单个螺栓连接的强度计算
螺栓连接结构与计算
(2)螺栓的排列 1)并列—简单、整齐、紧凑所用连接板尺寸小,但构 件截面削弱大。 2)错列—排列不紧凑,所用连接板尺寸大,但构件截 面削弱小。
端距 中距 中距 边距 边距
A 并列
B 错列
4
(3)螺栓排列的要求
1)受力要求:
垂直受力方向:为了防止螺栓应力集中相互影响、 截面削弱过多而降低承载力,螺栓的边距和端距不能 太小; 顺力作用方向:为了防止板件被拉断或剪坏, 端距不能太小; 对于受压构件:为防止连接板件发生鼓曲,中 距不能太大。
螺栓连接构造与计算
装配培训教材
张明录
目录
一 二 三
普通螺栓连接构造与计算 普通螺栓抗剪连接 普通螺栓抗拉连接 高强度螺栓连接构造与计算 高强度螺栓抗剪连接 高强度螺栓抗拉连接
四 五
六
一.普通螺栓连接构造与计算
1.普通螺栓的种类和构造要求 (1)普通螺栓种类
按其加工的精细程度和强度分为:A、B、C三个级别。
2)承受静载的可拆卸结构连接;
3)临时固定构件的安装连接。
7
二.螺栓连接的受力形式
A 只受剪力 F
B 只受拉力
C 剪力和拉力 共同作用 F
N
N
8
三.普通螺栓抗剪连接 1.工作性能和破坏形式 (1)工作性能 N N
对图示螺栓连接做抗剪试验,即 N/2 可得到板件上a、b两点相对位移 N/2 δ和作用力N的关系曲线,该曲线 清楚的揭示了抗剪螺栓受力的四 N 个阶段,即: 1)摩擦传力的弹性阶段(0~1段)
d n de dm d
26
(2)螺栓垂直连接件的刚度对螺栓抗拉承载力的影响
1)螺栓受拉时,一般是通
过与螺杆垂直的板件传递, 即螺杆并非轴心受拉,当连 接板件发生变形时,螺栓有 被撬开的趋势(杠杆作用), 使螺杆中的拉力增加(撬力 Q)并产生弯曲现象。连接 件刚度越小撬力越大。试验 证明影响撬力的因素较多, 其大小难以确定,规范采取 简化计算的方法,取 ftb=0.8f(f—螺栓钢材的抗 拉强度设计值)来考虑其影 响。
联接螺栓强度计算方法
联接螺栓的强度计算方法连接螺栓的选用及预紧力: 已知条件:螺栓的s =730MPa 螺栓的拧紧力矩T=49N.m 2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。
其拧紧扳手力矩T 用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。
装配时可用力矩扳手法控制力矩。
公式:T=T1+T2=K**d 拧紧扳手力矩T=49N.m其中K 为拧紧力矩系数,为预紧力Nd 为螺纹公称直径mm 其中K 为拧紧力矩系数,为预紧力Nd 为螺纹公称直径mm 摩擦表面状态K 值 有润滑无润滑 精加工表面 0.1 0.12 一般工表面 0.13-0.15 0.18-0.21 表面氧化 0.2 0.24 镀锌 0.18 0.22 粗加工表面-0.26-0.3取K =0.28,则预紧力=T/0.28*10*10-3=17500N0F 0F 0F 0F承受预紧力螺栓的强度计算: 螺栓公称应力截面面积As (mm )=58mm 2外螺纹小径d1=8.38mm 外螺纹中径d2=9.03mm 计算直径d3=8.16mm螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。
螺栓的最大拉伸应力σ1(MPa)。
=17500N/58*10-6m 2=302MPa剪切应力:=0.5=151MPa根据第四强度理论,螺栓在预紧状态下的计算应力:=1.3*302=392.6MPa强度条件:=392.6730*0.8=58401sF A σ=1σ≤()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]211.34F ca dσσπ=≤预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限的80%。
螺栓连接的强度计算
ri第i个螺栓的轴线到螺栓组对称中心O的距离
横向的工作剪力
距离螺栓对称中心越远,剪切变形量越大
Fi
Fmax
ri rmax
z
Firi T
i 1
Fmax
TrmaxHale Waihona Puke zri2i 1
螺栓连接的强度计算
轴松向连载接荷、还是d紧F12a/连4 接[?]
