴===,∵,=,∴==,∴,又∵==,∴,∴=或=,∴,或,∴菱形周长为或因此,存在菱形,其周长为或或.y =−−2x+3x 2=x+3y CE 14 =−x 194=y 13916{ =0x 2=3y 2P(−,)943916△CAE ∽△OCD ==CA AE OC CD 32–√AE 2OE 5E(−5,0)C(0,3)=x+3y CE 35 y =−−2x+3x 2=x+3y CE 35 =−x 1135=y 13625{ =0x 2=3y 2P(−,)1353625P(−,)943916(−,)1353625N C F M N CF CF NM CNFM ∠NCF ∠FCM ∠ACO 45∘∠NCM 90∘CN ⊥CM CNFM N D D(−1,4)N(−1,4)CN =2–√CNFM 42–√CF MN //CF CM//FN NM NF CNFM F FH ⊥NM H NM x G N(m,−−2m+3)m 2M(m,m+3)G(m,0)NM |m+3−(−−2m+3)|m 2|+3m|m 2NF CM//FN ∠ACO 45∘∠NFH ∠FNH 45∘NF =FH 2–√FH OG |m||+3m|=|m|m 22–√m −3−2–√m −3+2–√NF =3+22–√NF =3−22–√12+82–√12−82–√42–√8+122–√12−82–√。
山东省日照市中考数学试卷(含答案解析)
山东省日照市中考数学试卷一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.的算术平方根是()A.2 B.±2 C.D.±3.2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a64.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是65.小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.169.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.﹣220% D.30%10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B.C.D.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.6612.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=.16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.三、解答题17.先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.18.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.19.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.20.如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.21.阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.22.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.的算术平方根是()A.2 B.±2 C.D.±考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.3.2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a6考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣a3)2=a6.故选C.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题关键.4.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6考点:方差;加权平均数;中位数;众数.分析:根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.解答:解:A、31和34出现了2次,出现的次数最多,则众数是31和34,故本选项错误;B、把这组数据从小到大排列,最中间的数是34,则中位数是34,故本选项错正确;C、这组数据的平均数是:(31+30+34+35+36+34+31)÷7=33,故本选项错误;D、这组数据的方差是:[2(31﹣33)2+(30﹣33)2+2(34﹣33)2+(35﹣33)2+(36﹣33)2]=,故本选项错误;故选B.点评:本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].5.小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.点评:此题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④考点:正方形的判定.分析:利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.解答:解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项错误;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项正确;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项错误;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项错误.故选:B.点评:此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,并在数轴上表示出来即可.解答:解:,由①得,x≤﹣1,由②得,x>﹣5,故﹣5<x≤﹣1.在数轴上表示为:.故选A.点评:本题考查的是在数轴上表示不等式组的解集,熟知“小于向左,大于向右”是解答此题的关键.8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.16考点:扇形面积的计算.分析:连接AD,因为△ABC是等腰直角三角形,故∠ABD=45°,再由AB是圆的直径得出∠ADB=90°,故△ABD也是等腰直角三角形,所以=,S阴影=S△ABC﹣S△ABD﹣S弓形AD由此可得出结论.解答:解:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴=.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC﹣S△ABD﹣S弓形AD=S△ABC﹣S△ABD﹣(S扇形AOD﹣S△ABD)=×8×8﹣×4×4﹣+××4×4=16﹣4π+8=24﹣4π.故选A.点评:本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.9.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.﹣220% D.30%考点:一元二次方程的应用.专题:增长率问题.分析:首先设每年投资的增长率为x.根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.解答:解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%.故选:A.点评:此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B.C.D.考点:解直角三角形.分析:延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明△CDE∽△BDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tan∠CAD==.解答:解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tanB=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选D.点评:本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD放在直角三角形中.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式.专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点.专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是x≤3.考点:二次根式的性质与化简.分析:根据二次根式的性质得出3﹣x≥0,求出即可.解答:解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.点评:本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.考点:正方形的性质;等边三角形的性质;含30度角的直角三角形.分析:过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.解答:解:过点C作CD和CE垂直正方形的两个边长,如图,∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.点评:此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=2026.考点:根与系数的关系.分析:由于m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x ﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021,然后就可以求出所求的代数式的值.解答:解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,所以m,n是x2﹣x﹣3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=﹣3,又n2=n+3,则2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021=2×1﹣(﹣3)+2021=2+3+2021=2026.故答案为:2026.点评:本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为6+2.考点:反比例函数图象上点的坐标特征.分析:设E(x,x),则B(2,x+2),根据反比例函数系数的几何意义得出x2=x(x+2),求得E的坐标,从而求得k的值.解答:解:设E(x,x),∴B(2,x+2),∵反比例函数y=(k≠0,x>0)的图象过点B、E.∴x2=2(x+2),解得x1=1+,x2=1﹣(舍去),∴k=x2=6+2,故答案为6+2.点评:本题考查了反比例函数图象上点的坐标特征,关键是掌握反比例函数图象上点与反比例函数中系数k的关系.三、解答题17.先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.考点:分式的化简求值;二元一次方程组的解.分析:(1)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可;(2)先把m当作已知条件求出x、y的值,再根据足x+y=0求出m的值即可.解答:解:(1)原式=•=•=a﹣1,当a=时,原式=﹣1;(2)解关于x,y的二元一次方程组得,∵x+y=0,∴2m﹣11+7﹣m=0,解得m=4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.考点:列表法与树状图法;扇形统计图;条形统计图.分析:(1)用A的人数除以所占的百分比,即可求出调查的学生数;用抽查的总人数减去A、B、D的人数,求出喜欢“跑步”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(2)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.解答:解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),所占百分比是:×100%=40%,画图如下:(2)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.点评:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离900千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.考点:一次函数的应用.分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.解答:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:900.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.点评:本题考查了一次函数的应用,解决本题的关键是读懂图象,获取相关信息,用待定系数法求函数解析式.20.如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.考点:旋转的性质;全等三角形的判定与性质.分析:(1)由CA=CB,E,F分别是CA,CB边的三等分点,得CE=CF,根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,证明△AMC≌△BNC即可;(2)当MA∥CN时,∠ACN=∠CAM,由∠ACN+∠ACM=90°,得到∠CAM+∠ACM=90°,所以cotα==.解答:解:(1)∵CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,∴CE=CF,根据旋转的性质,CM=CE=CN=CF,∠ACM=∠BCN=α,在△AMC和△BNC中,,∴△AMC≌△BNC,∴AM=BN;(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cosα===.点评:本题主要考查了旋转的性质、三角形全等的判定与性质、平行线的性质以及锐角三角函数的综合运用,难度适中,掌握旋转的性质是关键.21.阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y ﹣b)2=r2.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.专题:阅读型.分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.解答:解:问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)2+(y﹣3)2=25.点评:本题是一道阅读题,以考查阅读理解能力为主,在解决问题的过程中,用到了全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,有一定的综合性.22.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判定与性质;轴对称的性质;相似三角形的判定与性质;锐角三角函数的定义.专题:压轴题.分析:(Ⅰ)只需把A、C两点的坐标代入y=x2+mx+n,就可得到抛物线的解析式,然后求出直线AB与抛物线的交点B的坐标,过点B作BH⊥x轴于H,如图1.易得∠BCH=∠ACO=45°,BC=,AC=3,从而得到∠ACB=90°,然后根据三角函数的定义就可求出tan∠BAC的值;(Ⅱ)(1)过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x,易得∠APQ=∠ACB=90°.若点G在点A的下方,①当∠PAQ=∠CAB时,△PAQ∽△CAB.此时可证得△PGA∽△BCA,根据相似三角形的性质可得AG=3PG=3x.则有P(x,3﹣3x),然后把P(x,3﹣3x)代入抛物线的解析式,就可求出点P的坐标②当∠PAQ=∠CBA时,△PAQ∽△CBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;(2)过点E作EN⊥y轴于N,如图3.易得AE=EN,则点M在整个运动中所用的时间可表示为+=DE+EN.作点D关于AC的对称点D′,连接D′E,则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,从而可得∠D′CD=90°,DE+EN=D′E+EN.根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN 最小.此时可证到四边形OCD′N是矩形,从而有ND′=OC=3,ON=D′C=DC.然后求出点D 的坐标,从而得到OD、ON、NE的值,即可得到点E的坐标.解答:解:(Ⅰ)把A(0,3),C(3,0)代入y=x2+mx+n,得,解得:.∴抛物线的解析式为y=x2﹣x+3.联立,解得:或,∴点B的坐标为(4,1).过点B作BH⊥x轴于H,如图1.∵C(3,0),B(4,1),∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.∵∠BHC=90°,∴∠BCH=45°,BC=.同理:∠ACO=45°,AC=3,∴∠ACB=180°﹣45°﹣45°=90°,∴tan∠BAC===;(Ⅱ)(1)存在点P,使得以A,P,Q为顶点的三角形与△ACB相似.过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x.∵PQ⊥PA,∠ACB=90°,∴∠APQ=∠ACB=90°.若点G在点A的下方,①如图2①,当∠PAQ=∠CAB时,则△PAQ∽△CAB.。
