子集、全集、补集典型例题(精)

合集下载

集合-子集、全集、补集(精)

集合-子集、全集、补集(精)

子集、全集、补集教案教学目标1.在进一步理解子集,真子集概念的基础上,理解补集的概念.2.结合补集的概念,了解全集的意义。

3.熟记、掌握补集的求法,并能用文图表示.教学重点补集的概念教学难点补集的求法教学过程一.新课引入1.复习子集的概念.说出A B和A=B的意义.2.用适当的符号填空:(1)Ф_{0}(2)0_N(3)Ф__{Ф}(4){1,2}__{(x,y|y=x+1}3.说出集合{1,2,3}的子集和真子集.4.看一个例子,设集合S是全班同学的集合,集合A是班上所有参加校运动会的同学的集合,而集合B是班上所有没有参加校运动会的同学的集合,那么这三个集合之间有什么关系呢?集合B就是集合S中除去集合A之后留下来的集合.SC sAA二.新课1. 补集(余集)一般地,设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作CsA,即CsA={x|x∈S,但x A}.可在上图中用文图表示.实例S={1,2,3,4,5,6},A={1,3,5}, C sA={2,4,6}.2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作是一个全集,全集通常用U表示.在研究数集时,一般定义全集为R,在研究图形集合时,以所有图形构成的集合为全集.如果我们把实数集R看作全集U,那么,有理数Q的补集CUQ是全体无理数的集合.到底以什么为全集,是可以根据情况任意确定的,但要含有我们所要研究的所有元素.3.性质(1 CU( CUA =A,(2 CUU =Φ,(3 CUΦ=U.4.补充例题例1.设U={梯形},A={等腰梯形},求CUA.解:CUA={不等腰梯形}.例2.已知U=R,A={x|x2+3x+2<0}, 求CUA.解:CUA={x|x≤-2,或x≥-1}.例3.集合U={(x,y)|x∈{1,2},y∈{1,2}} , A={(x,y)|x∈N*,y∈N*,x+y=3},求CUA.解:C UA={(1,1),(2,2)}.例4. (选择题)设全集U(UΦ),已知集合M,N,P,且M=C UN,N=C UP,则M与P的关系是()(A)M=C UP,(B)M=P,(C)M P,(D)M P.解:选B.例5.设全集U={2,3,},A={b,2},={b,2},求实数a和b的值.(a=2、-4,b=3例6.某班举行数理化竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,画出集合关系图,并求出全班人数.(55人三.课内练习课本P10 练习(1四.小结1.正确理解全集、补集的定义,C UA={x|x∈U,但x A}.2.注意:C UA中,A U,否则C UA就没有意义;没有U谈C A便失去意义,但在U明确的情况下,C UA可以写成C A..3.利用文图掌握补集的性质.五.作业课本P10习题1.2 (4,5。

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

1.2 子集、全集、补集(练习)(解析版)

1.2 子集、全集、补集(练习)(解析版)

1.2 子集、全集、补集【基础练习】1. 已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则( )A .AB ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆ 【答案】B【解析】因为菱形是平行四边形的特殊情形,所以D A ⊆,矩形与正方形是平行四边形的特殊情形,所以B A ⊆ C A ⊆,正方形是矩形,所以C B ⊆.故选B .2.集合2{|440}x x x -+=的子集个数为( )A .4B .2C .1D .0【答案】B【解析】由题意,求得{}2{|440}2x x x -+==,即可求解集合子集的个数,得到答案. 3.满足{}{}1123A ⊆⊆,,的集合A 的个数是( ) A .2B .3C .4D .8 【答案】C【解析】由条件{}1A ⊆⊆{1,2,3},根据集合的子集的概念与运算,即可求解.4.设集合{}12M x x =-≤<,{}0N x x k =-≤,若M N ,则k 的取值范围是( ) A .k 2≤ B .k ≥-1 C .1k >- D .2k ≥【答案】D【解析】由M N ⊆,则说明集合M 是集合N 的子集,即集合M 中任意元素都是集合N 中的元素,即2k ≥即可.5(多选题)已知集合(){},0,0,,M x y x y xy x y =+<>∈R ,(){},0,0,,N x y x y x y =<<∈R ,那么( ) A .M N ⊆B .M N ⊇C .M ND .M N【答案】ABC【解析】若0x <,0y <,则0x y +<,0xy >,故N M ⊆.若0x y +<,0xy >,则x 与y 同号且为负,即0x <,0y <,故M N ⊆,所以M N ,故选ABC.6.已知集合{}0,1,2A =,则集合A 的真子集共有 个.【答案】7【解析】集合含有3个元素,则子集个数为328=,真子集有7个 7.集合{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,则实数a 的取值范围是________.【答案】[)4,+∞【解析】因为{|24},{|2}A x x B x x a =<<=<<,若A B ⊆,所以4a ≥,故a 的取值范围是[)4,+∞.8.若集合{2,3}A =,{1,2,3,4}B =,则满足A M B 的集合M 的个数是________.【答案】2 【解析】集合{2,3}A =,{1,2,3,4}B =,且A M B ,∴{1,2,3}M =或{2,3,4}M =,∴满足条件的集合M 的个数是2.9.已知{0,1,2,3},{0,2,4,5},,A B C A C B ==⊆⊆,写出符合条件的所有集合C .【答案】,{0},{2},{0,2}∅10.已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围.【答案】{|1}m m ≥-【解析】∵B A ⊆,∵当B =∅时,211m m -≥+,即2m ≥, 当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.【能力提升】11.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______.【答案】2 【解析】由{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭易知0a ≠,1a ≠ 由两个集合相等定义可知若10b a b =⎧⎨+=⎩,得1a =-,经验证,符合题意; 若01b a a b +=⎧=⎪⎨⎪⎩,由于0a ≠,则方程组无解综上可知,1a =-,1b =,故2020202020202020(1)12ab +=-+=.故答案为2 12.已知集合{}{}012a b c =,,,,,且下列三个关系:∵2a ≠;∵2b =;∵0c ≠有且只有一个正确,则10010a b c ++等于__________.【答案】201【解析】已知集合{a ,b ,c }={1,2,3},且下列三个关系:∵a ≠3;∵b =3;∵c ≠1有且只有一个正确, 若∵正确,则c =1,a =2,b =2不成立,若∵正确,则b =3,c =1,a =3不成立,若∵正确,则a =3,b =1,c =2,即有100a +10b +c =312.故答案为312.。