松连接(没有预紧力) Fa F
紧 连没有接工作载荷1d.312FF/a4a
[]
F0
有工作载荷 Fa F1 F
Fa
F0
Cb Cb Cm
F
横向载荷
普通螺栓连接
C可靠性系数,预紧力F0 (或者残余预紧力F1)
Fa
F0
CF mf
铰制孔螺栓连接(剪切和挤压)
F m d02
4
F
p d0
p
螺栓组连接的受力分析
受横向载荷作用
横向载荷作用线与螺栓轴线垂直; 通过螺栓组的对称中心
F F z
受轴向载荷作用
F F z
压力容器的螺栓连接
N p D2
4
F pD2
4z
受旋转力矩作用
预紧力F0
f摩擦系数
z
fF0 ri kT i 1
联接螺栓强度计算方法
联接螺栓的强度计算方法一.连接螺栓的选用及预紧力:1、已知条件:螺栓的s=730MPa 螺栓的拧紧力矩T=49N.m2、拧紧力矩:为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。
其拧紧扳手力矩T用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2。
装配时可用力矩扳手法控制力矩。
公式:T=T1+T2=K*F* d拧紧扳手力矩T=49N.m其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm其中K为拧紧力矩系数,F为预紧力N d为螺纹公称直径mm摩擦表面状态K值有润滑无润滑精加工表面0.10.12一般工表面0.13-0.150.18-0.21表面氧化0.20.24镀锌0.180.22粗加工表面-0.26-0.3取K=0.28,则预紧力F=T/0.28*10*10-3=17500N3、承受预紧力螺栓的强度计算:螺栓公称应力截面面积As(mm)=58mm2外螺纹小径d1=8.38mm外螺纹中径d2=9.03mm计算直径d3=8.16mm 螺纹原始三角形高度h=1.29mm 螺纹原始三角形根部厚度b=1.12mm紧螺栓连接装配时,螺母需要拧紧,在拧紧力矩的作用下,螺栓除受预紧力F0的拉伸而产生拉伸应力外,还受螺纹摩擦力矩T1的扭转而产生扭切应力,使螺栓处于拉伸和扭转的复合应力状态下。
螺栓的最大拉伸应力σ1(MPa)。
1sF A σ==17500N/58*10-6m 2=302MPa 剪切应力:=0.51σ=151 MPa根据第四强度理论,螺栓在预紧状态下的计算应力: =1.3*302=392.6 MPa强度条件:=392.6≤730*0.8=584预紧力的确定原则:拧紧后螺纹连接件的预紧应力不得超过其材料的屈服极限s σ的80%。
4、 倾覆力矩倾覆力矩 M 作用在连接接合面的一个对称面内,底板在承受倾覆力矩之前,螺栓()2031tan 216v Td F T W dϕρτπ+== 1.31ca σσ≈[]0211.34F ca d σσπ=≤已拧紧并承受预紧力F 0。
螺栓强度计算
――受力不均匀因数,受压螺母 =1,受拉螺母 =1.5~1.6;
――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4查得;
――安全因数,控制预紧力 =1.5~2.5,不控制预紧力 =2.5~5。
表1螺栓连接
一、螺栓受力分析:
螺栓为受轴向载荷紧螺栓连接(动载荷),受轴向载荷紧螺栓连接(动载荷)的基本形式如下图所示:
二、受轴向载荷紧螺栓连接(动载荷)的基本公式:
(1)许用应力计算公式:
(2)强度校核计算公式:
式中:
――轴向载荷,N;
――螺栓小径,mm,查表获得;
――相对刚度,按表1选取;
――尺寸因数,按表2查得;
表3缺口应力集中因数
表4抗压疲劳极限
三、计算内容:
相关参数如下表:
(1)许用应力计算:
(2)强度校核计算:
四、结论:
由上述计算可知,螺栓强度满足要求。
螺栓强度计算
三、 普通螺栓连接的受力性能和计算
(一)螺栓连接的受力形式
F N F
A 只受剪力
B 只受拉力
C 剪力和拉 力共同作用
(二)普通螺栓抗剪连接 1.工作性能
N/2 N/2
a b
O
N
N
N
4 3
N
1
2
δ
1)摩擦传力的弹性阶段(0~1段) 2)滑移阶段(1~2段)
N/2
a b
N
N/2
3)栓杆传力的弹性阶段(2~3段) 4)破坏阶段(3~4段)
b Nv
= nv
πd
2 b fv
4
nv—剪切面数目;d—螺栓杆直 径; fvb—螺栓抗剪强度设计值; b b 承压承载力: N c = d ∑ t f c