山东r日照中考数学试题及答案
山东r日照中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 3x - 5 = 14C. 4x + 6 = 22D. 5x - 10 = 25答案:C2. 已知一个圆的半径为5cm,求这个圆的面积。
A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B3. 若a和b互为相反数,下列哪个等式成立?A. a + b = 0B. a - b = 0C. a × b = 1D. a ÷ b = 1答案:A4. 一个等差数列的首项为3,公差为2,求第5项的值。
A. 11B. 13C. 15D. 17答案:B5. 计算下列表达式的值:(2x - 3)(x + 4)。
A. 2x² + 5x - 12B. 2x² + 5x + 12C. 2x² - 5x + 12D. 2x² - 5x - 12答案:A6. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x² - 4C. y = √xD. y = 1/x答案:A7. 计算下列概率:从5个红球和3个蓝球中随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/3C. 3/4D. 4/5答案:B8. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
A. 72 cm³B. 36 cm³C. 48 cm³D. 24 cm³答案:A9. 已知一个二次函数的顶点坐标为(2, -3),且开口向上,求该函数的一般形式。
A. y = a(x - 2)² - 3B. y = a(x + 2)² - 3C. y = a(x - 2)² + 3D. y = a(x + 2)² + 3答案:A10. 计算下列三角函数值:sin(30°)。
2023年山东省日照市中考数学试卷(含答案)164452
2023年山东省日照市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 已知=,,,判断下列叙述何者正确?( )A.=,=B.=,C.,=D.,2. 下列四个图形中,既是轴对称图形又是中心对称图形的是 A.B.C.D.3. 华为是世界上首款应用纳米手机芯片的手机,纳米就是米,数据用科学记数法表示为 A.B.C.D.4. 如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A.a (−)−314215116b =−(−)314215116c =−−314215116a c b ca cb ≠ca ≠cb ca ≠cb ≠c()mate20770.0000000070.000000007()0.7×10−87×10−87×10−97×10−10B. C. D.5. 如图将直尺与含角的三角尺摆放在一起,若,则的度数是( )A.B.C.D.6. 已知,,,则,,的大小关系是( )A.B.C.D.7. 在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十.问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每家共出元,那么还缺少元钱;如果每家共出元,又多了元钱.问共有多少人家,每头牛的价钱是多少元?若设有户人家,则可列方程为( )A.B.C.D.8. 在同一水平线上有两个观测点,,从点观测点,俯角为,从点观测点,俯角为,则符合条件的示意图是( )30∘∠1=20∘∠230∘40∘50∘60∘a =212b =38c =54a b c a >b >cc >b >aa <c <bb >a >c7190330927030x x+330=x−3019072709x−330=x+3019072709+330=−307×190x 9×270x−330=+307×190x 9×270x P Q P R 30∘Q R 45∘A. B. C. D.9. 把直角三角形的两条直角边同时扩大到原来的倍,则其斜边( )A.扩大到原来的倍B.扩大到原来的倍C.不变D.扩大到原来的倍10. 关于的分式方程的解是负数,则可能是( )A.B.C.D.11. 与轴的交点坐标为( )A.B.C.D.12. 如图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点 ;第次运动到点,第次运动到点 ,……,按照这样的运动规律,点第次运动到点( )3369x =32x+m x−2m −4−5−6−7y =−7x−514x 2y −5(−5,0)(0,−5)(0,−20)P 1(1,1)2(2,0)3(3,−1)P 2021A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13. 分解因式:________.14. 已知点的坐标为在第二象限,则的取值范围是_______.15. 若双曲线与直线无交点,则的取值范围是________.16. 如图,在平行四边形中,对角线与相交于点,为的中点,交于点,则的值为________.三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17. 计算:;. 18. 为了检验寒假自学效果,开学后七年级进行了开学小检测,并随机抽取了名学生的成绩,数据如下:根据上述数据,将下列表格补充完整.数据分析:样本数据的平均数、众数和中位数如下表:根据所给数据,如果本次决赛的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为________分.数据应用:该校七年级共有新生名,若规定本次测试成绩分(含分)以上的学生为优秀,请估计七年级新生共有多少人达到优秀? 19. 如图,在中,对角线与相交于点,=,过点作交于点.(2021,1)(2021,0)(2021,−1)(2022,0)a −a =m 2n 2P (a −2,3a)a y =k −1xy =−3x+1k ABCD AC BD O E BC AE BD F OF DF (1)sin +−sin ⋅tan 60∘cos 245∘30∘60∘(2)2cos +tan cos −30∘30∘60∘(1−tan )60∘2−−−−−−−−−−−√2091908896919893979198989790100909794989688(1)(2)50%(3)5009898▱ABCD AC BD O ∠CAB ∠ACB B BE ⊥AB AC E(1)求证:;(2)若=,,求线段的长. 20. 下面的图形是由边长为的正方形按照某种规律排列而组成的.推测第个图形中,正方形的个数为________,周长为________;推测第个图形中,正方形的个数为________,周长为________;(都用含的代数式表示)这些图形中,任意一个图形的周长记为,它所含正方形个数记为,则,之间满足的数量关系为________.(用含,的等式表示)21. 如图,在四边形中,,为中点,过作交于点,连接交于点,连接交于点,若,求证:.22. 如图,在平面直角坐标系中,二次函数的图像与轴交于点,与轴交于点,其对称轴与轴交于点.求二次函数的解析式及其对称轴;若点是线段上的一点,过点作,轴的垂线,垂足为,且,求点的坐标;若点是抛物线对称轴上的一个动点,连接,,设点的纵坐标为,当不小于时,求的取值范围.AC ⊥BD AB 14cos ∠CAB =78OE 1(1)4(2)n n (3)a b a b a b ABFC ∠BAC =∠BFC =∠BCN =90∘E BC C CN ⊥BC AF N EN BF M CM AN G AB =AF MG =GC y =a +bx+3x 2x A(−,0),B(3,0)3–√3–√y C x D (1)(2)E BC E F EF =2EC E (3)P PA PC P t ∠APC 60∘t参考答案与试题解析2023年山东省日照市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】有理数的减法【解析】根据有理数的减法的运算方法,判断出、,、的关系即可.【解答】∵=,,,∴=,.2.【答案】D【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:、不是轴对称图形,是中心对称图形.故错误;、不是轴对称图形,是中心对称图形.故错误;、不是轴对称图形,是中心对称图形.故错误;、是轴对称图形,也是中心对称图形.故正确.故选.3.【答案】C【考点】科学记数法—表示较小的数【解析】此题暂无解析【解答】a cbc a (−)−=−−314215116314215116b =−(−)=−+314215116314215116c =−−314215116a c b ≠c A B C D D =1×−9解:∵纳米米,∴纳米米.故选.4.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有个正方形,第二列底层有个正方形.故选.5.【答案】C【考点】三角形的外角性质平行线的性质【解析】先根据三角形外角的性质求出的度数,再根据平行线的性质得到的度数.【解答】解:如图,∵是的外角,,,∴,∵,∴.故选.6.【答案】D【考点】幂的乘方及其应用有理数大小比较【解析】1=1×10−97=7×10−9C 21A ∠BEF ∠2∠BEF △AEF ∠1=20∘∠F=30∘∠BEF =∠1+∠F =50∘AB//CD ∠2=∠BEF =50∘C本题考查了有理数的比较大小,幂的乘方运算.【解答】解:,,,则.故选.7.【答案】A【考点】由实际问题抽象出一元一次方程数学常识【解析】设有户人家,根据题意可得每头牛的价钱是,由每头牛的价钱不变可得方程.【解答】设有户人家,则.8.【答案】A【考点】解直角三角形的应用-仰角俯角问题【解析】根据俯角的定义分析即可解答.【解答】解:根据“朝下看时,视线与水平线夹角为俯角”可知只有正确.故选.9.【答案】A【考点】勾股定理【解析】设原来直角三角形的两直角边为、,斜边为,根据勾股定理得出,即可求出答案.【解答】解:设原来直角三角形的两直角边为、,斜边为,则根据勾股定理得:,a ==212=23×484b ==38=32×494c =54b >a >c D x x+330x−3019072709x x+330=x−3019072709A A a b c +=a 2b 2c 2a b c +=a 2b 2c 2(3a +(3b =9(+)=9=(3c )2)2222)2所以,即把直角三角形的两直角边同时扩大到原来的倍,则其斜边扩大到原来的倍.故选.10.【答案】D【考点】分式方程的解解一元一次不等式【解析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【解答】解:解方程得,故,故选.11.【答案】C【考点】二次函数图象上点的坐标特征【解析】令,代入函数解析式即可求出的值为.【解答】解:由题知当轴上点的横坐标为时,令,,即与轴的交点坐标为.故选.12.【答案】A【考点】规律型:点的坐标【解析】设点第次运动到的点为点(为自然数),列出部分点的坐标,根据点的坐标变化找出规律”,根据该规律即可得出结论.【解答】解:令点第次运动到的点为点(为自然数),(3a +(3b =9(+)=9=(3c )2)2a 2b 2c 2)233A =32x+m x−2x =m+6<0m<−6D x =0y −5y 0x =0y =−5y =−7x−514x 2y (0,−5)C P n P n n P n (4n,0),(4n+1),(4n+2,0),(4n+3,−1)P 4n P 4n+1P 4n+2P 4n+3P n P n n观察,发现规律:,,,,,,.....,则 ,,, ,∵,∴第次运动到点.故选.二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )13.【答案】【考点】提公因式法与公式法的综合运用【解析】原式提取,再利用平方差公式分解即可.【解答】解:原式.故答案为:.14.【答案】【考点】点的坐标解一元一次不等式组【解析】根据第二象限的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点在第二象限,得解得.故答案为:.15.【答案】【考点】反比例函数与一次函数的综合【解析】联立与并整理得:,得出 ,即可求解.(0,0)P 0(1,1)P 1(2,0)P 2(3,−1)P 3(4,0)P 4(5,1)P 5(4n,0)P 4n (4n+1,1)P 4n+1(4n+2,0)P 4n+2(4n+3,−1)P 4n+32021=505×4+1P 2021(2021,1)A a(m+n)(m−n)a =a(−)=a(m+n)(m−n)m 2n 2a(m+n)(m−n)0<a <2P (a −2,3a){a −2<0,3a >0,0<a <20<a <2k >1312y=k −1x y =−3x+13−x+k −1=0x 2Δ=1−3×4(k −1)<0【解答】解:联立可得:整理得:,,解得:.故答案为:.16.【答案】【考点】相似三角形的判定与性质平行四边形的性质三角形中位线定理【解析】由平行四边形的性质及三角形中位线定理的得出,进而得出答案.【解答】解:连结,在平行四边形中,对角线与相交于点,,,为的中点,是的中位线,,且,,,.故答案为:.三、 解答题 (本题共计 6 小题 ,每题 12 分 ,共计72分 )17.【答案】解:原式.原式 y =,k −1x y =−3x+1,3−x+k −1=0x 2∴Δ=1−3×4(k −1)<0k >1312k >131214△ABF ∼△EOF OE ABCD AC BD O ∴OB =OD AB =CD ∵E BC ∴OE △BCD ∴OE//CD//ABOE =CD =AB 1212∴△ABF ∼△EOF ∴==OF BF OE AB 12∴==OF DF OF OF +OD 1414(1)=+−×3–√212123–√=+−3–√2123–√2=12(2)=2×+×−+13–√23–√3123–√+1–√.【考点】特殊角的三角函数值【解析】此题暂无解析【解答】解:原式.原式.18.【答案】,,本次测评成绩为分(含分)的学生有人,七年级新生达到优秀的约有(人),七年级新生约有人达到“优秀”.【考点】众数中位数用样本估计总体【解析】(1)根据平均数,众数,中位数的定义,逐一解答,即可; (2)根据中位数的特征,即可解答; (3)x 先求出样本中的优秀率,再估算七年级新生的优秀人数.【解答】解:∵通过测评数据,可知成绩为分的有人,表格中下面填,众数:一组数据中出现次数最多的数据.通过测评数据,可知分出现的次数最多,为次,∴众数下面应填,中位数:按大小顺序排列的一组数据中居于中间位置的数或中间位置的两个数的平均数.居于中间的是第个,分别为、,因此:中位数为: ,∴中位数下面填:.故答案为:;;.想确定七年级前的学生为“良好”,可以看中位数,等级测评成绩至少定为:分.故答案为:.本次测评成绩为分(含分)的学生有人,七年级新生达到优秀的约有(人),=+13–√6(1)=+−×3–√212123–√=+−3–√2123–√2=12(2)=2×+×−+13–√23–√3123–√=+13–√63989595(3)∵98985∴500×=125520∴125(1)913∴9139849810,119496(94+96)÷2=959539895(2)∵50%∴∴9595(3)∵98985∴500×=125520七年级新生约有人达到“优秀”.19.【答案】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.【考点】平行四边形的性质解直角三角形菱形的判定与性质【解析】(1)根据=利用等角对等边得到=,从而判定平行四边形是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在中和在中求得和,从而利用=求解即可.【解答】∵=,∴=,∴是菱形.∴;在中,,=,∴=,在中,,=,∴=,∴==.20.【答案】,,【考点】规律型:图形的变化类【解析】(1)第个图形中,正方形的个数为,周长为;第个图形中,正方形的个数为=,周长为=,第个图形中,正方形的个数为=,周长为=.