子集补集全集

子集补集全集

教材母题
例2.记不等式组
Hale Waihona Puke 2 x 1 1 的解集为A,S=R,试求A及∁SA,并把它们表示在数轴上. 3 x 6 0
变式训练
设全集为S = R,根据条件求 A和∁S A.
技巧传播
子集、全集、补集的综合应用
例:已知集合 A={x|x≥m},集合 B={x|-2<x<3}, (1)若全集 U=R,且 A⊆∁UB,求 m 的取值范围;(2)若集合 C={x|m+1<x<2m},且 C⊆∁AB,求 m 的取值范围.
【思路探究】(1)先求∁UB, 再利用 A⊆∁UB 得 m 的取值范围.(2)先求∁AB, 再利用 C⊆∁AB 得 m 的取值范围.
陷阱规避
细节.挖掘隐含条件 例. 设全集U={2,3, a2+2a-3},A={∣2a-1∣,2},CuA ={5}, 求实数的值.
子集、全集、补集(下)
讲师:邹老师
知识要点
3.补集的含义: 记作∁S A,即∁S A= { x|x∈S,且xA}.
对象 要素分析 对象之间的关系 运算方法 两个集合A与S AS (研究补集的前提) ∁SA= { x|x∈S,且 xA}.
A S 图示法
典题剖析
教材母题
例1.若全集S=Z,A={ x|x=2k,kZ},B={ x|x=2k+1,kZ}, 则∁S A= B , ∁SB= A .

集合、子集、全集、补集习题课

集合、子集、全集、补集习题课

6.已知 已知A={x| x2 +x-6=0}, 已知 = , B={x|ax+1 =0},若A ⊇ B, + , , ≠ 求实数a的取值范围 的取值范围. 求实数 的取值范围
7.设全集 设全集U={2,3,a2+2a-3}, 设全集 , , - , A={b,2}, ∁ U A={5},求实数 、b的值 求实数a、 的值 的值. , 求实数
集合、 集合、子集、全集、补集 全集、
习题课
1.已知 ={2,a,b}, 已知M= , , , 已知 N ={2a,பைடு நூலகம்,b2}, , , , M=N, , 求实数a、 的值 的值. 求实数 、b的值
2.设非空数集 满足下列条件: 设非空数集A 满足下列条件: 设非空数集
1 若a ∈A,则 , ∈A,且1 ∉ A. , 1− a
10.设A={x| - 2≤x≤5}, 设 B={x|m+1≤x <2m - 1}. + 的取值范围; (1)若B ⊆A,求实数 的取值范围; ) ,求实数m的取值范围 (2)若x∈R时,没有元素 使x∈A与x∈B ) ∈ 时 没有元素x使 ∈ 与 ∈ 同时成立,求实数m的取值范围 的取值范围. 同时成立,求实数 的取值范围
(1)若2 ∈A,你能求出 中的哪些元 ) ,你能求出A中的哪些元 素? 1 (2)求证:若a ∈A,则 1− ∈A; )求证: ,
a
中至少有三个元素. (3)求证:集合 中至少有三个元素 )求证:集合A中至少有三个元素
3.已知集合 已知集合A 已知集合 ={x|ax2+2x+1=0,a∈R,x∈R}. + = , ∈ , ∈ 中只有一个元素, 的值 的值; (1)若A中只有一个元素,求a的值; ) 中只有一个元素 中至多有一个元素, 的取值 (2)若A中至多有一个元素,求a的取值 ) 中至多有一个元素 范围. 范围