d
∑t—连接接头一侧承压构件总厚度的较小值。 fcb—螺栓孔壁承压强度设计值;
b b b 单栓抗剪承载力: Nmin = min Nv,Nc
{
}
剪切面数目nv
为防止孔壁的承压破坏,应满足:
2
2
NV
b NV
1
b a
1 Nt Ntb
0
Nv ≤
b Nc
V
3、当有承托承担全部剪 力时,螺栓群按受拉连接计 算。
M
刨平顶紧 承托(板) 连接角焊缝
4.7 高强度螺栓连接计算
由45号、40B和20MnTiB钢加工而成,并经热处理 45号-8.8级; 40B和20MnTiB-10.9级
i =1 i =1
2 N 1Tx
+ N 1F ≤
2
b N min
(三)普通螺栓抗拉连接 1、破坏形式 栓杆被拉断 2、单个普通螺栓的抗拉承载力设计值
螺纹连接强度计算
6)线 数 n ——螺纹螺旋线数目,一般为便于制造n≤4 螺距、导程、线数之间关系:S=nP
螺纹连接强度计算
7)螺旋升角ψ——中径圆柱面上螺旋线的切线与垂直于螺旋
8)牙型角α ——螺线a纹r轴c轴t线g向L的平平/面面d内的2螺夹纹角a牙rc型tg两侧ndP 边2的夹角
a)减载销 b)减载套筒 c)减载键
螺纹连接强度计算
(2)、轴向载荷受拉紧螺栓联接强度计算 ①工作特点:工作前拧紧,有F’;工作后加上工作载荷F 工作前、工作中载荷变化 ②工作原理:靠螺杆抗拉强度传递外载F
③解决问题: a) 保证安全可靠的工作,F’=? b) 工作时螺栓总载荷, F0=? ④分析: 图1,螺母未拧紧 螺栓螺母松驰状态
9)牙型斜角β——螺纹牙的侧边与螺纹轴线垂直平面的夹角
ddd dd2d22 dd1d11
PPP LL=L=n=nPnP(P(n(n=n2=)2=)2) LLL
ddddd2d22dd1d11
hhh
螺纹连接强度计算
§6—1 螺纹联接的类型及螺纹联接件
一、螺纹联接主要类型
1、螺栓联接 a) 普通螺栓联接(受拉螺栓连接)——被联接件不太厚,螺杆带
10 12200° C° C11 1 15 5° °
bb
3 30 0° °应槽用中时,b b带外d翅舌d0D0D垫嵌11 圈入内圆舌螺1155° 嵌母°入的轴槽
H
3 内30 0° ° ,螺3300° 母°即被锁bb 紧
HH
3300°°
斜斜 垫垫 圈圈
平 h 平 h 垫垫圈圈
斜斜垫垫圈圈
hh
d1 d1
螺栓组连接强度设计
用4.6级的Q235螺柱,拧紧时控制预紧力,取1.5 ,于是(P86表5-8、P87表5-10)
[] sS 24 1 .5 0 1M 6a 0P
由强度条件得:
d1 4 1 [ .3]F 2 5.21 164 00 .26 17.2 0m 72m
查手册,取M16 (其d1=13.835>计算值12.07)。
K sT
z
f ri
i1
ca 1 d .3 1 2 F 0 /4 或d 14 1 .3 F 0 d
2)铰制孔用螺栓连接
变形量越大,则所受工作剪力越大
Fi Fmax ri rmax
Fi
Fmax rmax
ri
ri rm ax Fmax
Fi
力矩T 平 F 1r1衡 F 2r2 : F zrz
即T : F rm ma a(x r x 12r2 2rz2)
受力最大力 螺F : m 栓 axL1 2 的 M L2 2 工 L m ax L 作 2 zM 拉 zL L m 2 i ax
受力最大螺栓 :F的 2F总 0C 拉 bC bC 力 mFmax i1
ca 1 d .3 1 2 F /2 4 或d 14 1 .3 F 2 d
校核接合面的强度计算: 底板受力分析 受翻转力矩前,接合面挤压应力分布图 F0
五、采用合理的制造工艺方法: 1)冷墩头部、滚压螺纹 2)氮化、氰化、喷丸等处理。
谢谢
F2 m
B1
F
C1
F2
F1
小结: 1.在实际工作中,螺栓所受的工作载荷往往是以上四中
简单形式的不同组合,但不论受力多复杂,都可以将 复杂状态简化成以上四中简单的受力状况,先分别求 螺栓的工作载荷,然后向量迭加,就可求出螺栓所受 的总工作载荷;
螺栓强度计算.doc
15.2.1 单个螺栓连接的强度计算螺纹连接根据载荷性质不同,其失效形式也不同:受静载荷螺栓的失效多为螺纹部分的塑性变形或螺栓被拉断;受变载荷螺栓的失效多为螺栓的疲劳断裂;对于受横向载荷的铰制孔用螺栓连接,其失效形式主要为螺栓杆剪断,栓杆或被连接件孔接触表面挤压破坏;如果螺纹精度低或连接时常装拆,很可能发生滑扣现象。
螺栓与螺母的螺纹牙及其他各部分尺寸是根据等强度原则及使用经验规定的。
