向量的坐标表示(一)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的坐标表示(一)

【学习重点与难点】:

重点:平面向量基本定理的应用;平面内任一向量都可以用两个不共线非零向量表示

难点:平面向量基本定理的理解.

【学法与教学用具】:

1. 学法:

(1)自主性学习+探究式学习法:

(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.

2. 教学用具:多媒体、实物投影仪.

【课时安排】:1课时

【教学思路】:

一、思考和讨论

【问题1】:(教材69P 例1):平行四边形ABCD 的对角线AC 和BD 交于点M ,=−→−AB a ,=−→−AD b ,试用向量a ,b 表示−→−MA ,−→−MB ,−→−MC ,−→

−MD 。

结论:由作图可得a 1λ=1e +2λ2e 【问题2】:对于向量a ,1λ和2λ是否是惟一的一组?

二、研探学习

1.共面向量定理

【探索】:(1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一的?

(2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 学生分析设1e ,2e 是不共线向量,a 是平面内任一向量

−→−OA =1e −→−OM =1λ1e −→−OC =a =−→−OM +−→−ON =1λ1e +2λ2e

−→−OB =2e −→−ON =2λ2e

平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面

内的任一向量a ,有且只有一对实数1λ,2λ,使a 1λ=1e +2λ2e .我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;这个定理也叫共面..向量定理. 【注意】:

1e 2e a C

(1)1e ,2e 均非零向量,必须不共线...

,且它是这一平面内所有向量的一组基底. (2)基底不惟一,当基底给定时,分解形式惟一;1λ,2λ是被a ,1e ,2e 唯一确定

的数量

(3)由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;同一平面内任一向...

量.

都可以表示为两个不共线向量的线性组合. (4)20λ=时,a 与1e 共线;10λ=时,a 与2e 共线;120λλ==时,0a =.

基底:我们把不共线的向量1e ,2e 叫做表示这一平面内所有向量的一组基底

正交分解:一个平面向量用一组基底1e ,2e 表示成a 1λ=1e +2λ2e 的形式,我们称它

为向量a 的分解,当1e ,2e 所在直线互相垂直时,这种分解也称为向量a 的正交分解。

【思考】:平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别

和联系?

三、小试牛刀

例1 (教材69P 例2)如图2-3-4,质量为m 的物体静止地放在斜面上,斜面与水平的夹

角为θ,求斜面对物体的磨擦力→

f

例2 已知向量12,e e ,求作向量-251e +3e 作法:(1)取点O ,作−→−OA =-251e −→−OB =32e (2)作OACB ,−→

−OC 即为所求-251e +32e 例3.(教材69P 例3)设1e ,2e 是平面内的一组基底,如果−→−AB

=31e -22e ,−→−BC =41e +2e ,

−→−CD =81e -92e 求证:A 、B 、D 三点共线

【举一反三】 1.设12

,e e 是两个不共线的向量,已知−→−AB =21e +k 2e ,−→−CB =1e +32e ,−→−CD =21e -2e ,若A ,B ,D 三点共线,求k 的值。

解:−→−BD =−→−CD -=−→

−CB (21e -2e )-(1e +32e )=1e -42e ,∵A ,B ,D 三点共线,

A

C B D

∴−→−AB 与−→−BD 共线,即存在实数λ,使得−→−AB

=λ−→−BD , 即是12122(4)e ke e e λ+=-. 由向量相等的条件,得24k λλ=⎧⎨

=-⎩ ,∴8k =-. 例4.如图,−→−OA 、−→−OB 不共线,t AP =−→−−→−AB )(R t ∈,

用−→−OA 、−→−OB 表示−→−OP

变式1:(例4改编)如图:−→−OA ,−→−OB 不共线,P 点在1.=+μλμλ且使−→

−−→−−→−+=OB OA OP μλ

变式2:设−→−OA ,−→−OB 不共线,点P 在O 、A 、B 所在的平面内,且−→−−→−−→−+-=OB t OA t OP )1( )(R t ∈.求证:A 、B 、P 三点共线.

四、巩固深化,反馈矫正

教材70P 练习

五、归纳整理,整体认识

1.熟练掌握平面向量基本定理,平面向量基本定理的理解及注意的问题.;

2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表

示。

课后记:

相关文档
最新文档