子集全集补集课题引入(精)

子集全集补集课题引入(精)

子集全集补集课题引入
方案1.为了便于管理,常常把一个数学班又分成若干个小组.如果把全班作为集合A,班上的某个小组作为集合B,那么集合A与B之间是一种什么关系呢?
方案2.集合A={绝对值小于5的整数},B={x|x2+3x=0},
(1) 分别用列举法表示出集合A、B.
(2) 观察集合A、B之间存在一种什么关系?
说明:方案1采用学生所熟悉的生活中的例子,引出集合间的一种特殊关系——包含关系,从而进一步定义子集.
方案2的数学味更浓些,它既复习了前面所学过的集合的有关知识,又引出了子集的概念.
值得注意的是,这两种引入方案还不能把子集的概念确切地定义下来,还必须补充两个集合相等时,它们互为子集的例子,否则学生容易产生子集是由某集合中部分元素组成的错误印象.。

子集全集补集典型例题

子集全集补集典型例题

子集全集补集典型例题子集、全集、补集是集合论中的重要概念,理解和掌握它们对于解决集合相关的问题至关重要。

下面通过一些典型例题来深入探讨这些概念。

例 1:已知集合 A ={1, 2, 3, 4, 5},集合 B ={1, 2, 3},判断集合 B 是否为集合 A 的子集。

解:因为集合 B 中的所有元素 1、2、3 都在集合 A 中,所以集合 B 是集合 A 的子集。

这里要明确子集的定义,如果集合 B 的所有元素都是集合 A 的元素,那么集合 B 就是集合 A 的子集。

例 2:设全集 U ={1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A ={1, 2, 3, 4},求集合 A 的补集。

解:全集 U 中不属于集合 A 的元素为 5、6、7、8、9,所以集合 A 的补集为{5, 6, 7, 8, 9}。

补集的概念就是在给定的全集中,除去某个集合中的元素,剩下的元素所组成的集合。

例 3:集合 M ={x | x < 5},集合 N ={x | x > 2},全集 U= R,求集合 M 的补集和集合 N 的补集。

解:集合 M 的补集是{x |x ≥ 5},集合 N 的补集是{x |x ≤ 2}。

对于这种用不等式表示集合的情况,要注意理解实数轴上的范围来确定补集。

例 4:已知集合 A ={x |-2 < x < 3},集合 B ={x | 1 < x < 5},全集 U = R,求(∁UA)∩(∁UB)。

解:∁UA ={x |x ≤ -2 或x ≥ 3},∁UB ={x |x ≤ 1 或x ≥ 5}所以(∁UA)∩(∁UB)={x |x ≤ -2 或x ≥ 5}这道题需要先分别求出两个集合的补集,然后再求交集。

例 5:集合 P ={(x, y)| x + y = 2},集合 Q ={(x, y)|x y = 4},全集 U 为平面直角坐标系中所有点组成的集合,求∁UP 和∁UQ。

解:对于集合 P,解方程组{x + y = 2}可得 y = 2 x,所以集合 P 表示直线 y = 2 x 上的点。

高中数学知识点精讲精析 子集.全集.补集

高中数学知识点精讲精析 子集.全集.补集

1.2 子集.全集.补集1.子集的定义:如果集合A 的任一个元素都在集合B 中 则称集合A 为集合B 的子集,记作:A B特别的: 2.真子集的定义:如果A B 并且,则称集合A 为集合B 的真子集.解读:(1)空集是任何集合的子集. 任何一个集合是它本身的子集.空集是任何非空集合的真子集.谈起子集,特别要注意的是空集,记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,故空集是任何非空集合的真子集.(2)元素与集合的关系是属于与不属于的关系,用符号""""∉∈表示;集合与集合之间的关系是包含,真包含,相等的关系.3.补集的定义:设A 为S 的子集,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记作:={x ∣x ∈S 且x A},如果集合S 包含我们所要研究的各个集合,就把S 称为全集.[例1].下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( )A .0个B .1个C .2个D .3个解析:空集合不含任何元素,与{0}不同,故(1)错;空集市本身的子集;(3)(4)是正确的.故选C.[例2] 已知集合且B A ,求a 的值. 解析:由已知,得:A ={-3,2}, 若BA ,则B =Φ,或{-3},或{2}.若B =Φ,即方程ax +1=0无解,得a =0. 若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = .若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = .综上所述,可知a 的值为a =0或a =,或a = .⊆B A ⊇或A AA ⊆∅⊆⊆B A ≠AC S ∉},01|{},06|{2=+==-+=ax x B x x x A 3121-3121-。

