数学概念与命题教学

合集下载

第五章 数学概念、命题与问题解决教学

第五章 数学概念、命题与问题解决教学

第五章 数学概念、命题与问题解决教学[教学目标] 了解数学概念的意义和结构,概念的定义和分类;理解数学概念之间的关系、定义方式、定义的规则以及分类的基本方法和规则,使学生明确数学概念教学的重要性、基本要求,并对概念教学进行若干教法探讨。

[学时] 8[教学方法] 课堂讲解;课外阅读[重点、难点] 数学概念的意义、定义方式和分类的基本方法;定义的规则,分类的规则,概念的限制与概括[教学过程]§5.1 数学概念及其教学一、数学概念(Mathematical Concept)的意义和结构概念是最基本的思维形式的一种,它与其他形式—判断、推理—是有密切联系的。

人们必须先具有关于某事物的概念。

然后才能作出关于某事物的判断、推理。

概念是判断推理的基础。

另一方面,人们通过判断、推理所获得的新认识,又要形成新的较深刻的概念,所以概念又是判断、推理的结晶。

科学史表明:“科学是与概念并肩成长起来的”。

概念具有如此重要的作用,我们在学习和数学过程中必须十分重视对概念的理解和掌握。

1、数学概念的意义[引题]师问:“等式12)1(22++=+x x x 是不是方程?”生答:“不是。

”“为什么?”“因为这个等式是个恒等式,不论x 取什么数,等式都成立,可以这个等式不是方程。

”师问:“什么叫方程?”生答:“含有未知数的等式叫做方程。

”师问:“等式12)1(22++=+x x x 含有未知数吗?”生答:“含有未知数x ,这是方程。

原来我认为含有未知数的恒等式不是方程,这是不对的。

”师问:“既然这个等式是方程,那么,这个方程有多少根?”生答:“有无穷多解。

”师问:“对。

有的方程有有限个解,例如:x +1=0只有一个解;有的方程无解,例如: 012=+x 在实数范围内无解;有的方程有无穷多解,方程12)1(22++=+x x x 就是一例。

”——以上对话是教师在引导学生明确“方程”这个概念的内涵与外延。

什么是概念的内涵和外延?先从“概念”谈起。

数学概念与命题教学40张精美

数学概念与命题教学40张精美
2 a a2 | a | 与( a)
2015/10/14
23
3.注意概念的对比和直观化
3)教材一般从正面阐述概念——注意引导学生从正 反两方面认识概念 定义域和值域相同的两个函数相同? 反例: f ( x ) ( x 1)2 与g( x) ( x 1)2 , x {1,0,1}
概念同化的心理过程:
阅读 定义 以旧观念来明确 定义的内涵外延 区分和联系 新旧概念
概念的同化:
在数学中,大多数概念的定义方式:属概念(在概念的 从属关系中,外延大的概念称为属概念)+种差(即关键属 性 )。 譬如“梯形”及其学习方式?
"一组对边平行而另一组对边不平行的四边形叫做梯形" 属概念:四边形; 种差:一组对边平行而另一组对边不平行
第三阶段—对象(Object)阶段。 然后可以把函数过程上升为一个独立的对
象来处理。
比如,函数的加减乘除、复合运算等。
第四阶段—图式(Scheme)阶段。
此时的函数概念以一种综合的心理图式而
存在于脑海中,在数学知识体系中占有特 定的地位,这一心理图式含有具体的函数 实例、抽象过程、完整的定义,乃至和其 它概念的区别和联系对应,所以这个“比”
3.注意概念的对比和直观化
1)平行相关的概念——用类比 譬如? 分数与分式; 数列极限与函数极限; 平面几何与立体几何; 椭圆、双曲线、抛物线;
2015/10/14
22
3.注意概念的对比和直观化
2)形式相似、差别较小的概念——比较其内涵和外延 譬如: “任一直线和平面所称的角”VS“任一斜线和平 面所成的角”。都是角,但范围有差别; “不等式的解”较难理解,可将它和“方程的解” 进行比较; 区别或联系?