(2)第个图形中,正方形的个数为=,周长为=;∴125∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=494154∠CAB ∠ACB AB CB ABCD Rt △AOB Rt △ABE AO AE OE AE−AO ∠CAB ∠ACB AB CB ▱ABCD AC ⊥BD Rt △AOB cos ∠CAB ==AO AB 78AB 14AO 14×=78494Rt △ABE cos ∠EAB ==AB AE 78AB 14AE =AB 8716OE AE−AO 16−=49415423485n+310n+8a =2b +2181828+51318+102838+5×21818+10×238n 8+5×(n−1)5n+318+10×(n−1)10n+8(3)任意一个图形的周长=所含正方形个数.【解答】解:第①个图形中,正方形的个数为,周长为;第②个图形中,正方形的个数为,周长为;第③个图形中,正方形的个数为,周长为;则第④个图形中,正方形的个数为,周长为.故答案为:;.由中的规律可得,第个图形中,正方形的个数为,周长为.故答案为:;.由可知,第个图形中,正方形的个数为,周长为,则,即任意一个图形的周长所含正方形个数,∵任意一个图形的周长记为,它所含正方形个数记为,∴.故答案为:.21.【答案】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.【考点】四点共圆圆的综合题【解析】×2+2(1)8188+5=1318+10=288+5×2=1818+10×2=388+5×3=2318+10×3=482348(2)(1)n 8+5(n−1)=5n+318+10(n−1)=10n+85n+310n+8(3)(2)n 5n+310n+82×(5n+3)+2=10n+8=×2+2a b a =2b +2a =2b +2E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF 12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC如图,过点作于,连接,易证、、、四点共圆,、、、四点共圆,根据圆周角定理可得,,从而可得,即可得到,则有.易证点为过、、、的圆的圆心,根据垂径定理可得.即可得到,由此可证到,则有.根据圆内接四边形对角互补可得,根据平角的定义可得,根据等角的补角相等可得.由可得,从而可得,则有.由可得,,根据等角的余角相等可得,则有,即可得到.【解答】证明:如图,过点作于,连接,则有.∵,∴,,∴、、、四点共圆,、、、四点共圆,∴,,∴,∴,∴.∵、、、四点共圆,,∴是该圆的直径.∵为中点,∴,点为该圆的圆心.∵,∴根据垂径定理可得.∴.又∵,∴,∴.∵、、、四点共圆,∴.∵,∴.∵,∴,∴,∴.∵,∴,,∴,∴,∴.22.【答案】解:将,,,代入得:解得:∴,对称轴为:直线.由,,,得,∴.设,则,,∴,E EH ⊥AF H CH A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE E A B F C AH =HF =AF 12==AC BM AH BE AF BC △CAF ∽△MBC ∠ACF =∠BMC ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC E EH ⊥AF H CH ∠EHN =90∘∠BAC =∠BFC =∠BCN =90∘∠BAC +∠BFC =180∘∠EHN =∠ECN =90∘A B F C E H C N ∠CAF =∠CBF ∠CHN =∠CEN ∠AHC =∠BEM △AHC ∽△BEM =AC BM AH BE A B F C ∠BAC =90∘BC E BC BE =EC =BC 12E EH ⊥AF AH =HF =AF12==AC BM AH BE AF BC ∠CAF =∠MBC △CAF ∽△MBC ∠ACF =∠BMC A B F C ∠ACF +∠ABF =180∘∠BMC +∠FMC =180∘∠ABF =∠FMC AB =AF ∠ABF =∠AFB ∠FMC =∠AFB GM =GF ∠MFC =90∘∠MFG+∠GFC =90∘∠FMC +∠FCM =90∘∠GFC =∠FCM GF =GC GM =GF =GC (1)A(−3–√0)B(33–√0)y =+bx+3ax 2{3a −b +3=0,3–√27a +3b +3=0,3–√ a =−,13b =,23–√3y =−+x+313x 223–√3x =3–√(2)B(33–√0)C(03)BC ==6+(3)3–√232−−−−−−−−−−√∠OBC =30∘EC =m EF =2m EB =6−m 2m=(6−m)12=6解得:.利用三角函数求得,∴,∴,.由题意知,,作的平分线,交轴于,则,∴.以为圆心,为半径作圆,与抛物线对称轴交于点,,当点在圆上时,则,当点在圆内时,则,当点在圆外时,则,过作垂直于对称轴,在中,求得:,∴,∴,,∴.【考点】二次函数综合题【解析】(1)将,两点坐标代入到二次函数解析式中进行求解.(2)先设未知数列出关系方程求出的长度,即求出点纵坐标,然后利用三角函数求出的长度,从而得出的长度,即点横坐标.(3)引入圆,分点在圆上、内、外进行分析即可得到的范围.【解答】解:将,,,代入得:解得:∴,对称轴为:直线.由,,,得,∴.设,则,,∴,解得:.利用三角函数求得,∴,∴,.由题意知,,作的平分线,交轴于,则,∴.以为圆心,为半径作圆,与抛物线对称轴交于点,,当点在圆上时,则,当点在圆内时,则,当点在圆外时,则,过作垂直于对称轴,在中,求得:,∴,m=65BF =EF ÷tan =30∘123–√5OF =3−=3–√123–√533–√5E(33–√5)125(3)∠CAO =60∘∠CAO AQ y Q ∠QAC =∠QCA =30∘∠AQC =120∘Q QA M 1M 2M ∠C =∠C =AM 1AM 260∘M ∠AMC >60∘M ∠AMC <60∘Q QH Rt △AOQ AQ =2H ==1M 1−22()3–√2−−−−−−−−−√D =1+1=2M 1D =1−1=0M 20≤t ≤2A B EF E BF OF E t (1)A(−3–√0)B(33–√0)y =+bx+3ax 2{3a −b +3=0,3–√27a +3b +3=0,3–√ a =−,13b =,23–√3y =−+x+313x 223–√3x =3–√(2)B(33–√0)C(03)BC ==6+(3)3–√232−−−−−−−−−−√∠OBC =30∘EC =m EF =2m EB =6−m 2m=(6−m)12m=65BF =EF ÷tan =30∘123–√5OF =3−=3–√123–√533–√5E(33–√5)125(3)∠CAO =60∘∠CAO AQ y Q ∠QAC =∠QCA =30∘∠AQC =120∘Q QA M 1M 2M ∠C =∠C =AM 1AM 260∘M ∠AMC >60∘M ∠AMC <60∘Q QH Rt △AOQ AQ =2H ==1M 1−22()3–√2−−−−−−−−−√∴,,∴.D =1+1=2M 1D =1−1=0M 20≤t ≤2。
2024年山东省日照市中考数学试卷
2024年山东省日照市中考数学试卷一、单选题1.实数13-中无理数是( )A .13-B .0CD .1.7322.交通运输部2024年4月发布的全国港口货物吞吐量数据显示,日照港2024年第一季度吞吐量为15493万吨,居全国主要港口第6位.将数据154930000用科学记数法表示为( ) A .715.49310⨯B .81.549310⨯C .90.1549310⨯D .41549310⨯3.如图,直线,AB CD 相交于点O .若140,2120∠=︒∠=︒,则COM ∠的度数为( )A .70︒B .80︒C .90︒D .100︒4.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A 放置到小正方体B 的正上方,则它的三视图变化情况是( )A .主视图会发生改变B .左视图会发生改变C .俯视图会发生改变D .三种视图都会发生改变5.下列计算正确的是( ) A .()32626a a =B .32a a a -=C .3412a a a ⋅=D .43a a a ÷=6.某班40名同学一周参加体育锻炼的时间统计图如图所示,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .9,9B .14,9C .14,8.5D .9,8.57.我国明代数学家程大位编撰的《算法统宗》记载了“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子来量竿,却比竿子短一托,问索、竿各长几何?”译文为:“有一根竿和一条绳,若用绳去量竿,则绳比竿长5尺;若将绳对折后再去量竿,则绳比竿短5尺,问绳和竿各有多长?”设绳长x 尺,竿长y 尺,根据题意得( )(注:“托”和“尺”为古代的长度单位,1托5=尺) A .5152x y y x -=⎧⎪⎨-=⎪⎩B .5152y x x y -=⎧⎪⎨-=⎪⎩C .525x y x y -=⎧⎨=+⎩D .525x y y x -=⎧⎨-=⎩8.已知,实数()1212,x x x x ≠是关于x 的方程()22100kx kx k ++=≠的两个根,若12112+=x x ,则k 的值为( ) A .1B .1-C .12D .12-9.潮汐塔是万平口区域内的标志性建筑,在其塔顶可俯视景区全貌.某数学兴趣小组用无人机测量潮汐塔AB 的高度,测量方案如图所示:无人机在距水平地面119m 的点M 处测得潮汐塔顶端A 的俯角为22︒,再将无人机沿水平方向飞行74m 到达点N ,测得潮汐塔底端B 的俯角为45︒(点,,,M N A B 在同一平面内),则潮汐塔AB 的高度为( )(结果精确到1m .参考数据:sin 220.37,cos 220.93,tan 220.40︒︒=︒≈≈) A .41mB .42mC .48mD .51m10.如图,在菱形ABCD 中,2,120AB B =∠=︒,点O 是对角线AC 的中点,以点O 为圆心,OA 长为半径作圆心角为60︒的扇形OEF ,点D 在扇形OEF 内,则图中阴影部分的面积为( )A .π24- B .πC .π124-D .无法确定11.已知二次函数2(0)y ax bx c a =++≠图象的一部分如图所示,该函数图象经过点()1,0-,对称轴为直线2x =.对于下列结论:①0abc <;②a c b +=;③多项式2ax bx c ++可因式分解为()()15x x +-;④当9m a >-时,关于x 的方程2ax bx c m ++=无实数根.其中正确的个数有( )A .1个B .2个C .3个D .4个12.在数学活动课上,老师给出了一个数字构造游戏:对于给定的一列有序数字,在每相邻两个数之间插入这两数的和,形成新的一列有序数字.现有一列数:2,4,进行第1次构造,得到新的一列数:2,6,4,第2次构造后,得到一列数:2,8,6,10,4,…,第n 次构造后得到一列数:1232,,,,,,4k x x x x L ,记12324n k a x x x x =++++++L .某小组经过讨论得出如下结论,错误的是( )A .384a =B .3na 为偶数 C .136n n a a +=- D .21k n =-二、填空题13.计算:02|2024=14.一个多边形的内角和是1080︒,则这个多边形是边形. 15.已知一次函数1(0)y ax a =≠和2112y x =+,当1x ≤时,函数2y 的图象在函数1y 的图象上方,则a 的取值范围为16.如图,在平面直角坐标系xOy 中,点()4,0A,(C 是矩形OABC 的顶点,点,M N 分别为边,AB OC 上的点,将矩形OABC 沿直线MN 折叠,使点B 的对应点B '在边OA 的中点处,点C 的对应点C '在反比例函数(0)ky k x=≠的图象上,则k =三、解答题17.(1)解不等式组()25752236x x x -<⎧⎨--≥-⎩(2)先化简,再求值:2232321x x x x x x x x +-⎛⎫-÷⎪--+⎝⎭,其中x 满足2210x x --=. 18.为进一步推动阳光体育运动,提高学生身体素质,今年5月学校举行健美操比赛,最终有甲、乙、丙三个班级进入团体决赛.团体决赛需要分别进行五个单项比赛,计分规则如下表:现将参加比赛的甲、乙、丙三个班级的得分数据进行整理、描述和分析,并绘制统计图表,部分信息如下:a .甲、乙两班五个单项得分折线图:b .丙班五个单项得分表:根据以上信息,回答下列问题:(1)已知丙班第二个单项比赛中,五名裁判的打分分别为80,84,86,83,82,求丙班第二个单项的得分m ;(2)若团体最终成绩相同,则整体发挥稳定性最好的班级排名靠前,那么获得团体比赛冠军的是_______班;(填“甲”“乙”或“丙”)(3)获得团体决赛前两名的班级可得到一套图书奖励,现有A ,B ,C 三种图书可供选择,请用列表或画树状图的方法,求两个班级都选择同一套图书的概率19.如图,以ABCD Y 的顶点B 为圆心,AB 长为半径画弧,交BC 于点E ,再分别以点A ,E 为圆心,大于12AE 的长为半径画弧,两弧交于点F ,画射线BF ,交AD 于点G ,交CD 的延长线于点H .(1)由以上作图可知,1∠与2∠的数量关系是_______ (2)求证:CB CH =(3)若4AB =,2AG GD =,60ABC ∠=︒,求BCH V 的面积.20.【问题背景】2024年4月23日是第18个“世界读书日”,为给师生提供更加良好的阅读环境,学校决定扩大图书馆面积,增加藏书数量,现需购进20个书架用于摆放书籍. 【素材呈现】素材一:有,A B 两种书架可供选择,A 种书架的单价比B 种书架单价高20%; 素材二:用18000元购买A 种书架的数量比用9000元购买B 种书架的数量多6个; 素材三:A 种书架数量不少于B 种书架数量的23.【问题解决】(1)问题一:求出,A B 两种书架的单价;(2)问题二:设购买a 个A 种书架,购买总费用为w 元,求w 与a 的函数关系式,并求出费用最少时的购买方案;(3)问题三:实际购买时,商家调整了书架价格,A 种书架每个降价m 元,B 种书架每个涨价13m 元,按问题二的购买方案需花费21120元,求m 的值. 21.如图1,AB 为O e 的直径,12,AB C =是O e 上异于,A B 的任一点,连接,AC BC ,过点A 作射线,AD AC D ⊥为射线AD 上一点,连接CD .【特例感知】(1)若6BC =.则AC =_______.(2)若点,C D 在直线AB 同侧,且ADC B ∠=∠,求证:四边形ABCD 是平行四边形; 【深入探究】若在点C 运动过程中,始终有tan ADC ∠OD . (3)如图2,当CD 与O e 相切时,求OD 的长度; (4)求OD 长度的取值范围.22.已知二次函数22(24)4y x a x a a =-++--(a 为常数).(1)求证:不论a 为何值,该二次函数图象与x 轴总有两个公共点;(2)当125(1)a x a a +≤≤+≥-时,该二次函数的最大值与最小值之差为9,求此时函数的解析式;(3)若二次函数图象对称轴为直线1x =,该函数图象与x 轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C .点C 关于对称轴的对称点为D ,点M 为CD 的中点,过点M 的直线l (直线l 不过,C D 两点)与二次函数图象交于,E F 两点,直线CE 与直线DF 相交于点P . ①求证:点P 在一条定直线上;②若35COP ABP S S =V V ,请直接写出满足条件的直线l 的解析式,不必说明理由.。
2023年山东省日照市中考数学试卷及其答案