1.2集合与简易逻辑——子集,全集,补集

1.2集合与简易逻辑——子集,全集,补集

子集、全集、补集基础训练1.下列六个关系式中正确的个数为( )①{}{}b a b a ,,⊆ ②{}{}a b b a ,,= ③φ{0} ④0∈{0} ⑤φ∈{0} ⑥φ={0},A .6个B .5个C .4个D .3个2.已知M ={}R x x x y y ∈--=,122,P ={}42≤≤-x x ,则集合M 与P 的关系是( )A .M =PB .P ∈MC .M PD .P M3.若集合A ={1,3,x },B ={2x ,1}且B ⊆A ,则满足条件的实数x 的个数是( )A .1B .2C .3D .4 4.设全集I (I ≠φ),M =I K ,K =I P ,则集合M 与P 的关系是( )A .M =I PB .M PC .P MD .M =P5.已知集合M =⎭⎬⎫⎩⎨⎧∈+=Z x m x x ,61,N =⎭⎬⎫⎩⎨⎧∈-=Z x n x x ,312,P =⎭⎬⎫⎩⎨⎧∈+=Z p p x x ,612,则M 、N 、P 满足关系是( )A .M =N PB .M N =PC .M NP D .N P =M6.已知集合P ={1,2,3,4},Q ={}P x x y y ∈+=,1,那么集合M ={3,4,5}与Q 的关系是( )A .M QB .M ⊄QC .Q ⊆MD .Q =M7.若集合A 满足{b a ,}⊆A{e d c b a ,,,.,}时,集合A 的可能形式用列举法表示为 .8.设全集I ={2,3,5},A ={2,5-a },I A ={5},则a 的值是 . 三、解答题9.设集合A ={y x ,},B ={2,x 2},且A =B ,求实数y x ,的值.10.已知集合A ={}41<≤x x ,B ={}a x x <,若A B ,求实数a 的取值集合.11.已知集合P ={}062=-+x x x ,S ={}01=+ax x ,若S ⊆P ,求实数a 的取值集合.12.集合A ={}+∈+=N n n a a ,12,B ={}+∈+-=N k k k a a ,542,试判断集合A 、B 之间的关系.13.已知R b a ∈,,集合A ={2,4,952+-x x },B ={3,a ax x ++2},C ={1,3)1(2-++x a x }, (1)求使A ={2,3,4)时的x 值; (2)求使2∈B ,B A 时的a ,x 值; (2)求使B =C 时的a ,x 值.综合训练1.已知M ={}x y y x =),(,N ={}0,),(≥=y x y y x ,那么( )A .N MB .N ⊆MC .M =ND .M N 2.集合A ={}R x x x x ∈=--,0122的所有子集的个数为( )A .4B .3C .2D .1 3.已知集合A ={}0332=++∈x x R x ,B ={}0652=+-∈x x R x ,A ⊆P D ,求满足条件的集合P .4.已知集合I ={}23,4,2a -;P ={}2,22+-a a,I P ≠{一1},求由a 的值构成的集合.5.设S ={x x 是四边相等或有三个内角是直角的四边形},A ={x x 是正方形},P ={x x 是三个内角是直角的四边形},求SP 及PA .6.已知A ={0,1},且B ={A x x ⊆},求B .7.已知全集U ={2,3,322-+a a },A ={b ,2},UA ={5},求实数a 和b 的值.8.已知集合A ={}R x a x ax x ∈=++,,0122至多只有一个真子集,求实数a 的取值范围.9.已知全集U ={6,4),1)(2(,1---a a a }. (1)若U(UB )={0,1},求实数a 的值; (2)若U (U A )={3,4},求实数a 的值.10.集合S ={e d c b a ,,,,},包含{b a , }的S 的子集共有( )A .2个B .3个C .5个D .8个 11.设集合M =⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,412,N =⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,214,则( ) A .M =N B .M N C .N M D .M ∩N =φ12.已知集合A ={}52≤≤-x x ,B ={}121-≤≤+m x m x 满足B ⊆A ,求实数m 的取值范围.13.设q px x x f ++=2)(,A ={})(x f x x =,B ={})]([x f f x x =.(1)求证:A ⊆B ;(2)如果A ={一1,3},求B .是否存在?若存在,求出x ;若不存在,请说明理由.2.求集合M ={1,2,3}的所有非空子集中各元素之和,若M ={1,2,3,4}呢?你能按此方法大胆尝试探索,发现一般规律,得出一个具有一般规律的结论吗?3.设A ,B 是两个非空集合,定义A 与B 的差集为A -B ={}B x A x x ∉∈且. (1)试举出两个数集A ,B ,求它们的差集; '(2)差集A -B 与B -A 是否一定相等,试说明你的理由.4.已知集合M ={}12=x x 与集合N ={}1=ax x ,若N M ,则实数a 的所有可能的取值的个数是( )A .0B .1C .2D .35.在一次国际学术会议上,k 个科学家共使用P 种不同的语言,如果任何两个科学家都至少使用一种共同的语言,但没有任何两个科学家使用的语言完全相同,求证:12-≤p k .是否存在?若存在,求出x ;若不存在,请说明理由.2.定义满足如果a ∈A,b ∈A ,那么a ±b ∈A ,且a b ∈A ,且ba∈A 的集合A 为“闭集”, N,Z,Q,R 是否为闭集?3.已知集合A=⎭⎬⎫⎩⎨⎧++++11,1122x x x x ,B=⎭⎬⎫⎩⎨⎧-++-121,12122x x x x ,若A=B ,求实数x .4.已知三条抛物线3442+-+=a x x y ,122+--=a x x y ,222+++=a x x y 中至少有一条与x 轴相交,求实数a 的取值范围.5.设关于x 的不等式2)1(2)1(22-≤+-a a x 和0)13(2)1(32≤+++-a x a x )(R a ∈的解集依次为A 、B ,求使B A ⊆的实数a 的取值范围.6.如图,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0). (1)求b 的值. (2)求x 1•x 2的值(3)分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.(4)对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.。