采用标准件时,这些部,然后按照标准选定螺纹公称直分都不需要进行强度计算。
所以,螺栓连接的计算主要是确定螺纹小径d1径(大径)d,以及螺母和垫圈等连接零件的尺寸。
1. 受拉松螺栓连接强度计算松螺栓连接装配时不需要把螺母拧紧,在承受工作载荷前,除有关零件的自重(自重一般很小,强度计算时可略去。
)外,连接并不受力。
图15.3所示吊钩尾部的连接是其应用实例。
当螺栓承受轴向工作载荷 F (N)时,其强度条件为(15-6)(15-7)或——螺纹小径,mm;式中: d1[σ]——松连接螺栓的许用拉应力,Mpa。
见表15.6。
图15.32.受拉紧螺栓连接的强度计算根所受拉力不同,紧螺栓连接可分为只受预紧力、受预紧力和静工作拉力及受预紧力和变工作拉力三。
①只受预紧力的紧螺栓连接右图为靠摩擦传递横向力F 的受拉螺栓连接,拧紧螺母后,这时栓杆除受预紧力F`引起的拉应力σ=4 F` /π2 d1外,还受到螺纹力矩T1引起的扭转切应力:对于螺栓故螺栓或式②受预紧力和工作载荷的紧螺栓连接。
图15.5所示压力容器螺栓连接是受预紧力和轴向工作载荷的典型实例。
这种连接拧紧后螺栓受预紧力F`,工作时还受到。
单个螺栓连接的强度计算
1.3 4 20000 200
=12.86mm
查标准:
M16
d1=13.835mm
2、受预紧力和工作拉力的紧螺栓连接 强度计算
预紧力FP
FP
F
工作拉力
D / 4 F p z
2
螺栓承受的总拉力
FQ F p F
D
?
FQ F p F
气缸螺栓连接图
FQ ?
Fp
Fp
b
螺栓受力与变形
变形
m
变形
被连接件受力与变形
单个紧螺栓连接受力变形图
力 F
FQ
Q
F F
' p
Cb
Fp
Fp
F
F tanb Cb
b
tan b C m
Fp
m
tan m
F
F F Cm
Cb F F Cb Cm
b
b
m
F p
F p
未拧紧
已拧紧,未受工作载荷 螺栓拉伸;被连接件压缩
b
m
F p
'
m
F p
1
2
F
FP
F p
残 余 预 紧 力
未拧紧
已拧紧,未受工作载荷
再受工作载荷F
螺栓继续拉伸;被连接件要恢复变形,压缩量减小
螺栓所受的总拉力 F
Q
F F
' p
FQ F p F
d
2 1
[ ]
4
铰制 螺栓
4
F
d 0 / 4
2
F p p d 0 Lmin
第三节单个螺栓连接的强度计算ppt课件
Ks为防滑系数,设计中可取Ks =1.1~1.3。
2)铰制孔螺栓连接
假设每个螺栓的受力相等,则单个螺栓所受的横向工作剪力F为:
二、螺栓组连接的受力分析
1、受横向载荷的螺栓组连接
5-5螺栓组连接设计与受力分析
2、受横向扭矩螺栓组连接
1)普通螺栓连接
二、螺栓组连接的受力分析
根据底板的力矩平衡条件得:
2、受横向扭矩螺栓组连接
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
3、受轴向载荷的螺栓组连接
求每个螺栓的工作载荷
求单个螺栓所受总载荷
强度校核
二、螺栓组连接的受力分析
5-5螺栓组连接设计与受力分析
4、受翻转力矩的螺栓组连接
特点:M在铅直平面内,绕O-O回转,只能用普通螺栓。
F1
F 2
螺栓所受的总拉力:
F2 = F0+ F
?
×
此时,连接中各零件的受力关系属静不定问题
未知力有两个:
F2 — 总拉力
F1 — 残余预紧力
须根据静力平衡方程和变形协调条件求解
三、紧螺栓连接
螺栓预紧时的受力分析
未承受工作载荷时:
F0
F0
F0
F0
F
F
F 2
F″
F″
F 2
δ2
δ1
△δ1
△δ2
T
变形协调条件: △δ1 = △δ2 = △δ
挤压强度条件为:
Lmin——螺栓杆与孔壁接触表面的最小长度
设计时,按上述公式分别计算出d 0 ,取大值
三、紧螺栓连接
3、螺栓承受剪切力(采用铰制孔用螺栓)
螺纹连接例题
F0
F
F1 2511 1.5 F 1674
符合密封性要求
F1 F2
变形
例4:一横板用两个普通螺栓联在立
柱上,已知 P=4000N,L=200mm,
a=100mm,取摩擦系数 f=0.15, 防滑
系数 KS 1.2 , 300MPa,
试求螺栓小径。
L
P
a
例4解: 1、将外力P 移至接合面形心
例1 图示螺栓联接,螺栓个数为3个,螺纹为 M12(d1=10.1mm), 螺栓 材料许用拉应 力[]=160MPa,被联接件接合面间的摩擦 系数f=0.2,若防滑安全系数Ks=1.2,试计算 该联接允许的静载荷F=?