2023年山东省日照市中考数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1.(3分)计算2﹣(﹣3)的结果是()A.﹣1B.1C.﹣5D.52.(3分)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为()A.1.4×10﹣8B.14×10﹣7C.0.14×10﹣6D.1.4×10﹣94.(3分)如图所示的几何体的俯视图可能是()A.B.C.D.5.(3分)在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是()A.23°B.53°C.60°D.67°6.(3分)下列计算正确的是()A.a2•a3=a6B.(﹣2m2)3=﹣8m6C.(x+y)2=x2+y2D.2ab+3a2b=5a3b27.(3分)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为()A.9x +11=6x +16B.9x ﹣11=6x ﹣16C.9x +11=6x ﹣16D.9x ﹣11=6x +168.(3分)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角∠ABD =45°,再沿BD 方向前进至C 处测得最高点A 的仰角∠ACD =60°,BC =15.3m ,则灯塔的高度AD 大约是()(结果精确到1m ,参考数据:≈1.41,≈1.73)A.31m B.36m C.42m D.53m9.(3分)已知直角三角形的三边a ,b ,c 满足c >a >b ,分别以a ,b ,c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S 1,均重叠部分的面积为S 2,则()A.S 1>S 2B.S 1<S 2C.S 1=S 2D.S 1,S 2大小无法确定10.(3分)若关于x 的方程﹣2=的解为正数,则m 的取值范围是()A.m >﹣B.m <C.m >﹣且m ≠0D.m <且m ≠11.(3分)在平面直角坐标系xOy 中,抛物线y =ax 2+bx (a ≠0),满足,已知点(﹣3,m ),(2,n ),(4,t )在该抛物线上,则m ,n ,t 的大小关系为()A.t <n <mB.m <t <nC.n <t <mD.n <m <t12.(3分)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1+2+3+4+⋯+100时,用到了一种方法,将首尾两个数相加,进而得到1+2+3+4+⋯+100=.人们借助于这样的方法,得到1+2+3+4+⋯+n =(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点A i (x i ,y i ),其中i =1,2,3,⋯,n ,⋯,且x i ,y i 是整数.记a n =x n +y n ,如A 1(0,0),即a 1=0,A 2(1,0),即a 2=1,A 3(1,﹣1),即a 3=0,⋯,以此类推.则下列结论正确的是()A.a 2023=40B.a 2024=43C.=2n ﹣6D.=2n ﹣4二、填空题:本题共4小题,每小题3分,共12分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(3分)分解因式:a 3b ﹣ab =.14.(3分)若点M (m +3,m ﹣1)在第四象限,则m 的取值范围是.15.(3分)已知反比例函数y =(k >1且k ≠2)的图象与一次函数y =﹣7x +b 的图象共有两个交点,且两交点横坐标的乘积x 1•x 2>0,请写出一个满足条件的k 值.16.(3分)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =;④BM +MN +ND 的最小值是20.其中所有正确结论的序号是.三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(10分)(1)化简:﹣|1﹣|+2﹣2﹣2sin45°;(2)先化简,再求值:(﹣x)÷,其中x=﹣.18.(12分)2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量x(m3)分为5组,第一组:5≤x<7,第二组:7≤x<9,第三组:9≤x<11,第四组:11≤x<13,第五组:13≤x<15,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量(x/m3)频数(户)5≤x<747≤x<999≤x<111011≤x<13513≤x<152信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6根据以上信息,回答下列问题:(1)a=;(2)在甲小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b1,在乙小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b2,比较b1,b2大小,并说明理由;(3)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于13m3的总户数;(4)因任务安排,需在B小组和C小组分别随机抽取1名同学加入A小组,已知B小组有3名男生和1名女生,C小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.19.(12分)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.(1)求证:四边形ABCD是菱形;(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.20.(12分)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.21.(12分)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.22.(14分)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x 轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.2023年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1.(3分)计算2﹣(﹣3)的结果是()A.﹣1B.1C.﹣5D.5【解答】解:2﹣(﹣3)=2+3=5.故选:D.2.(3分)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意原;B、原图既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C、原图是中心对称图形,不是轴对称图形,故此选项不合题意;D、图不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.3.(3分)芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为()A.1.4×10﹣8B.14×10﹣7C.0.14×10﹣6D.1.4×10﹣9【解答】解:0.000000014=1.4×10﹣8.故选:A.4.(3分)如图所示的几何体的俯视图可能是()A.B.C.D.【解答】解:从上面看得该几何体的俯视图是:.故选:C.5.(3分)在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是()A.23°B.53°C.60°D.67°【解答】解:如图,三角板EFG与直尺ABCD分别交AB于点F、H.∵AB∥CD,∴∠2=∠FHG.又∵∠1+∠E=∠FHG,∴∠2=∠1+∠E=23°+30°=53°.故选:B.6.(3分)下列计算正确的是()A.a2•a3=a6B.(﹣2m2)3=﹣8m6C.(x+y)2=x2+y2D.2ab+3a2b=5a3b2【解答】解:A.a2•a3=a2+3=a5,所以A运算错误;B.(﹣2m2)3=(﹣2)3m6=﹣8m6,所以B运算正确;C.(x+y)2=x2+2xy+y2,所以C运算错误;D.2ab与3a2b不是同类项,所以不能合并计算,所以D运算错误.故选:B.7.(3分)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为()A.9x+11=6x+16B.9x﹣11=6x﹣16C.9x+11=6x﹣16D.9x﹣11=6x+16【解答】解:根据题意得:9x﹣11=6x+16.故选:D.8.(3分)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,则灯塔的高度AD大约是()(结果精确到1m,参考数据:≈1.41,≈1.73)A.31m B.36m C.42m D.53m【解答】解:由题意得:AD⊥BD,设CD=xm,∵BC=15.3m,∴BD=BC+CD=(x+15.3)m,在Rt△ABD中,∠ABD=45°,∴AD=BD•tan45°=(x+15.3)m,在Rt△ACD中,∠ACD=60°,∴AD=CD•tan60°=x(m),∴x=(x+15.3),解得:x≈21.0,∴AD=x+15.3≈36(m),∴灯塔的高度AD大约是36m,故选:B.9.(3分)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S,均重叠部分1的面积为S 2,则()A.S 1>S 2B.S 1<S 2C.S 1=S 2D.S 1,S 2大小无法确定【解答】解:∵直角三角形的三边a ,b ,c 满足c >a >b ,∴该直角三角形的斜边为c ,∴c 2=a 2+b 2,∴c 2﹣a 2﹣b 2=0,∴S 1=c 2﹣a 2﹣b 2+b (a +b ﹣c )=ab +b 2﹣bc ,∵S 2=b (a +b ﹣c )=ab +b 2﹣bc ,∴S 1=S 2,故选:C .10.(3分)若关于x 的方程﹣2=的解为正数,则m 的取值范围是()A.m >﹣B.m <C.m >﹣且m ≠0D.m <且m ≠【解答】解:﹣2=,去分母得,2x ﹣4(x ﹣1)=3m ,整理得,2x ﹣4x +4=3m ,解得,x =,∵分式方程的解为正数,∴4﹣3m >0且,∴m <且m ≠.故选:D .11.(3分)在平面直角坐标系xOy 中,抛物线y =ax 2+bx (a ≠0),满足,已知点(﹣3,m ),(2,n ),(4,t )在该抛物线上,则m ,n ,t 的大小关系为()A.t <n <mB.m <t <nC.n <t <mD.n <m <t【解答】解:∵3a +b >0,∴2a +a +b >0,∵a +b <0,∴2a >0,∴a >0,∴抛物线开口向上,∵﹣3a <b <﹣a ,∴<﹣<,∵点(﹣3,m ),(2,n ),(4,t )在该抛物线上,∴m ,n ,t 的大小关系为:n <t <m .故选:C .12.(3分)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1+2+3+4+⋯+100时,用到了一种方法,将首尾两个数相加,进而得到1+2+3+4+⋯+100=.人们借助于这样的方法,得到1+2+3+4+⋯+n =(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点A i (x i ,y i ),其中i =1,2,3,⋯,n ,⋯,且x i ,y i 是整数.记a n =x n +y n ,如A 1(0,0),即a 1=0,A 2(1,0),即a 2=1,A 3(1,﹣1),即a 3=0,⋯,以此类推.则下列结论正确的是()A.a 2023=40B.a 2024=43C.=2n ﹣6D.=2n ﹣4【解答】解:第1圈有1个点,即A 1(0,0),这时a 1=0;第2圈有8个点,即A 2到A 9(1,1),这时a 9=1+1=2;第3圈有16个点,即A 10到A 25(2,2),这时a 25=2+2=4;……,依次类推,第n圈,A(2n﹣1)2(n﹣1,n﹣1);由规律可知:A2023是在第23圈上,且A2025(22,22),则A2023(20,22),即a2023=20+22=42,故A选项不正确;A 2024是在第23圈上,且A2024(21,22),即a2024=21+22=43,故选项B正确;第n圈,A(2n﹣1)2(n﹣1,n﹣1),所以a(2n﹣1)2=2n﹣2,故C,D选项不正确;故选:B.二、填空题:本题共4小题,每小题3分,共12分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(3分)分解因式:a3b﹣ab=ab(a+1)(a﹣1).【解答】解:原式=ab(a2﹣1)=ab(a+1)(a﹣1).故答案为:ab(a+1)(a﹣1).14.(3分)若点M(m+3,m﹣1)在第四象限,则m的取值范围是﹣3<m<1.【解答】解:∵点M(m+3,m﹣1)在第四象限,∴,解不等式①得:m>﹣3,解不等式②得:m<1,∴原不等式组的解集为:﹣3<m<1,故答案为:﹣3<m<1.15.(3分)已知反比例函数y=(k>1且k≠2)的图象与一次函数y=﹣7x+b的图象共有两个交点,且两交点横坐标的乘积x1•x2>0,请写出一个满足条件的k值 1.5(答案不唯一).【解答】解:令=﹣7x+b,整理得7x2﹣bx+(6﹣3k)=0,∵反比例函数y=(k>1且k≠2)的图象与一次函数y=﹣7x+b的图象两个交点横坐标为x1、x2,∴x1•x2=,∵x1•x2>0,∴>0,∴k<2,∴满足条件的k值为1.5(答案不唯一),故答案为:1.5(答案不唯一).16.(3分)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;②四边形MBND的面积不变;③当AM:MD=1:2时,S=;△MPE④BM+MN+ND的最小值是20.其中所有正确结论的序号是②③④.【解答】解:①∵MN⊥BD,要使EM=EN,需要MP=NP,而P不一定是MN的中点,故①是错误的;②如图1:延长ME交BC于F,在矩形ABCD中,BD=10,∵ME⊥AD,MN⊥BD,∴∠EMN+∠DMN=∠EMN+∠MED=90°,∴∠DMN=∠MED,∵∠MFN=∠A=90°,∴△MFN∽△DAB,∴,即:,解得:FN=4.5,MN=7.5,∴四边形MBND的面积为:×BD×NM=×10×7.5=37.5,故②是正确的;③∵AB∥ME,∴△ABD∽△MED,∴,∴ME=4,∵∠ADB=∠EMN,∠MPB=∠A=90°,∴△MEP∽△DBA,∴=()2=,=24,∵S△ABD=,∴S△MPE故③是正确的;④∵BM+MN+ND=BM+ND+7.5,当BM+ND最小时,BM+MN+ND的值最小,作B、D关于AD、BC的对称点B′,D′,如图2:把图2的CD′移到图3的C′D′,使得CD′=4.5,连接B′D′,则B′D′就是BM+ND的最小值,∴B′D′==12.5,即BM+MN+ND的最小值是12.5+7.5=20,故④是正确的,故答案为:②③④.三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(10分)(1)化简:﹣|1﹣|+2﹣2﹣2sin45°;(2)先化简,再求值:(﹣x)÷,其中x=﹣.【解答】解:(1)﹣|1﹣|+2﹣2﹣2sin45°=2﹣(﹣1)+﹣2×=2﹣+1+﹣=;(2)(﹣x)÷=•=•=•=2(x﹣2)=2x﹣4,当x=﹣时,原式=2×(﹣)﹣4=﹣1﹣4=﹣5.18.(12分)2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量x(m3)分为5组,第一组:5≤x<7,第二组:7≤x<9,第三组:9≤x<11,第四组:11≤x<13,第五组:13≤x<15,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量(x/m3)频数(户)5≤x<747≤x<999≤x<111011≤x<13513≤x<152信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6根据以上信息,回答下列问题:(1)a=9.1;(2)在甲小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b1,在乙小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为b2,比较b1,b2大小,并说明理由;(3)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于13m3的总户数;(4)因任务安排,需在B小组和C小组分别随机抽取1名同学加入A小组,已知B小组有3名男生和1名女生,C小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.【解答】解:(1)由统计图知,乙小区3月份用水量小于9m3的14户,∵乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6,∴第15个数据为9,第16个数据为9.2,∴a==9.1,故答案为:9.1;(2)∵甲小区平均用水量为9.0m3,低于平均用水量的户数为13户,∴b1=,∵乙小区平均用水量为9.1m3,低于平均用水量的户数为15户,∴b2=,∴b1<b2;(3)∵(600+750)×=90(户),∴两个小区3月份用水量不低于13m3的总户数为90;(4)根据题意列表得:男男男女男(男,男)(男,男)(男,男)(女,男)男(男,男)(男,男)(男,男)(女,男)女(男,女)(男,女)(男,女)(女,女)女(男,女)(男,女)(男,女)(女,女)共有16种等可能的结果,其中抽取的两名同学都是男生有6种,∴所抽取的两名同学都是男生的概率是=.19.(12分)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.(1)求证:四边形ABCD是菱形;(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.【解答】(1)证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴BO=OD,在△BOE与△DOE中,∴△BOE≌△DOE(SSS),∴∠BEO=∠DEO,在△BAE与△DAE中,,∴△BAE≌△DAE(SAS),∴AB=AD,∴四边形ABCD是菱形;(2)解:在Rt△ABO中,∵tan∠BAC==2,∴设AO=x,BO=2x,∴AB==x=10,∴x=2,∴AO=2,BO=4,∵四边形ABCD是菱形,∴AC=2AO=4,BD=2BO=8,∴四边形ABCD的面积=AC•BD==80.20.(12分)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒(200﹣x)个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材(200﹣y)张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.21.(12分)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠B=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.22.(14分)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x 轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),,设直线DP的解析式为y=kx+b1∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,,∴不符合题意;综上所述,a=0.5.。