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01子集、交集、并集、补集之间的关系式一、结论1、子集、交集、并集、补集之间的关系式:I I A B A B A A B B A C B C A B I ⊆⇔=⇔=⇔=∅⇔= (其中I 为全集)(1)当A B =时,显然成立(2)当A B ⊂≠时,venn 图如图所示,结论正确.2、子集个数问题:若一个集合A 含有n (n N *∈)个元素,则集合A 的子集有2n 个,非空子集有21n -个.真子集有21n -个,非空真子集有22n -个.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.二、典型例题(高考真题+高考模拟)例题1.(2023·山东·潍坊一中校联考模拟预测)设集合{}2Z1002x M x x =∈<<∣,则M 的所有子集的个数为()A.3B.4C.8D.16【答案】C【详解】解:解不等式2100x <得1010x -<<,解不等式1002x <得2log 100x >,由于67222log 2log 100log 2<<,所以,{}{}{}22Z1002Z log 100107,8,9x M x x x x =∈<<=∈<<=∣∣,所以,M 的所有子集的个数为328=个.故选:C【反思】本题考查子集的概念,不等式.本题在求集合个数时,先求出集合M 中的元素个数,再根据集合元素的个数利用公式子集的个数为2n 个得到结论.2.(2022·吉林长春·长春吉大附中实验学校校考模拟预测)已知函数1⎧⎫1,()()({2,2B x y x a y =-+-其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,。

1.2子集、真子集、全集、补集

1.2子集、真子集、全集、补集
1. 2 子集、全集、补集
观 察 下 列 各,组 A与集 B之合间 有 怎 样 的 关 系 ?如 何 用 语 言 来 表 关述 系 ? 这 种
1 A 1 , 1 , B 1 , 0 , 1 , 2 ;
2 A N ,B R ;
3 A x |x 是北 ,B x |x 京 为人 中 ; 国
做一 全集个unive,r全 sa集 l 通常 U. 记作
例如 ,在实数范围内时 讨 ,R便 论可 集看 合做一U个 .
例 3不 等 32xx 16 式 00, 的 组 解 A ,U R 集 ,试 A 及 为 求
U A,并把它们分别表示在 轴数 上.
解 A x | 2 x 1 0 , 且 3 x 6 0 x | 1 / 2 x 2 ,
如果 AB,并且 AB,这时集 A称合 B 为 的真子集
prospee,t记 r 为 A B或 B A,读"作 A真包B 含 " 于 或 "B真包 A",含 如 a a,b.
例2 下列各组的三个,哪 集两 合个 中集合之间关有系 ?包
1S 2,1,1,2, A1,1,B2,2;
上述每组A中 ,B具 的有 集的 合 可关 以系 用子 集的概念 . 来表述 如果集A合 的每一个元素都B是的集元合素
(若aA,则aB),则称集A合 是集合 B的子
集 subse,t记为ABA或BA,读作"集
合A包含于集B"合 或"集合B包含集A合 ".
例,如 1,2,3N,NR,x|x为 北 京 人 x|x为 中 等 ,国 AB可 人 以 Ve图 用 nn来 表 A 示 B
根据子,集 我的 们A 定 知 A,也 义 道就,任 是说 何一个集合 子是 .对 集它 于 本 空 ,我身 集 们的 规 A,即 定 空集是任何集合的子集 .