7.2定义与命题说课稿

7.2定义与命题说课稿

《7.2定义与命题》说课稿一、教材分析1、教材地位与作用本节课是北师大版初中数学八年级上册第七章第二节第二课时的内容,是初中数学的重要内容之一。

本节课是学生第一次接触证明,它为学生学习后面的各种几何证明奠定了基础。

因此本节课在教材中具有非常重要的作用。

通过本节课的学习让学生掌握初中阶段必备的基础证明知识,锻炼他们的观察,语言表达能力,以及进一步发展逻辑思维。

2.教学目标:(1)了解公理,定理和证明的含义;理解并牢记8个公理,并能运用它们去判断一个命题的真假。

(2)了解证明的表达格式,会按照规定格式证明简单命题。

二.教法与学法分析1、学情分析:对初中学生来说,他们的抽象思维和归纳能力已初步形成,希望老师创设他们自主学习的环境,给他们发表自己见解和表现自己才华的机会。

本节课我设置了三个探究活动,学生可以互相讨论和交流等。

2、教法:新课标要求教师应激发学生的积极性,向学生提供充分从事教学活动的机会,帮助他们自主探究和合作交流,为达到这一目标,结合教材和学生实际采用发现法,小组合作法,启发法,反馈练习等方法教学。

3、学法:新课标指出自主探究和合作交流是学生学习的主要方式,因此在课堂上要确立学生的主体地位,指导学生学会观察,动口表达,动脑思考,主动多感官参与,多智能投入,共同探索新知和解决新问题的能力。

三、教学过程分析为有序、有效地进行教学,本节课我主要安排以下教学环节:1.预习展示设计意图:这一块主要分为两部分,一部分回顾上节课有关命题的重要知识点,可以更有效的对本节课的学习起到作用。

另一部分预习本节课的重要知识点2、合作探究,交流创新设计意图:通过设置三个探究题,学生可以互相探究,互相交流,展示自我等,既可以很好的完成学习目标又可以培养学生的合作能力,交流能力和创新意识。

3、当堂训练设计意图:可以很好的对本节所学内容进行检测,及时反馈。

老师在这一块要有所侧重有所针对的进行讲解。

4.自我小结设计意图:学生自己进行小结,谈一谈自己收获了什么,还有哪些方面的疑问。

浙教版数学八年级上册1.2定义与命题(1) 教学设计

浙教版数学八年级上册1.2定义与命题(1) 教学设计

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯浙教版数学八年级上1.2定义与命题(1) 教学设计课题定义与命题单元第一章学科数学年级八年级学习目标情感态度和价值观目标学生在学习之后树立科学严谨的学习方法能力目标学生能在思考探究中培养自主探究和合作交流的能力知识目标了解定义和命题的含义,掌握命题的结构重点命题的概念和结构难点命题的条件和结论改写成“如果……那么……”的形式学法自主探究法教法讲授法教学过程教学环节教师活动学生活动设计意图导入新课“鸟是动物”“鸟是动物吗”思考一下这两个句子在叙述上有什么区别?思考并回答问题创设情境,提出课题讲授新课日常交流时我们需要用到很多名称和术语,为了不产生歧义,对这些名称和术语的含义必须有明确的规定,我们把能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

比如,商店降低商品的定价出售商品叫做打折;物体单位面积受到的压力叫做压强;在同一个平面内,不想交的两条直线叫平行线。

思考做笔记结合生活实例来引出定义的概念,让学生容易理解做一做 1.说出下列数学名词的定义:2.下列语句中,属于定义的是()A.对顶角相等B.作一条直线和已知直线垂直看PPT,动手动脑回答问题做练习来巩固学到的知识如果C地水流被污染,那么__E、F_的水流也被污染。

根据上图,你还能说出其他的命题吗?思维达标测评 1.观察下面四组图形,找出每一组图形的共同特征,并对类似于这样的图形下一个定义。

如:一个图形由另一个图形改变而来,在改变的过程中保持形状不变(大小可以改变)这个图形和原图形叫做相似图形.2.观察下列各数:-30,2,0,-42,12,8,…,找出它们的共同特征,给出名称,并作出定义。

解:都是偶数。

偶数的定义:能被2整除的数是偶数。

3.判断下列语句是不是命题?是用“√”,不是用“×表示。

1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C;()与老师一起做练习,巩固提升巩固新知一天,毕达哥拉斯应邀到朋友家做客。