山东省日照市中考数学试卷含答案解析
山东省日照市中考数学试卷一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a64.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣76.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨8.某县GDP总量为1000亿元,计划到全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.411.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率1 50≤x<60 9 0.182 60≤x<70 a3 70≤x<80 20 0.404 80≤x<90 0.085 90≤x≤100 2 b合计请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.22.如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.以下选项中比|﹣|小的数是()A.1 B.2 C.D.【考点】有理数大小比较;绝对值.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.3.下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【考点】幂的乘方与积的乘方;合并同类项;约分.【分析】A选项中分子分母同时约去公因式a可得a2,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C错误;根据幂的乘方法则:底数不变,指数相乘可得D错误.【解答】解:A、=a2,故原题计算错误;B、a2和a不是同类项,不能合并,故原题计算错误;C、(﹣2a)2=4a4,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.4.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【考点】平行线的性质.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=48°,∴∠3=90°﹣∠1=90°﹣48°=42°.∵直尺的两边互相平行,∴∠2=∠3=42°.故选B.5.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣7【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105=1.05×10﹣5,故选:C.6.正比例函数y1=k1x(k1>0)与反比例函数y2=图象如图所示,则不等式k1x的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;反比例函数与一次函数的交点问题.【分析】由图象可以知道,当x=﹣2或x=2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1x的解集,即可得出结论.【解答】解:两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x<0或x>2时,直线y=k1x在y2=图象的上方,故不等式k1x的解集为x<﹣1或x>2.故选:B.7.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:节水量(单位:0.5 1 1.5 2吨)家庭数(户) 2 3 4 1请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨【考点】用样本估计总体.【分析】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【解答】解:根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选(A)8.某县GDP总量为1000亿元,计划到全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%【考点】一元二次方程的应用.【分析】设该县这两年GDP总量的平均增长率为x,根据:某县GDP总量×(1+增长百分率)2=全县GDP总量,列一元二次方程求解可得.【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,得:1000(1+x)2=1210,解得:x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选:C.9.下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【解答】解:①∵a<1,1﹣a>0,∴(a﹣1)=﹣,故本小题正确;②平行四边形既是中心对称图形但不是轴对称图形,故本小题错误;③的算术平方根是,故本小题错误;④∵方程ax2+2x+1=0有两个不相等的实数根,∴△=4﹣4a>0,解得a<1且a≠0,故本小题错误.故选A.10.如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,∴S△PEF=×3=,即S1=,∴S1+S2+S3=+3=,故选A.11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣)与点()到对称轴的距离可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.12.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【考点】规律型:数字的变化类.【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【考点】根与系数的关系.【分析】设方程的另一个根为t,根据根与系数的关系得到1•t=,然后解关于t的方程即可.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.14.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.15.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【考点】翻折变换(折叠问题);解直角三角形.【分析】根据题意可以求得CE的长,从而可以求得tan∠CAE的值.【解答】解:设CE=x,则BE=AE=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,解得,x=,∴tan∠CAE===,故答案为:.16.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.【考点】切线的性质;一次函数图象上点的坐标特征.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP==.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.【考点】分式的化简求值;同类项;解二元一次方程组.【分析】(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;(2)先对原式化简,再将a=代入化简后的式子即可解答本题.【解答】解:(1)∵﹣与x n y m+n是同类项,∴,解得,,即m的值是2,n的值是3;(2)()==,当a=时,原式==.18.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【考点】旋转的性质;正方形的性质.【分析】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而利用勾股定理得出答案.【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴∠QAF=90°,∵∠EAF=45°,∴∠QAE=45°,∴EA是∠QED的平分线;(2)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.19.未参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了依次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.组别分组频数频率1 50≤x<60 9 0.182 60≤x<70 a3 70≤x<80 20 0.404 80≤x<90 0.085 90≤x≤100 2 b合计请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.【分析】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a的值,接着用第5组的频数除一样本容量得到b 的值,用b的值除以组距10得到y的值,然后计算第2组的频率,再把第2组的频率除以组距得到x的值;(2)根据中位数的定义求解;(3)画树状图(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率==.20.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.=30000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.21.阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:线段EF.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC 的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.【考点】三角形综合题.【分析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.【解答】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.故答案为线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′∵△ABC是等边三角形,MN是中位线,∴AM=BM=AN=CN,∵AF=BE,∴EM=FN,∵MN∥BC,∴∠AMN=∠B=∠GME=60°,∵∠A=∠GEM=60°,∴△GEM是等边三角形,∴EM=EG=FN,在△GQ′E和△NQ′F中,,∴△GQ′E≌△NQ′F,∴EQ′=FQ′,∵EQ=QF,′点Q、Q′重合,∴点Q在线段MN上,∴段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4.∴线段EF中点Q的运动轨迹的长为4.拓展提高:如图2中,(1)∵△APC,△PBD都是等边三角形,∴AP=PC,PD=PB,∠APC=∠DPB=60°,∴∠APD=∠CPB,在△APD和△CPB中,,∴△APD≌△CPB,∴∠ADP=∠CBP,设BC与PD交于点G,∵∠QGD=∠PGB,∴∠DQG=∠BPG=60°,∴∠AQB=180°﹣∠DQG=120°(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,∴弧AB的长==π.∴动点Q运动轨迹的长π.22.如图1,抛物线y=﹣ [(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式确定对称轴为直线x=2,再利用对称性得到2﹣(m﹣2)=2m+3﹣2,解方程可得m的值,从而得到A(﹣1,0),B(5,0),然后把A点坐标代入y=﹣ [(x﹣2)2+n]可求出n的值;(2)作ND∥y轴交BC于D,如图2,利用抛物线解析式确定C(0,3),再利用待定系数法求出直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),根据三角形面积公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=﹣x2+x,然后利用二次函数的性质求解;(3)先利用勾股定理计算出BC=,再分类讨论:当∠PMB=90°,则∠PMC=90°,△PMC 为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BOC,利用相似比可求出BP的长,再计算OP后可得到P点坐标;当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,证明△BMP∽△BCO,利用相似比可求出BP的长,再计算OP后可得到P点坐标.【解答】解:(1)∵抛物线的解析式为y=﹣ [(x﹣2)2+n]=﹣(x﹣2)2﹣n,∴抛物线的对称轴为直线x=2,∵点A和点B为对称点,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入y=﹣ [(x﹣2)2+n]得9+n=0,解得n=﹣9;(2)作ND∥y轴交BC于D,如图2,抛物线解析式为y=﹣ [(x﹣2)2﹣9]=﹣x2+x+3,当x=0时,y=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3,设N(x,﹣x2+x+3),则D(x,﹣x+3),∴ND=﹣x2+x+3﹣(﹣x+3)=﹣x2+3x,∴S△NBC=S△NDC+S△NDB=•5•ND=﹣x2+x=﹣(x﹣)2+,当x=时,△NBC面积最大,最大值为;(3)存在.∵B(5,0),C(0,3),∴BC==,当∠PMB=90°,则∠PMC=90°,△PMC为等腰直角三角形,MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);当∠MPB=90°,则MP=MC,设PM=t,则CM=t,MB=﹣t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴==,即==,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此时P点坐标为(,0);综上所述,P点坐标为(,0)或(,0).8月12日。
山东r日照中考数学试题及答案
山东r日照中考数学试题及答案山东日照中考数学试题及答案一、选择题1. 已知a+b=5,a-b=1,求a与b的值。
A) a=2, b=3B) a=3, b=2C) a=4, b=1D) a=1, b=42. 某数的一半减去1等于它的1/3,求这个数。
A) 2B) 3C) 4D) 63. 化简:[(-3)×(-5)×(-7)] ÷ [(-6)×(-9)]A) 5/2B) -5/2C) -5/3D) 5/34. 甲乙两人一起清扫教室,甲清扫一小时,乙清扫两小时,两人合作清扫了10小时,求甲、乙两人分别清扫了多少小时。
A) 4小时和6小时B) 3小时和7小时C) 5小时和5小时D) 6小时和4小时5. 现有一双边长为6cm和8cm的直角三角形,求斜边的长。
A) √28B) √52C) 7D) 10二、填空题1. 如果x^2-5x+6=0的两个根分别为m和n,则m+n的值为________。
2. 锐角三角形的两个角的比是2:3,那么较小的角是________度。
3. 2000 ÷ 10÷ 2% 的结果是________。
4. 若 a:b=2:3,b:c=4:5,则a:c= ________ 。
5. 甲、乙两个班级的学生总数相差15人,乙班比甲班多出的人数是200%,如果甲班有x人,那么乙班有________人。
三、解答题1. 甲、乙、丙三个人合伙做某项工程,甲1天做1/5的工程量,乙1天做1/6的工程量,丙1天做1/7的工程量。
问他们一起做这项工程,需要多少天才能做完?答:设一起做完这项工程需要x天。