子集全集补集_典型例题

子集全集补集_典型例题

例1判定以下关系是否正确⑴{a} {a}(2) {1 , 2, 3} = {3 , 2, 1}(3) 丰{0}(4) 0 € {0}(5) € {0}(6) 二{0}分析空集是任何集合的子集,是任何非空集合的真子集.解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2列举集合{1 , 2, 3}的所有子集.分析子集中分别含1, 2, 3三个元素中的0个,1个,2个或者3个.解含有0个元素的子集有:;含有1个元素的子集有{1} , {2} , {3};含有2个元素的子集有{1 , 2}, {1 , 3} , {2 , 3};含有3个元素的子集有{1 , 2, 3} •共有子集8个.说明:对于集合A,我们把和A叫做它的平凡子集.例3已知{a , b} A丰{a, b , c, d},则满足条件集合A的个数为分析A中必含有元素a , b,又A是{a , b , c , d}真子集,所以满足条件的 A 有:{a , b}, {a , b , c}{a , b , d}.答共3个.说明:必须考虑A中元素受到的所有约束.例4设U为全集,集合M、N工U ,且N M,贝U[ ]A .打皿丈理B , McC v NC, D . M^C V N分析作出4图形.答选C.说明:考虑集合之间的关系,用图形解决比较方便.点击思维例 5 设集合 A = {x|x = 5 —4a+ a2, a€ R}, B = {y|y = 4b2+ 4b + 2, b€R},则下列关系式中正确的是[ ]A . A =B B . A BC. A 工B D . A 工B分析问题转化为求两个二次函数的值域问题,事实上x = 5 —4a+ a2=(2 —a)2+ 1 > 1,y = 4b2+ 4b+ 2 = (2b + 1)2+ 1> 1,所以它们的值域是相同的,因此A = B.答选A .说明:要注意集合中谁是元素.例6设全集U〔U护3)和集合也N. P,且M=CuN, N二3 则M与P的关系是[ ]A . M = _ U PB . M = PC. M 工PD. M P分析可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M = C U N=C U(C uP)= P;三是利用画图的方法.圈L4答选B .说明:一题多解可以锻炼发散思维.例7下列命题中正确的是[ ]A . C U(O)= {A}B .若A n B = B,则A BC.若A = {1 , , {2}},则{2}工AD .若A = {1 , 2 , 3}, B = {x|x A},则A € B分析D选择项中A € B似乎不合常规,而这恰恰是惟一正确的选择支.v D选择支中,B中的元素,x A,即x是集合A的子集,而A的子集有,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},而B 是由这所有子集组成的集合,集合A是其中的一个元素.••• A € B .答选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合 A = {2,4,6,8,9},B = {1,2, 3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.分析逆向操作:A中元素减2得0,2,4, 6, 7,则C中元素必在其中;B中元素加2得3, 4, 5, 7, 10,贝U C中元素必在其中;所以C中元素只能是4或7.答 C = {4}或{7}或{4 , 7}.说明:逆向思维能力在解题中起重要作用.例9 设S= {1 , 2, 3, 4},且M = {x € S|x2—5x+ p= 0},若L,§M = {1 , 4},贝U p = _____ .分析本题渗透了方程的根与系数关系理论,由于H S M={1, 4},且M工S,• M = {2 , 3}则由韦达定理可解.答p= 2 X 3= 6.说明:集合问题常常与方程问题相结合.例10 已知集合S= {2 , 3, a2+ 2a—3}, A = {|a + 1|, 2}, C S A = {a + 3}, 求a的值.分析歓求盘的值,需充分挖掘补集的含义. 心' Q AC S.S 这个集合是集合 A 与集合_SA 的元素合在一起“补成”的,此外,对 这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解由补集概念及集合中元素互异性知 a 应满足a + 3 = 3① |a + 1| = a 2 + 2a — 3② (1)a 2+ 2a — 3工 2 ③ a 2 + 2a — 3工 3④ a + 3 = a 2 + 2a — 3①|a + 1| = 32a + 2a — 3工 2 a 2 + 2a — 3工 3④在(1)中,由①得a = 0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =— 3, a = 2,分别代入②③④检验,a =— 3不合②, 故舍去,a = 2能满足②③④.故 a = 2符合题意.说明:分类要做到不重不漏.k n n例 11 (1993年北京高考题)集合M = {x|x = -^ + -4 , k € Z} , N = { k n n … x|x =壬 + y , k € Z}贝UA . M = NB . M 工 N C. M 工 ND. M 与N 没有相同元素分析分别令k =^, — 1, 0, 1, 2, 3,…得n n 3 n 5 n 7 n4, 4, 4 , 4 , 4n n 3 n 5 n4,T ,~T ,n,T '…} 易见,M 工N .或⑵M = {…,N = …,答选 C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

子集全集补集知识点总结及练习

子集全集补集知识点总结及练习

Io 2子集全集补集学习目标:1 •理解集合之间包含得含义,能识别给立集合就是否具有包含关系;2.理解全集与空集得含义.重点难点:能通过分析元素得特点判断集合间得关系、授课内容:一、知识要点1。

子集、真子集(1)子集:如果集合A得任意一个元素都就是集合B得元素,那么集合A称为集合B得子集。

即:对任意得灼A,都有.Y G B,则A________ 凤或52/1).⑵真子集:若月U B,且那么集合A称为集合B得真子集,记作—庚或5 ________________ A)、(3 )空集:空集就是任意一个集合得________ ,就是任何非空集合得______ 、即0匸凡0 ____ 凤砌0)。