F/2 F
F/2
单个螺栓联接的强度计算
解:1) 单个螺栓可承受的许用预紧力
ca
1877N
F i1
1 上面螺栓的轴向工作载荷:
F Fa Fmax 919 1877 2796N
Fm a x
解:1.螺栓的受力分析
LM
P2
F1
▲
F v
P1
Fh 联接不滑移条件:
f
(ZF0
Cm Cb Cm
Fh )
KS P2
F 轴向载荷影响联接
的不滑移条件
查表f 0.16,Ks
预紧力
F0
KsF if
1.2 3000 24000N 1 0.15
螺栓的强度条件
ca
1.3F0
d1
4
d1
1.3 4F0
1.3 4 24000 15.76mm
第三节 单个螺栓连接的强度计算
被连接件所受压力减量:F0 F1
被连接件缩短减量:2 被连接件总的压缩量:m 2
变形协调条件: △λ1 = △λ2 = △λ
静力平衡条件: F 2 = F1 + F
螺栓刚度: Cb = F0/ λb =tgθb
被连接件刚度: Cm = F0/ λm =tgθm
F —横向载荷
z—接合面数目
如给F定值,则根据上式可求出预紧力F0
三、紧螺栓连接 1、只受预紧力的螺栓连接
三、紧螺栓连接
1、只受预紧力的螺栓连接
(2)螺栓强度计算
螺栓除受预紧力的拉伸而产生拉伸应力外,还受拧紧螺纹时 ,因螺纹摩擦力矩而产生的扭转切应力,使螺栓处于拉伸与扭 转的复合应力状态下。因此在进行强度计算时,应综合考虑拉 伸应力和扭转切应力的作用。
轴端所需的螺纹直径。
(1)
2f
F0
D0 2
K s Ft
D 2
得F0
Ks Ft D 2 fD0
1.2 400 500 2 0.15 150
5333 .3N
(2) d1
41.3F0
[ ]
41.35333.3 12.130mm
60
查GB-196-81,取M16( d1=13.835mm>12.130mm)
变载荷强度计算
三、紧螺栓连接
3、螺栓承受剪切力(采用铰制孔用螺栓)
螺栓杆与孔壁之间无间 隙,接触表面受挤压; 在连接接合面处,螺栓 杆则受剪切。因此,应 分别按挤压及剪切强度 条件计算。
按照剪设取切大计强值时度,条件按:上述公 式 分d0F别2 / 计4 算[出] dM0Pa,
钢结构连接计算公式总汇
钢结构连接计算公式总汇1:钢结构连接计算公式总汇本旨在提供钢结构连接计算公式的总汇,以便工程师在进行钢结构计算设计时能够准确、高效地进行连接设计。
以下是各类常用的钢结构连接计算公式详细细化。
1. 强度计算公式1.1 焊缝强度计算公式在焊缝连接设计中,可以使用以下强度计算公式:σ = k1 × k2 × k3 × α × A其中,σ为焊缝的强度;k1为材料强度的修正系数;k2为焊缝形状的修正系数;k3为焊缝质量的修正系数;α为焊缝强度的系数;A为焊缝的有效截面积。
1.2 螺栓强度计算公式在螺栓连接设计中,可以使用以下强度计算公式:σ = k1 × k2 × α × A其中,σ为螺栓的强度;k1为材料强度的修正系数;k2为螺栓形状的修正系数;α为螺栓强度的系数;A为螺栓的有效截面积。
2. 刚度计算公式2.1 焊缝刚度计算公式焊缝连接的刚度计算可以使用以下公式:k = k1 × k2 × k3 × α × E × I / L 其中,k为焊缝的刚度;k1为材料刚度的修正系数;k2为焊缝形状的修正系数;k3为焊缝质量的修正系数;α为焊缝刚度的系数;E为材料的弹性模量;I为焊缝截面惯性矩;L为焊缝的长度。
2.2 螺栓刚度计算公式螺栓连接的刚度计算可以使用以下公式:k = k1 × k2 × α × E × A / L其中,k为螺栓的刚度;k1为材料刚度的修正系数;k2为螺栓形状的修正系数;α为螺栓刚度的系数;E为材料的弹性模量;A为螺栓的截面积;L为螺栓的长度。
附件:1. 强度计算公式表格2. 刚度计算公式表格法律名词及注释:1. 材料强度的修正系数:根据不同材料的特性,经过实验和理论分析得出的修正系数,用于修正材料在实际工程中的强度。