则有:1/x + 1/x + 1/x = 1/5 +1/6 + 1/7求得x的值为______天。
2. 一辆汽车行驶300km需要2小时,行驶到一半时速度减半,求整个行驶时间。
答:设整个行驶时间为t小时。
则有:50km/h × t + 100km/h × t =300km求得t的值为______小时。
日照市重点名校2024届中考联考数学试卷含解析
日照市重点名校2024届中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.52.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣33.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在EF上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A.正比例函数y=kx(k为常数,k≠0,x>0)B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)C.反比例函数y=kx(k为常数,k≠0,x>0)D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)4.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为()A .B .C .D .6.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x ,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同D .数据A 的波动小一些7.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.48.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .14B .12C .34D .569.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-210.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .1717二、填空题(本大题共6个小题,每小题3分,共18分)11.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 13.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin 2A=_____. 14.函数12y x=,当x <0时,y 随x 的增大而_____. 15.一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的顶点C 1的坐标是(﹣12,0),∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2018B 2018C 2018D 2018的顶点D 2018纵坐标是_____.16.分解因式:= .三、解答题(共8题,共72分)17.(8分)先化简,再求值:2121111a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中31a = 18.(8分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是 度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).22.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(12分)(1)计算:3tan30°+|2|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中,﹣1.24.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.2、D【解题分析】解:∵-1<-1<0<2,∴最小的是-1.故选D.3、C【解题分析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO 垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项. 【题目详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线, ∴OE ⊥AE ,OF ⊥FB , ∴∠AEO=∠BFO=90°, 在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF= ,∴Rt △AEO ≌Rt △BFO (HL ), ∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO , ∴QO ⊥AB ,∴∠QOB=∠QFO=90°, 又∵∠OQF=∠BQO , ∴△QOF ∽△QBO , ∴∠B=∠QOF ,同理可以得到∠A=∠QOE , ∴∠QOF=∠QOE ,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【题目点拨】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.4、B【解题分析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【题目详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【题目点拨】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 5、C【解题分析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解. 【题目详解】 设,则.由折叠的性质,得.因为点是的中点,所以. 在中,由勾股定理,得,即,解得, 故线段的长为4.故选C. 【题目点拨】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键. 6、B 【解题分析】试题解析:方差越小,波动越小.22,A B s s数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、B 【解题分析】∵在5.5~6.5组别的频数是8,总数是40, ∴=0.1.故选B . 8、C【解题分析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【题目详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【题目点拨】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.9、A【解题分析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选A.考点:二次函数图象与几何变换.10、A【解题分析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC2241-15,则cos B=BCAB15,故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、5 6【解题分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【题目详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【题目点拨】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.12、1【解题分析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x+=2/3解得:x=1.∴黄球的个数为1.13、1 2【解题分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【题目详解】解:∵3 sinBCAAB==∴∠A=60°,∴1 sin sin3022A︒==.故答案为12.【题目点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.14、减小【解题分析】 先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【题目详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【题目点拨】 考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.15、12×(3)2 【解题分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【题目详解】解:∵∠B 1C 1O=60°,C 1O=12, ∴B 1C 1=1,∠D 1C 1E 1=30°, ∵sin ∠D 1C 1E 1=111112D E D C =, ∴D 1E 1=12, ∵B 1C 1∥B 2C 2∥B 3C 3∥…∴60°=∠B 1C 1O=∠B 2C 2O=∠B 3C 3O=…∴B 2C 2=222221B E sin B C E ==∠,B 3C 3=233331B E sin B C O ⨯==∠. 故正方形AnBnCnDn 的边长=n-1.∴B 2018C 2018=(33)2. ∴D 2018E 2018=12×(33)2, ∴D 的纵坐标为12×(33)2, 故答案为12×(33)2. 【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键16、【解题分析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。
日照中考数学试题及答案
日照中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 5答案:B2. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个选项表示的是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 3/xD. y = √x5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:10答案:C7. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 17B. 14C. 11D. 8答案:A8. 以下哪个选项是正确的不等式?A. 2x + 3 > 7B. 2x - 3 > 7C. 2x + 3 < 7D. 2x - 3 < 7答案:A9. 一个长方体的长、宽、高分别是5、3、2,那么它的体积是多少?B. 15C. 10D. 6答案:A10. 以下哪个选项是正确的三角函数关系?A. sin(30°) = 1/2B. cos(60°) = 1/2C. tan(45°) = √2D. sin(90°) = √3/2答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 一个数的绝对值是8,那么这个数可能是______或______。
答案:8或-813. 一个等腰三角形的底角是45°,那么它的顶角是______。
山东省日照市中考数学真题试题(解析版)
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题每小题得3分,第9~12小题每小题得4分,选错、不选或选出的答案超过一个均记零分.1、(2011•日照)(﹣2)2的算术平方根是()A、2B、±2C、﹣2D、考点:算术平方根;有理数的乘方。
分析:首先求得(﹣2)2的值,然后由4的算术平方根为2,即可求得答案.解答:解:∵(﹣2)2=4,4的算术平方根为2,∴(﹣2)2的算术平方根是2.故选A.点评:此题考查了平方与算术平方根的定义.题目比较简单,解题要细心.2、(2011•日照)下列等式一定成立的是()A、a2+a3=a5B、(a+b)2=a2+b2C、(2ab2)3=6a3b6D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab考点:多项式乘多项式;合并同类项;幂的乘方与积的乘方;完全平方公式。
专题:综合题。
分析:根据合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则解答.解答:解:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2ab+b2,故本选项错误;C、(2ab2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,故本选项正确.故选D.点评:本题综合考查合并同类项法则,完全平方公式,幂的乘方与积的乘方法则,多项式乘以多项式的法则,是基础题型,需要熟练掌握.3、(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A、70°B、80°C、90°D、100°考点:三角形内角和定理;平行线的性质。
专题:计算题。
分析:根据两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同位角相等;三角形内角和定理.4、(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A、54盏B、55盏C、56盏D、57盏考点:一元一次方程的应用。
2022年山东日照中考数学试题及答案
2022年山东日照中考数学试题及答案一、选择题:本题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上1. 的相反数是()A. B. 2 C. D.【答案】B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B.【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2. 山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的概念,对各选项分析判断即可得解;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形,正确掌握相关定义是解题关键.3. 全民免费接种新冠病毒疫苗是党中央、国务院作出重大决策部署,通过接种疫苗,让更多人获得免疫力,尽早形成人群免疫屏障,截至2022年5月20日,全国31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗336905万剂次.数据336905万用科学记数法表示为()A. 0.336905×1010B. 3.36905×1010C. 3.36905×109D. 33.6905×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:336905万=3369050000=3.36905×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列运算正确的是()A. a6÷a2=a3B. a4•a2=a6C. (a2)3=a5D. a3+a3=a6【答案】B【解析】【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则,进行计算逐一判断即可解答.【详解】解:A、a6÷a2=a4,故A不符合题意;B、a4•a2=a6,故B符合题意;C、(a2)3=a6,故C不符合题意;D、a3+a3=2a3,故D不符合题意;故选:B.【点睛】本题考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.5. 在实数,x0(x≠0),cos30°,中,有理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答.【详解】解:在实数,x0(x≠0)=1,,中,有理数是,x0=1,所以,有理数的个数是2,故选:B.【点睛】本题考查了零指数幂,特殊角的三角函数值,实数,熟练掌握这些数学概念是解题的关键.6. 如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为()A. 27°B. 53°C. 57°D. 63°【答案】D【分析】根据题意可知AE∥BF,∠EAB=∠ABF,∠ABF+27°=90°,等量代换求出∠EAB,再根据平行线的性质求出∠AED.详解】解:如图所示:∵AE∥BF,∴∠EAB=∠ABF,∵四边形ABCD是矩形,∴AB∥CD,∠ABC=90°,∴∠ABF+27°=90°,∴∠ABF=63°,∴∠EAB=63°,∵AB∥CD,∴∠AED=∠EAB=63°.故选:D.【点睛】本题考查了矩形的性质,平行线的性质,熟记矩形的性质并灵活运用是解题的关键.矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等.7. 下列说法正确的是()A. 一元一次方程的解是x=2B. 在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定C. 从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中D. 将一次函数y=-2x+5的图象向上平移两个单位,则平移后的函数解析式为y=-2x+1【答案】C【解析】【分析】根据一元一次方程的解的概念,方差的意义,抽屉原理,一次函数图象平移的规律逐项判断.【详解】解:一元一次方程的解是x=-2,故A错误,不符合题意;在连续5次数学测试中,两名同学的平均成绩相同,则方差较小的同学的成绩更稳定,故B错误,不符合题意;从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中,故C正确,符合题意;将一次函数y=-2x+5的图象向上平移两个单位,则平移后的函数解析式为y=-2x+7,故D错误,不符合题意;【点睛】本题考查一元一次方程的解,方差的应用,抽屉原理的应用,一次函数图象的平移等知识,解题的关键是掌握教材上相关的概念和定理.8. 《孙子算经》是中国传统数学重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A. B.C. D.【答案】D【解析】【分析】设木头长为x尺,绳子长为y尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设木头长为x尺,绳子长为y尺,由题意可得.故选:D.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9. 如图,矩形OABC与反比例函数(k1是非零常数,x>0)的图象交于点M,N,与反比例函数(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=()A. 3B. -3C.D.【答案】B【解析】【分析】根据矩形的性质以及反比例函数系数k的几何意义即可得出结论.【详解】解:∵点M、N均是反比例函数(k1是非零常数,x>0)的图象上,∴,∵矩形OABC的顶点B在反比例函数(k2是非零常数,x>0)的图象上,∴S矩形OABC=k2,∴S矩形OMBN=S矩形OABC-S△OAM-S△OCN=3,∴k2-k1=3,∴k1-k2=-3,故选:B.【点睛】本题考查了矩形的性质,反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10. 如图,几何体是由六个相同的立方体构成的,则该几何体三视图中面积最大的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】【分析】从正面看,得到从左往右3列正方形的个数依次为1,2,1;从左面看得到从左往右3列正方形的个数依次为1,2,1;从上面看得到从左往右3列正方形的个数依次,2,2,1,依此画出图形即可判断.【详解】解:如图所示主视图和左视图都是由4个正方形组成,俯视图由5个正方形组成,所以俯视图的面积最大.故选:C.【点睛】本题主要考查作图-三视图,正确画出立体图形的三视图是解答本题的关键.11. 已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为,且经过点(-1,0).下列结论:①3a+b=0;②若点,(3,y2)是抛物线上的两点,则y1<y2;③10b-3c=0;④若y≤c,则0≤x≤3.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】由对称轴为即可判断①;根据点,(3,y2)到对称轴的距离即可判断②;由抛物线经过点(-1,0),得出a-b+c=0,对称轴,得出,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【详解】解:∵对称轴,∴b=-3a,∴3a+b=0,①正确;∵抛物线开口向上,点到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(-1,0),∴a-b+c=0,∵对称轴,∴,∴,∴3c=4b,∴4b-3c=0,故③错误;∵对称轴,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.【点睛】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.12. 如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A. B. C. D.【答案】A【解析】【分析】先求确定A、C、B三个点坐标,然后求出AB和AC的解析式,再表示出EF的长,进而表示出点P的横坐标,最后根据不等式的性质求解即可.【详解】解:由题意可得,设直线AB的解析式为y=kx+b则解得:∴直线AB的解析式为:y=x-4,∴x=y+4,设直线AC的解析式为y=mx+n则解得:∴直线AC的解析式为:,∴,∴点F的横坐标为:y+4,点E的坐标为:,∴,∵EP=3PF,∴,∴点P的横坐标为:,∵,∴.∴故答案为:A.【点睛】本题主要考查了等腰直角三角形性质、求一次函数的解析式、不等式性质等知识,根据题意表示出点P的横坐标是解答本题的关键.二、填空题:本题共4个小题,每小题3分,易分2分不需写出解答过程,请将答案直接写在答题卡相应位置上.13. 若二次根式在实数范围内有意义,那么的取值范围是_______.【答案】【解析】【分析】根据二次根式有意义的条件:被开方数大于或等于0,列不等式求解.【详解】解:根据题意,得,解得:,故答案是:.【点睛】本题考查了二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.14. 一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.【答案】【解析】【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【详解】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:,所以圆形镜面的半径为,故答案为:.【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.15. 关于x的一元二次方程2x2+4mx+m=0有两个不同的实数根x1,x2,且,则m=__________.【答案】【解析】【分析】根据根与系数的关系得到x1+x2=-2m,x1x2=,再由x12+x22=变形得到(x1+x2)2-2x1x2=,即可得到4m2-m=,然后解此方程即可.【详解】解:根据题意得x1+x2=-2m,x1x2=,∵x12+x22=,∴(x1+x2)2-2x1x2=,∴4m2-m=,∴m1=-,m2=,∵Δ=16m2-8m>0,∴m>或m<0时,∴m=不合题意,故答案为:.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.16. 如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.【答案】2【解析】【分析】点F运动所形成的图象是一条直线,当OF⊥F1F2时,垂线段OF最短,当点F1在x轴上时,由勾股定理得:,进而得,求得点F1的坐标为,当点F2在y轴上时,求得点F2的坐标为(0,-4),最后根据待定系数法,求得直线F1F2的解析式为y=x-4,再由线段中垂线性质得出,在Rt△OF1F2中,设点O到F1F2的距离为h,则根据面积法得,即,解得h=2,根据垂线段最短,即可得到线段OF的最小值为2.【详解】解:∵将线段PA绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:,∴,∴点F1的坐标为,如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,-4),∵,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x-4,∵AO=F2O=4,AO⊥P1F1,∴,在Rt△OF1F2中,OF⊥F1F2,设点O到F1F2的距离为h,则,∴,解得h=2,即线段OF的最小值为2,故答案为2.【点睛】本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17. (1)先化简再求值:,其中m=4.(2)解不等式组并将解集表示在所给的数轴上.【答案】(1)m2-4m+3,3;(2)2<x≤4,数轴见解析【解析】【分析】(1)直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案;(2)直接解不等式,进而得出不等式组的解集,进而得出答案.【详解】解:=(m-3)(m-1)=m2-4m+3,当m=4时,原式=42-4×4+3=3;(2),解①得:x>2,解②得:x≤4,故不等式组的解集是:2<x≤4,解集在数轴上表示:.【点睛】此题主要考查了分式的化简求值以及解一元一次不等式组,正确掌握相关运算法则是解题关键.18. 如图,在Rt△ABC中,∠C=90°,∠B=30°,点D为边AB的中点,点O在边BC上,以点O为圆心的圆过顶点C,与边AB交于点D.(1)求证:直线AB是⊙O的切线;(2)若,求图中阴影部分的面积.【答案】(1)见解析(2)【解析】【分析】(1)连接OD,CD,根据含30度角直角三角形的性质得出AC=AB,求出∠A=90°-∠B=60°,根据直角三角形的性质得出BD=AD=AB,求出AD=AC,根据等边三角形的判定得出△ADC是等边三角形,根据等边三角形的性质得出∠ADC=∠ACD=60°,求出∠ODC=∠DCO=30°,求出OD⊥AB,再根据切线的判定得出即可;(2)求出BD=AC=,BO=2DO,根据勾股定理得出BO2=OD2+BD2,求出OD,再分别求出△BDO和扇形DOE的面积即可.【小问1详解】证明:连接OD,CD,∵∠ACB=90°,∠B=30°,∴AC=AB,∠A=90°-∠B=60°,∵D为AB的中点,∴BD=AD=AB,∴AD=AC,∴△ADC是等边三角形,∴∠ADC=∠ACD=60°,∵∠ACB=90°,∴∠DCO=90°-60°=30°,∵OD=OC,∴∠ODC=∠DCO=30°,∴∠ADO=∠ADC+∠ODC=60°+30°=90°,即OD⊥AB,∵OD过圆心O,∴直线AB是⊙O的切线;小问2详解】解:由(1)可知:AC=AD=BD=AB,又∵AC=,∴BD=AC=,∵∠B=30°,∠BDO=∠ADO=90°,∴∠BOD=60°,BO=2DO,由勾股定理得:BO2=OD2+BD2,即(2OD)2=OD2+()2,解得:OD=1(负数舍去),所以阴影部分的面积S=S△BDO-S扇形DOE=.【点睛】本题考查了切线的判定,直角三角形的性质,圆周角定理,扇形的面积计算等知识点,能熟记直角三角形的性质、切线的判定和扇形的面积公式是解此题的关键.19. 今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.【答案】(1)30%,16%,图见解析(2)95、94 (3)192人(4)【解析】【分析】(1)先求出被调查的总人数,继而可求得y、x的值;(2)将数据重新排列,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中优秀人数所占百分比即可;(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【小问1详解】解:被调查的总人数为4÷8%=50(人),∴优秀对应的百分比,则一般对应的人数为50-(4+23+8)=15(人),∴其对应的百分比,补全图形如下:故答案为:30%,16%.【小问2详解】解:将这组数据重新排列为91,93,94,94,96,98,99,100,所以其中位数为,出现次数最多的是94,故众数为94,故答案为:95,94;【小问3详解】解:估计该校学生对团史掌握程度达到优秀的人数为1200×16%=192(人);答:估计该校学生对团史掌握程度达到优秀的人数为192人.【小问4详解】解:画树状图为:共有12种等可能情况,其中被抽取的2人恰好是女生的有6种结果,所以恰好抽中2名女生参加知识竞赛的概率为.【点睛】此题考查了用列表法或树状图法求概率、频数分布直方图、扇形统计图、众数、中位数、用样本估计总体等知识,数形结合与用列表法或树状图法求概率是解题的关键.20. 2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.【答案】(1)235m(2)甲种设备每小时的造雪量是15m3,则乙种设备每小时的造雪量是50m3【解析】【分析】(1)过B作BF∥AD,过D过AF⊥AD,两直线交于F,过B作BE垂直地面交地面于E,根据题知∠ABF=∠DAB=30°,可得,由BC的坡度i=1:2.4,设BE=t m,则CE=2.4t m,可得t2+(2.4t)2=2602,即可得h=AF+BE=235(m);(2)设甲种设备每小时的造雪量是x m3,可得:,即方程并检验可得甲种设备每小时的造雪量是15m3,则乙种设备每小时的造雪量是50m3.【小问1详解】解:过B作BF∥AD,过A过AF⊥AD,两直线交于F,过B作BE垂直地面交地面于E,如图:根据题知∠ABF=∠DAB=30°,∴,∵BC的坡度i=1:2.4,∴BE:CE=1:2.4,设BE=t m,则CE=2.4t m,∵BE2+CE2=BC2,∴t2+(2.4t)2=2602,解得t=100(m),(负值已舍去),∴h=AF+BE=235(m),答:该滑雪场的高度h为235m;【小问2详解】设甲种设备每小时的造雪量是xm3,则乙种设备每小时的造雪量是(x+35)m3,根据题意得:,解得x=15,经检验,x=15是原方程的解,也符合题意,∴x+35=50,答:甲种设备每小时的造雪量是15m3,则乙种设备每小时的造雪量是50m3.【点睛】本题考查解直角三角形和分式方程的应用,解题的关键是构造直角三角形和列出分式方程.21. 如图1,△ABC是等腰直角三角形,AC=BC=4,∠C=90°,M,N分别是边AC,BC上的点,以CM,CN为邻边作矩形PMCN,交AB于E,F.设CM=a,CN=b,若ab=8.(1)判断由线段AE,EF,BF组成的三角形的形状,并说明理由;(2)①当a=b时,求∠ECF的度数;②当a≠b时,①中的结论是否成立?并说明理由.【答案】(1)直角三角形,理由见解析(2)①45°;②成立,理由见解析【解析】【分析】(1)分别表示出AE,BF及EF,计算出AE2+BF2及EF2,从而得出结论;(2)①连接PC,可推出PC⊥AB,可推出AE=PE=PF=BF,从而得出ME=EG=GF=NF,进而得出CE平分∠PCF,CF 平分∠BCP,从而得出结果;②将△BCF逆时针旋转90°至△ACD,连接DE,可推出DE=EF,进而推出△DCF≌△FCE,进一步得出结果.【小问1详解】解:线段AE,EF,BF组成的是直角三角形,理由如下:∵AM=AC-CM=4-a,BN=4-b,∴AE=AM= (4−a),BE= (4−b),∴AE2+BF2=2(4-a)2+2(4-b)2=2(a2+b2-8a-8b+32),AC=4,∴EF=AB-AE-BF= [4-(4-a)-(4-b)],∵ab=8,EF2=2(a+b-4)2=2(a2+b2-8a-8b+16+2ab)=2(a2+b2-8a-8b+32),∴AE2+BF2=EF2,∴线段AE,EF,BF组成的是直角三角形;【小问2详解】解:①如图1,连接PC交EF于G,∵a=b,∴ME=AM=BN=NF,∵四边形CNPM是矩形,∴矩形CNPM是正方形,∴PC平分∠ACB,∴CG⊥AB,∴∠PEG=90°,∵CM=CN=PM=PN,∴PE=PF,∵△AEM,△BNF,△PEF是等腰直角三角形,EF2=AE2+BF2,EF2=PE2+PF2,∴PE=AE=PF=BF,∴ME=EG=FG=FN,∴∠MCE=∠GCE,∠NCF=∠GCF,∵∠ACB=90°,∴∠ECG+∠FCG=∠ACB=45°;②如图2,仍然成立,理由如下:将△BCF逆时针旋转90°至△ACD,连接DE,∴∠DAC=∠B=45°,AD=BF,∴∠DAE=∠DAC+∠CAB=90°,∴DE2=AD2+AE2=BF2+AE2,∵EF2=BF2+AE2,∴DE=EF,∵CD=CF,CE=CE,∴△DCF≌△FCE(SSS),∴∠ECF=∠DCF=∠DCF=×90°=45°.【点睛】本题考查了等腰直角三角形性质,正方形判定和性质,勾股定理的逆定理,全等三角形的判定和性质,旋转的性质等知识,解决问题的关键是作辅助线,构造全等三角形.22. 在平面直角坐标系xOy中,已知抛物线y=-x2+2mx+3m,点A(3,0).(1)当抛物线过点A时,求抛物线的解析式;(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD与y轴交于点N.设S=S△PAM-S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2)证明见解析,;(3)存在,点的坐标是(1,4),.过程见解析【解析】【分析】(1)把x=3,y=0代入y=-x2+2mx+3m,从而求得m,进而求得抛物线的解析式;(2)将抛物线的解析式变形为:y=-x2+m(2x+3),进而根据2x+3=0,求得x的值,进而求得结果;(3)将S变形为:S=(S△PAM+S四边形AONM)-(S四边形AONM+S△BMN)=S四边形AONP-S△AOB,设P(m,-m2+2m+3),设PD的解析式为:y=kx+b,将点P和点D坐标代入,从而求得PD的解析式,进而求得点N的坐标,进而求得S关于m的解析式,进一步求得结果.【小问1详解】解:把x=3,y=0代入y=-x2+2mx+3m得,-9+6m+3m=0,∴m=1,∴y=-x2+2x+3;【小问2详解】证明:∵y=-x2+m(2x+3),∴当2x+3=0时,即时,,∴无论m为何值,抛物线必过定点D,点D的坐标是;【小问3详解】如图,连接OP,设点P(m,-m2+2m+3),设PD的解析式为:y=kx+b,∴,考试真题汇总——2023年整理∴,∴PD的解析式为:y=,当x=0时,y=,∴点N的坐标是(0,),∴,∵S=S△PAM-S△BMN,∴S=(S△PAM+S四边形AONM)-(S四边形AONM+S△BMN)=S四边形AONP-S△AOB,∵,当x=0时,y=-x2+2x+3=3,∴点B的坐标是(0,3),OB=3,,∴==,∴当时,,当时,,∴点的坐标是(1,4).【点睛】本题考查了一次函数的图象和性质、二次函数的图象和性质、待定系数法求函数解析式、二次函数求最值、三角形的面积等知识,解决问题的关键是数形结合和变形S,转化为常见的面积计算.历年考试真题为作者精心整理,如有需要,请下载。