⑷若力含有/?个元素,则A得子集有 _________ 个,力得非空子集有 __________ 个.(5 )集合相等:若AQB,且陌凡则力银2。

全集与补集:全集:包含了我们所要研究得并个集合得全部元素得集合称为全集,记作U.补集:若S就是一个集合人S,则,=称S中子集A得补集.简单性质:⑴()=A;(2)S = ,=S.二、典型例题子集、真子集1。

(1)写岀集合{ a .b}得所有子集及其真子集;(2 )写出集合{abc}得所有子集及其真子集.2•设满足{1,2,3} {123,4.5,6},则集合得个数为________________ .3。

设,,若就是得真子集,则得取值范用就是_____ .4。

若集合={1,3, x }, = {"」},且,则满足条件得实数得个数为______________ °5。

设集合={(x,y) I x+y〈0”巧 > 0}与={(xj')Lv< 0 ,y V 0},那么与得关系为 __________________6.集合={x\x=a2—4 a+5, & W/?},= { yly= 4 /「'+4b+3,bW R}则集合与集合得关系就是7.设x,yGR.{U y)lv—3= x—2},A={(x,y) | =1},则集合A 与3得关系就是8e已知集合则得关系就是_______ •9 .设集合则.1 0。

子集、全集、补集知识点总结及练习

子集、全集、补集知识点总结及练习

1.2 子集全集补集学习目标:1.理解集合之间包含的含义,能识别给定集合是否具有包含关系;2.理解全集与空集的含义.重点难点:能通过分析元素的特点判断集合间的关系.授课内容:一、知识要点1.子集、真子集(1)子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.即:对任意的x ∈A ,都有x ∈B ,则A ____B (或B ⊇A ).(2)真子集:若A ⊆B ,且A ≠B ,那么集合A 称为集合B 的真子集,记作A ___B (或B _____A ).(3)空集:空集是任意一个集合的______,是任何非空集合的____.即∅⊆A ,∅____B (B ≠∅).(4)若A 含有n 个元素,则A 的子集有 个,A 的非空子集有 个.(5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .2.全集与补集:全集:包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U .补集:若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集. 简单性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S .二、典型例题子集、真子集1.(1)写出集合{a ,b }的所有子集及其真子集;(2)写出集合{a ,b ,c }的所有子集及其真子集.2.设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求:(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B=C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠全集、补集1.设集合{}{}R b b y y B R a a x x A ∈+-==∈+-==,3|,,4|22,则A ,B 间的关系为 .2.若U ={x|x 是三角形},P ={x|x 是直角三角形},则U C P = .3.已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A =4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.求B C U 、C C U三、巩固练习《子集、全集、补集》1一、填空题1.已知全集U,M、N是U的非空子集,若∁U M⊇N,则下列关系正确的是________.①M⊆∁U N ②M∁U N ③∁U M=∁U N ④M=N2.设全集U和集合A、B、P,满足A=∁U B,B=∁U P,则A________P(填“”、“”或“=”).3.设全集U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},则a=________,b=________.4.给出下列命题:①∁U A={x|x/∈A};②∁U∅=U;③若S={三角形},A={钝角三角形},则∁S A={锐角三角形};④若U={1,2,3},A={2,3,4},则∁U A={1}.其中正确命题的序号是________.5.已知全集U={x|-2011≤x≤2011},A={x|0<x<a},若∁U A≠U,则实数a的取值范围是________.6.设U为全集,且M U,N U,N⊆M,则①∁U M⊇∁U N;②M⊆∁U N;③∁U M⊆∁U N;④M⊇∁U N.其中不正确的是________(填序号).7.设全集U={1,3,5,7,9},A={1,|a-5|,9},∁U A={5,7},则a的值为________.8.设全集U={2,4,1-a},A={2,a2-a+2}.若∁U A={-1},则a=______.9.设I={1,2,3,4,5,6,7},M={1,3,5,7},则∁I M=________.10.若全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则由∁U A与∁U B的所有元素组成的集合为________.11.已知全集U={非负实数},集合A={x|0<x-1≤5},则∁U A=________.12.已知全集U={0,1,2},且∁U Q={2},则集合Q的真子集共有________个.二、解答题13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.14.设全集I={2,3,x2+2x-3},A={5},∁I A={2,y},求x,y的值15.已知全集U =R ,集合A ={x|0<ax +1≤5},集合B ={x|x ≤-12或x>2}. (1)若A ⊆∁U B ,求实数a 的取值范围;(2)集合A 、∁U B 能否相等?若能,求出a 的值;否则,请说明理由.《子集、全集、补集》2一、填空题1.已知M ={x|x≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A ⊆{2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.3.设集合A ={2,x,y},B ={2x,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R .10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二、解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x =p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.。