2. 焊缝形状的修正系数:根据焊缝的形状特征,经过实验和理论分析得出的修正系数,用于修正焊缝在实际工程中的强度。
螺栓连接的计算方法
承压型 —— 连接件间允许相互滑动。传力开始 时在标准荷载作用下动连接件间无滑动,剪力由摩 擦力和螺杆抗剪共同传递。但当荷载很大时,连接 件间有较大塑性变形。接近破坏时,连接件间有相 对滑动,摩擦只起推迟滑移作用。剪力由螺杆传递, 其特点与普通螺栓相同。因此,有与普通螺栓相同 的极限状态 — 螺栓剪坏,孔壁挤压坏,构件被拉断。 变形大,不适于受动荷载的连接。
o
1
P=768kN
一个摩擦型高强螺栓的抗剪设计承载力按式(3-55) 并引入后计算, b Nv = 0.9nt(P-1.25Nt) =0.89×0.9×1×0.45(155-1.25×48)=34kN 一个螺栓承受的剪力 b Nv=V/n=665/16=41.6kN>Nv = 34kN (不可)
(2).构件净截面强度验算
N
+ + N+ + + + + + + + + +
N
N
N′
N′
A
孔前传力分析
N n1 N (1 0.5 ) f An n An
受剪连接计算 一个螺栓抗剪承载力 连接所需螺栓数
n N b NV
b NV 0.9nf μ P
净截面强度:考虑50%孔前传力
N, n1 N σ = =( 1 0.5 ) f An n An
高强螺栓群在扭矩作用下的计算公式与普通螺 栓同。高强螺栓的直径系列、连接中螺栓的排列及 有关构造要求与普通螺栓同。
V=60KN,选用10.9级M20摩擦型高强螺栓,钢材选用 Q235钢,接触面采用喷砂处理。验算此连接强度
e=300
改用M22,孔24,P=190kN,于是=0.906,这样: b Nv = 0.9nt(P-1.25Nt) =0.906×0.9×1×0.45(190-1.25×48)=48kN b Nv=41.6kN<Nv = 48kN (可)
(完整版)螺纹联接练习试题与答案9
螺纹连接练习第一节螺纹基础知识1、标记为螺栓GB5782-86 M16× 80 的六角头螺栓的螺纹是形,牙形角等于60 度,线数等于 1 ,16 代表公称直径80 代表螺栓长度。
2、双头螺柱的两被联接件之一是螺纹孔,另一是光孔3、采用螺纹联接时,若被联接件之一厚度较大,且材料较软,强度较低,需要经常装拆,则一般宜采用 B 。
A 、螺栓联接B 、双头螺柱联接C 、螺钉联接4、螺纹副在摩擦系数一定时,螺纹的牙型角越大,则D。
A、当量摩擦系数越小,自锁性能越好B、当量摩擦系数越小,自锁性能越差C、当量摩擦系数越大,自锁性能越差D、当量摩擦系数越大,自锁性能越好5、螺纹的公称直径是指螺纹的大径,螺纹的升角是指螺纹中径处的升角。
螺旋的自锁条件为< v ,拧紧螺母时效率公式tantan( v)6、三角形螺纹主要用于连接,而矩形、梯形和锯齿形螺纹主要用于传动。
1)普通螺栓连接1) 螺栓安装方向不对,装不进去,应掉过头来安装;2) 普通螺栓连接的被联接件孔要大于螺栓大径,而下部被连接件孔与螺栓杆间无间隙;3) 被连接件表面没加工,应做出沉头座并刮平,以保证螺栓头及螺母支承面平整且垂直于螺栓轴线,避免拧紧螺母时螺栓产生附加弯曲应力;4) 一般连接;不应采用扁螺母;5) 弹簧垫圈尺寸不对,缺口方向也不对;6) 螺栓长度不标准,应取标准长z=60 mm;7) 螺栓中螺纹部分长度短了,应取长30 mm。
(2) 螺钉连接主要错误有:1) 采用螺钉连接时,被连接件之一应有大于螺栓大径的光孔,而另一被连接件上应有与螺钉相旋合的螺纹孔。
而图中上边被连接件没有做成大于螺栓大径的光孔,下边被连接件的螺纹孔又过大,与螺钉尺寸不符,而且螺纹画法不对,小径不应为细实线;2) 若上边被连接件是铸件,则缺少沉头座孔,表面也没有加工。
(3) 双头螺柱连接主要错误有:双头螺柱的光杆部分不能拧进被连接件的螺纹孔内,M12不能标注在光杆部分;锥孔角度应为120。