山东日照中考数学试卷真题
山东日照中考数学试卷真题一、选择题1. 设实数集合 $A=\{x \mid -2 \leqslant x<10\}$,则 $n(A)=$ _______。
A. 11B. 12C. 13D. 142. 甲、乙两人从A、B两地同时出发相对而行,他们每人每小时行驶 $10 \mathrm{km}$,则甲离开起 $n \mathrm{h}$ 后两人相遇,这时乙离开起还有 $3 \mathrm{h}$。
则 $n=$ _______。
A. $4 \mathrm{h}$B. $5 \mathrm{h}$C. $6 \mathrm{h}$D. $7\mathrm{h}$3. 若一矩形的长是宽的 $3$ 倍,且宽增加 $5 \mathrm{cm}$ 后,其面积增加 $60 \mathrm{cm}^2$,则原矩形的长是多少?A. $4 \mathrm{cm}$B. $6 \mathrm{cm}$C. $8 \mathrm{cm}$D. $10 \mathrm{cm}$4. 下面对正整数 $x$ 和 $y$ 的一些表述进行了编码:P:$y$ 是 $x$ 的约数;Q:$y$ 是 $x$ 的因数;R:$y=x+3$;S:$y=x+4$。
已知 $7$ 是一个优秀数的约数。
下列表述中,与题目不矛盾的是_______。
A. PQSB. PSC. PRSD. R5. $\sqrt{\left(x-y\right)^{2}}=$ _______。
A. $x-y$B. $y-x$C. $\left|x-y\right|$D. $x+y$二、填空题1. 下列不等式:$\frac{15}{x+1} - \frac{x-3}{6} < \frac{9}{2x-2}$ 的解集是:_______。
2. 正方体的棱长为 $a$,其中一只角放锥体,其高为 $h$,底面直径 $\sqrt{3} a$,则锥体的体积为 _______。
3. 设 $F(x)=a x^{2}+ b x+c$,当 $x=1,2,3$ 时,有 $F(1)=F(2)$,$F(2)=F(3)$,且 $F(1) \neq F(3)$,则 $a+b+c=$ _______。
2022年山东省日照市中考数学试卷(原题版)
2022年山东省日照市中考数学试卷一、选择题:本题共12个小题,每小题3分,满分36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上,1.(3分)(2022•日照)﹣2的相反数是()A.2B.12C.−12D.﹣22.(3分)(2022•日照)山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A.B.C.D.3.(3分)(2022•日照)全民免费接种新冠病毒疫苗是党中央、国务院作出的重大决策部署,通过接种疫苗,让更多人获得免疫力,尽早形成人群免疫屏障,截至2022年5月20日,全国31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗336905万剂次.数据336905万用科学记数法表示为()A.0.336905×1010B.3.36905×1010C.3.36905×109D.33.6905×1094.(3分)(2022•日照)下列运算正确的是()A.a6÷a2=a3B.a4•a2=a6C.(a2)3=a5D.a3+a3=a6 5.(3分)(2022•日照)在实数2,x0(x≠0),cos30°,38中,有理数的个数是()A.1个B.2个C.3个D.4个6.(3分)(2022•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为()A.27°B.53°C.57°D.63°7.(3分)(2022•日照)下列说法正确的是()A.一元一次方程2−1=x的解是x=2B.在连续5次数学测试中,两名同学的平均成绩相同,则方差较大的同学的成绩更稳定C.从5名男生,2名女生中抽取3人参加活动,至少会有1名男生被抽中D.将一次函数y=﹣2x+5的图象向上平移两个单位,则平移后的函数解析式为y=﹣2x+1 8.(3分)(2022•日照)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.=4.52−=12−=1B.−=4.5C−=4.5−2=1−=1D.−=4.59.(3分)(2022•日照)如图,矩形OABC与反比例函数y1=1(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=2(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3B.﹣3C.32D.−3210.(3分)(2022•日照)如图,几何体是由六个相同的立方体构成的,则该几何体三视图中面积最大的是()A.主视图B.左视图C.俯视图D.主视图和左视图11.(3分)(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=32,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(12,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有()A.1个B.2个C.3个D.4个12.(3分)(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m 的取值范围是()A.4<m<3+2B.3−2<m<4C.2−2<m<3D.4<m<4+2二、填空题:本题共4个小题,每小题3分,易分2分不需写出解答过程,请将答案直接写在答题卡相应位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东日照中考数学试题 Revised as of 23 November 2020山东省日照市二0一一年初中学业考试数学试题一、选择题:本大题共12小题.1.(-2)2的算术平方根是(A )2 (B ) ±2 (C )-2 (D )22.下列等式一定成立的是(A ) a 2+a 3=a 5 (B )(a +b )2=a 2+b 2(C )(2ab 2)3=6a 3b 6 (D )(x -a )(x -b )=x 2-(a +b )x +ab3. 如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为(A )70° (B )80° (C )90° (D )100° 4.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有(A )54盏 (B )55盏 (C )56盏 (D )57盏5.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =77. 以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是(A )(3,3) (B )(5,3) (C )(3,5) (D )(5,5)8.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为(A ) 41 (B )163 (C )43 (D )83 9.在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是(A )(0,43) (B )(0,34) (C )(0,3) (D )(0,4) 10.在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =a b .则下列关系式中不成立...的是 (A )tan A ·cot A =1 (B )sin A =tan A ·cos A(C )cos A =cot A ·sin A (D )tan 2A +cot 2A =111.已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab +的是12. 观察图中正方形四个顶点所标的数字规律,可知数2011应标在(A )第502个正方形的左下角 (B )第502个正方形的右下角(C )第503个正方形的左上角 (D )第503个正方形的右下角二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.计算sin30°﹣2-= .14. 如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .15.已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么x 2011-y 2011= .16.正方形ABCD 的边长为4,M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN .当BM = 时,四边形ABCN 的面积最大.17.如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0. 其中正确的命题是 .三、解答题:本大题共7小题,共60分.18. (本题满分6分)化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3. 19.(本题满分8分)卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人(2)请你把两种统计图补充完整;(3)求以上五种戒烟方式人数的众数.20.(本题满分8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.21.(本题满分9分)如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .22.(本题满分9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机 电冰箱 甲连锁店200 170 乙连锁店 160 150设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元).(1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大23.(本题满分10分)如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC=DM ,求证: ME=BD .24.(本题满分10分) 如图,抛物线y=ax 2+bx (a 0)与双曲线y =xk 相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .(1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.数学试题参考答案及评分标准9~12小题每小题4分,共40分) 题号 12 3 4 5 6 7 8 9 10 11 12 答案 A D B B C A D A B D C C13.23 ; 14.如:x 2-5x +1=0; 15.-2; 16.2; 17.①③. 三、解答题:(本大题共7小题, 共60分)18.(本题满分6分) 解:原式=1)1()1)(1(11222+--+-÷-+-m m m m m m m =111)1)(1()1(22+--+•+--m m m m m m ……………………………2分 =m m m m m -+•+-2111 =mm m --21 =)1(1--m m m =m1.………………………………………………5分 ∴当m =3时,原式=3331=.………………………………6分 19.(本题满分8分) 解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);………2分(2)统计图如图(扇形图与统计图各2分); …………………6分(3)以上五种戒烟方式人数的众数是20. …………………8分20.(本题满分8分)解:(1)设每年市政府投资的增长率为x , …………………………… 1分根据题意,得:2+2(1+x )+2(1+x )2=,整理,得:x 2+=0, ………………………………………………3分解之,得:x =275.1493⨯+±-, ∴x 1= x 2=(舍去),…………………………………………5分答:每年市政府投资的增长率为50%;…………………………………6分(2)到2012年底共建廉租房面积=÷3882=(万平方米).………8分 21.(本题满分9分)证明:(1)∵CD 是⊙O 的切线,∴∠OCD =90°,即∠ACD +∠ACO =90°.…① …………………………………………2分∵OC=OA ,∴∠ACO =∠CAO ,∴∠AOC =180°-2∠ACO ,即21∠AOC +∠ACO =90°. …②……………4分 由①,②,得:∠ACD -21∠AOC =0,即∠AOC =2∠ACD ;………………5分 (2)如图,连接BC .ACB =90°.……………6分 ∵AB 是直径,∴∠在Rt △ACD 与△Rt ACD 中,∵∠AOC =2∠B ,∴∠B =∠ACD ,∴△ACD ∽△ABC ,………………………8分∴AC ADAB AC =,即AC 2=AB ·AD . ………9分22.(本题满分9分)解:(1)根据题意知,调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台,……………1分则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.………………………………………………2分∵ ⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥,010,040,070,0x x x x∴10≤x ≤40. ……………………………3分∴y =20x +168009 (10≤x ≤40); ………………………………4分(2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10),即y =(20-a )x +16800. ………………………………………5分∵200-a >170,∴a <30. ………………………………………6分当0<a <20时,x =40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台; …………………………………9分23.(本题满分10分)证明:(1)在等腰直角△ABC 中,∵∠CAD =∠CBD =15o ,∴∠BAD =∠ABD =45o -15o =30o ,∴BD=AD ,∴△BDC ≌△ADC ,∴∠DCA =∠DCB =45o .………………2分由∠BDM =∠ABD+∠BAD =30o +30o =60o ,∠EDC=∠DAC +∠DCA =15o +45o =60o ,∴∠BDM =∠EDC ,∴DE 平分∠BDC ; ……………4分(2)如图,连接MC ,∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC =180°-∠DMC =180°-60°=120°,∠ADC =180°-∠MDC =180°-60°=120°,∴∠EMC =∠ADC . …………………………7分又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC , ………………………9分∴ME=AD=DB . ………………………………10分24.(本题满分10分)解:(1)把点B (-2,-2)的坐标,代入y =x k ,得:-2=2 k ,∴k =4. 即双曲线的解析式为:y =x4 . ………………………………2分 设A 点的坐标为(m ,n )。