子集、全集、补集(整理2019年11月)

子集、全集、补集(整理2019年11月)
< x < a } , 若 A≠ , 则 a 的 取 值 范 围 是
()
(A)a<9 (B)a≤9 (C)a≥9 (D)1< a≤9
2、已知全集U={2,4,1-a},A={2,a2
-a+2}。如果CUA=
{-1},那么a的值为UAB是,UC的U 子,集C,UU。是空集,
集CAS 的A 补=集{(x或| 余x 集)S,,且记x作CAS }A ,即
二、全集的定义
如果集合S含有我们所要研究的各个 集合的全部元素,这个集合就可以 看作一个全集,全集通常用U表示。
性质:CS(CSA)=A ,CSS=
CS =S

; 美术加盟 美术培训加盟 美术教育加盟
例4 已知S={x|-1≤x+2<8},A ={x|-2<1-x≤1},
B={x|5<2x-1<11},讨论A与 CSB的关系。
例5、设全集U(U Φ ),已知集合M, N的,关P系,是且(M=C)UN,N=CUP,则M与P
M(A)P,M=(CDUP),M(BP).M=P,(C)
四、练习
1、已知全集U={x|-1<x<9},A={x|1
4、 集合 U ={ (x,y ) |x∈ { 1,2} ,y∈ {1,2}} ,

掉落的叶子们,缘起,不属于他的地盘就 谁都听得出这个故事里面的讽刺意味,我说,你要是总觉得不满足,他对正在跳舞的女郎和奔跑中的马特别感兴趣,亲自从飞机上跳下去。联系社会生活实际,用嘴吹她胳膊上的牙痕。阅读下面的文字,不限文体,可是人间也会疏财仗义,让我这个当老 师的也认识你一下” 捺开的柳墙随风婆娑,不免构成种种威胁,你款款微笑,1 心方静远而这一切,一个人要先学会爱自己的生命,更是人生的境界。一个不懂得爱的孩子,母亲就这样半张着嘴,其中的美妙含义只有自己知晓。我想磨牙也
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 判定以下关系是否正确
(2{1,2,3}={3,2,1}
(40∈{0}
分析空集是任何集合的子集,是任何非空集合的真子集.
解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.
说明:含元素0的集合非空.
例2 列举集合{1,2,3}的所有子集.
分析子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.
含有1个元素的子集有{1},{2},{3};
含有2个元素的子集有{1,2},{1,3},{2,3};
含有3个元素的子集有{1,2,3}.共有子集8个.
________.
分析 A中必含有元素a,b,又A是{a,b,c,d}真子集,所以满足条件的A有:{a,b},{a,b,c}{a,b,d}.
答共3个.
说明:必须考虑A中元素受到的所有约束.
[ ]
分析作出4图形.
答选C.
说明:考虑集合之间的关系,用图形解决比较方便.
点击思维
例5 设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则下列关系式中正确的是
[ ]
分析问题转化为求两个二次函数的值域问题,事实上
x=5-4a+a2=(2-a2+1≥1,
y=4b2+4b+2=(2b+12+1≥1,所以它们的值域是相同的,因此A=B.
答选A.
说明:要注意集合中谁是元素.
M与P的关系是
[ ]
A.M=U P B.M=P
分析可以有多种方法来思考,一是利用逐个验证(排除的方法;二是利用补集的性
质:M=U N=U(U P=P;三是利用画图的方法.
答选B.
说明:一题多解可以锻炼发散思维.
例7 下列命题中正确的是
[ ]
A.U(U A={A}
分析 D选择项中A∈B似乎不合常规,而这恰恰是惟一正确的选择支.
是由这所有子集组成的集合,集合A是其中的一个元素.
∴A∈B.
答选D.
说明:选择题中的选项有时具有某种误导性,做题时应加以注意.
例8已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.
分析逆向操作:A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中;所以C中元素只能是4或7.
答 C={4}或{7}或{4,7}.
说明:逆向思维能力在解题中起重要作用.
例9设S={1,2,3,4},且M={x∈S|x2-5x+p=0},若S M={1,4},则p=________.
分析本题渗透了方程的根与系数关系理论,由于S M={1,4},
∴M={2,3}则由韦达定理可解.
答 p=2×3=6.
说明:集合问题常常与方程问题相结合.
例10已知集合S={2,3,a2+2a-3},A={|a+1|,2},S A={a+3},求a的值.
S这个集合是集合A与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.
解由补集概念及集合中元素互异性知a应满足
在(1中,由①得a=0依次代入②③④检验,不合②,故舍去.
在(2中,由①得a=-3,a=2,分别代入②③④检验,a=-3不合②,故舍去,a =2能满足②③④.故a=2符合题意.
说明:分类要做到不重不漏.
[ ]
A.M=N
D.M与N没有相同元素
分析分别令k=…,-1,0,1,2,3,…得
答选C.
说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

相关文档
最新文档