螺栓强度计算
螺栓连接的强度计算【一】能力目标1.掌握单个螺栓连接的强度计算2.螺栓组连接的设计【二】知识目标2.掌握单个螺栓连接的受力分析3.螺栓组连接的受力分析和结构设计【三】教学的重点与难点重点:掌握单个螺栓连接的强度计算。
难点:螺栓组连接的受力分析和结构设计。
【四】教学方法与手段多媒体教学,联系工程实例。
【五】教学任务及内容一、单个螺栓连接的强度计算(一)受拉螺栓连接1、松螺栓连接特点:只能用普通螺栓,有间隙,外载沿螺栓轴线,螺栓杆受P拉伸作用。
螺栓工作载荷为:F=PP——轴向外载σ= F/A=4F/Πd14≤〔σ〕2、紧螺栓连接(1)只受预紧力的紧螺栓连接螺栓螺纹部分处于拉伸与扭转复合应力状态危险截面上的拉伸应力σ=F0/A危险截面上的扭转剪应力τ=16T1/Πd13根据第四强度理论,当量应力σ=1.3σ≤〔σ〕(2)受横向载荷的紧螺栓联接(3)承受轴向静载荷的紧螺栓连接(二)受剪螺栓连接σp ≤〔σp 〕 τ≤〔τ〕二、螺栓组联接的设计与受力分析总设计思路:螺栓组结构设计(布局、数目)→螺栓组受力分析(载荷类型、状态、形式)→求单个螺栓的最大工作载荷(判断那个最大)→按最大载荷的单个螺栓设计(求d 1—标准)→全组采用同样尺寸螺栓(互换目的)(一)螺栓组的结构设计1.从加工看,联接接合面的几何形状尽量简单,从而保证联接接合面受力比较均匀。
2.受力矩作用的螺栓组,布置螺栓应尽量远离对称轴,同一圆周上螺栓的数目,应采用4、6、8等偶数,以便于在圆周上钻孔时的分度和画线。
3.应使螺栓受力合理,对于普通螺栓在同时承受轴向载荷和较大横向载荷时,应采用销、套筒、键等抗剪零件来承受横向载荷,以减小螺栓预紧力及其结构尺寸。
4.螺栓的排列应有合理的间距、边距。
布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。
扳手空间的尺寸可查阅有关标准。
(二)螺栓组联接的受力分析前提(假设):①被联接件不变形、为刚性,只有地基变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺纹连接
控制拧紧力矩方法 1)拧紧程度——通常由经验控制 2)重要联接——根据联接要求决定 按T计算式 计算出T的值 。在拧紧时用侧力矩扳手或定力 矩扳手控制T
使用测力矩扳手 测力矩扳手原理:利用弹性
件的变形量正比于拧紧力矩的原 理,借助手柄上的指针指示刻度 扳上拧紧力矩值,以控制F’。
T T1 T2 0.2Fd
螺纹连接
F/—预紧力;d2—螺纹中径; /—当量摩擦角 ;
式中
fc—螺母与被联接件支承面间摩擦系数,无润滑时 取fc=0.15;
rf—支承面摩擦半径rf≈(D1+d0)/4 ;
D1、d0—螺母支承面的外径、内径。
简化计算:对M10-M68的粗牙普通螺纹 取 f /=tg / =0.15 , fc=0.15 得:T≈0.2F/d N.mm
联接的强度计算内容,根据其可能的失效形式而定。
螺纹联接的受载形式基本分为: 轴向载荷(沿轴线方向): 采用受拉螺栓 横向载荷(⊥轴线方向): 可用受剪螺栓,也可用受拉螺栓。
下面按螺栓类型和受载形式的不同,分别讨论其强度计算方 法。
单个螺栓连接的强度计算
受拉螺栓连接的强度计算 受拉螺栓的强度
受拉螺栓的失效形式主要是:
经分析推导可知: 0.5
T1
F tan( ) d 2
2
WT
π d12
16
仅受预紧力的螺栓联 接
单个螺栓接的强度计算
按第四强度理论计算当量应力,则
e 2 3 2 2 3 (0.5 )2 1.3
强度条件为:
e
1.3F
d12 4
减载装置
a) 减载销
b) 减载套
二、受轴向工作载荷的受拉螺栓连接
1. 受力分析
如图所示的气缸盖上的联接
F
即属此种类型。
虽然,这种螺栓是在受预紧力
F′的基础上,又受工作拉力F 。
但是,螺栓的总拉力
F0 F F
?
单个螺栓连接的强度计算
承受轴向载荷的紧螺栓联接
Dp D
承受轴向载荷的紧螺栓2
使用定力矩扳手 定力矩扳手原理:当拧紧力 矩超过规定值时,弹簧压缩,卡 盘与圆柱销之间打滑,如果继续 转动手柄,卡盘不再回转,拧紧 力矩的大小可用螺钉调整弹簧压 力来加以控制。
螺纹连接
螺纹连接的防松
螺纹连接
1、螺纹联接多采用单线普通螺纹,一般都具有自锁性;
2、在静载荷和工作环境温度变化不大的情况下不会自动松 脱。但在振动、冲击、变载荷或温度变化很大时,
3、联接就有可能松脱。为保证联接安全可靠,设计时必须 考虑放松问题。
防松方法: 摩擦防松 机械防松 永久止动
§14.3 单个螺栓连接的强度计算
受拉螺栓连接的强度计算 铰制孔螺栓(受剪螺栓)连接的强度计算 螺纹连接件的许用应力
单个螺栓连接的强度计算
本节以螺栓联接为代表,讨论强度计算问题,其§方5-3 单法个螺栓和联接的强度 结论也适用于其他形式的螺纹联接。 螺栓联接强度计算的目的是:确定防止失效所需的螺栓直径。
螺纹连接的类型和螺纹紧固件的材料和精度
一、螺纹连接的类型
螺纹连接
1. 螺栓联接
2. 双头螺柱联接
工作原理: 螺栓受拉力,承 受外载
应用: 被联接件较厚, 且常拆卸处
螺纹连接
3. 螺钉联接
工作原理: 螺栓受拉承受外载
应用: 一被联件较厚, 但不常拆卸处
螺纹连接
4. 紧定螺钉联接
工作原理:
靠Fu 承受外载
πd2 πd2
螺纹
常用螺纹
按轴向剖面形状
(螺纹的牙型)
三角形螺纹:常用于连接, 梯形螺纹: 常用于传动 锯齿形螺纹:常用于传动,单向受载
按螺旋线数目分 单头螺纹: 常用于连接, 多头螺纹: 常用于传动
左旋
按螺旋线绕行方向分 右旋(常用)
左旋
右旋
§14.2 螺纹连接
螺纹连接的类型和螺纹紧固件的材料及精度 螺纹连接的预紧及其控制 螺纹连接的防松
一、螺纹连接的类型
1. 螺栓联接
螺纹连接
螺纹连接的预紧及其控制
螺纹连接
预紧: 安装时将螺母拧紧,使联接受到一定的预紧力F 。
拧紧目的:提高螺栓联接刚 性、紧密性、紧固性要求;以 及防松
拧紧力矩和预紧力
拧紧力矩T
螺纹间摩擦力矩
T1
F
d2 2
tg(
)
支承面处与螺母间摩擦力矩 T2 = fc F/ rf
螺纹部分的塑性变形。 螺杆的疲劳断裂。
一、受横向工作载荷的受拉螺栓连接
1)仅受预紧力 F′的紧螺栓联接
ms F KFs
Fs为横向工作载荷;s为被连接件结合 面间的摩擦因数,m为结合面个数;K为
可靠性因子,通常K=1.1~1.3
F′引起的拉应力:
F
4
d12
拧紧力矩 M 引起的切应力
应用: 薄壁件联接
螺纹连接
二、螺纹紧固件
螺栓、螺钉、双头螺柱、螺 母、垫圈、 防松零件等
螺钉、螺母、垫圈 标准化
按公差等级分成A、B、C三级。 A级的公差等级最高,C级公差 等级较低
螺栓、螺母、螺钉和双头螺柱 的常用材料有Q215、Q235、35 和45钢。
螺纹连接
螺纹联接件实物
螺纹连接的预紧及其控制
第十四章 螺纹连接
•螺纹 •螺纹连接 •单个螺栓连接的强度计算 •螺栓组连接的设计 •提高螺纹连接强度的措施
§14.1 螺纹
螺纹的主要参数 常用螺纹
螺纹的主要参数 大径d -是螺纹的公称直径。
螺纹
§5-1 螺纹
小径d1-常用于强度计算。 中径d2-常用于几何计算。 牙型角a-在轴向截面内,
螺纹牙型两侧边的夹角。
设计式为:
d1
4 1.3F
——验算用
——设计用。 查手册,选螺栓
当s=0.15、m=1、K=1.2时,则F =8Fs。
可见,要想传递一定的外载荷,需在螺
栓上施加8倍于外载荷的预紧力,这将
导致螺栓与连接的结构尺寸过大。
为避免上述缺点可采用减载装置,如减 载销、减载套等,或采用铰制孔用螺栓 连接。
牙型高度h-牙顶和牙底
间垂直于轴线的距离
螺距P -中径线上,相邻两螺纹
牙上对应点间的轴向距离。
线数 n -螺纹的螺旋线数目。
螺纹升角-螺旋线的切线与
垂直于螺纹轴线的平面间的
导程 S -沿螺纹上同一条螺旋线
夹角。
转一周所移动的轴向距离,S = nP。
螺纹旋向分左旋和右旋,常用右旋螺纹
tan S nP