谈在数学概念与命题教学中对学生思维素质的培养

谈在数学概念与命题教学中对学生思维素质的培养

念 的实 质 。 为 了 准 确 、 刻 地 理 解 概 念 , 提 供 感 性 认 识 深 在 的基 础 上 , 须 做 出辩 证 分 析 , 不 同方 法 揭 示 不 同概 念 必 用
养 和提 高 学 生 的 思 维 素 质 。数 学 概 念 是 进 行 正 确 思 维 的 前提 和依 据 。 有 明 确 的 概 念 做 基 础 , 辑 思 维 将 是 无 源 没 逻 之水 、 无本 之 木 。绝 大 多 数 数 学 命题 的 真 实性 都 要 求 证 .
而求 证 的 过 程 就是 严 谨 的逻 辑 推 理过 程 。 此 , 因 以逻 辑思 维 为 主线 的 数 学概 念 与数 学 命 题 的教 学 活 动 ,对 于 培 养 和提 高 学 生 的思 维 素 质 是 非 常有 益 的 。 面 。 者 对 于在 下 笔 数 学 概 念 与数 学命 题 的 教 学 中 如何 培 养 学 生 思 维 素 质 . 谈 谈 自己 粗浅 的认 识 。
依 据 的 , 教 学 中 , 该 让 学 生 从 多 角 度 、 层 次 加 强 概 在 应 多
念 在 运 算 、 理 、 明 中 的应 用 。 应 用 中 达 到 切 实 掌 握 推 证 在
数 学 概 念 的 目的 ( 系 到灵 活 性 、 创 性 等 思 维 素 质 的 形 关 独
成) 。
南 昌高专学报
2 1 第 4期 ( 第 8 期 ) 2 1 0 0年 总 9 0 0年 8月 出版
如l m o ac agC l 1 . Sm 9 a . 0 4 0
谈 数 概 命 教学中 在 学 念与 题 对学生 维 的 思 素质 培养
深 认 识 , 数 学 概 念 之 问 的关 系 中学 习概 念 , 深 化 对 所 从 可 学 概 念 的认 识 ( 系到 思 维 的深 刻 性 、批 判 性 等 思 维 素 关

初中数学《定义与命题》教案答题技巧

初中数学《定义与命题》教案答题技巧

初中数学《定义与命题》教案答题技巧6.2.2 定义与命题(二)●教学目标(一)教学知识点1.命题的组成:条件和结论.2.命题的真假 .3.了解数学史.(二)能力训练要求1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.(三)情感与价值观要求1.通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.●教学重点找出命题的条件(题设)和结论.●教学难点找出命题的条件和结论.●教学过程Ⅰ.巧设现实情境,引入课题上节课我们研究了命题,那么什么叫命题呢?下面大家来想一想:观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形. (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等. (4)如果一个四边形的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.学生分组讨论.①这五个命题都是用“如果……,那么……”的形式叙述的.②每个命题都是由已知得到结论.③这五个命题的每个命题都有条件和结论.Ⅱ.讲授新课1 、命题的组成:每个命题都有条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.2、举例说明命题如何写成“如果……,那么……”的形式①明显的。

②不明显的。

做一做1.下列各命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果ac,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等.2.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?3、真命题和假命题我们把正确的命题称为真命题(tru e statement),不正确的命题称为假命题(false statement).思考:如何证实一个命题是真命题呢?4、我们这套教材有如下命题作为公理:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两条平行线被第三条直线所截,同位角相等.3.两边及其夹角对应相等的两个三角形全等.4.两角及其夹边对应相等的两个三角形全等.5.三边对应相等的两个三角形全等.6.全等三角形的对应边相等,对应角相等.Ⅲ.课堂练习Ⅳ.课时小结本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.Ⅴ.课后作业2.预习提纲(1)平行线的判定方法的证明(2)如何进行推理。

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

第七章平行线的证明学生在以前的学习中接触了不少的几何知识,对很多定理、证明过程有了很深刻的认识,本节课将对定理及定理的证明严格规范.◆教学目标4.【教学重点】命题的概念.【教学难点】命题的概念的理解.几名学生表演引入部分.老师准备多媒体课件.一、创设情境,引入新知活动内容:①什么叫做定义?举例说明;②什么叫命题?举例说明.学生举手发言,提问个别学生.我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?二、合作交流,探究新知①介绍《几何原本》、公理、定理等知识.在数学发展史上,数学家们也遇到过类似的问题.公元前 3 世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里得(公元前300 前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.②公理、定理、概念和证明的关系.③介绍本教材的公理.1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等.8.三边对应相等的两个三角形全等.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.。

沪科版数学八年级上册《命题的概念与判断》教学设计3

沪科版数学八年级上册《命题的概念与判断》教学设计3

沪科版数学八年级上册《命题的概念与判断》教学设计3一. 教材分析《命题的概念与判断》是沪科版数学八年级上册的一章内容,本章主要让学生了解命题的概念,学会判断命题的真假,以及学会用符号表示命题。

本章内容在学生的数学学习中起着承上启下的作用,为后续的证明和逻辑推理的学习打下基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对于概念和定义的学习已经有一定的基础。

但是,对于抽象的命题概念和判断方法可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过具体的例子来理解和掌握命题的概念和判断方法。

三. 教学目标1.让学生理解命题的概念,知道命题是由题设和结论两部分组成的。

2.让学生学会判断命题的真假,并能用符号表示真假。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.命题的概念和组成。

2.命题的真假判断方法。

3.命题的符号表示方法。

五. 教学方法采用问题驱动法和案例教学法,通过具体的例子引导学生理解和掌握命题的概念和判断方法。

同时,采用小组合作学习和自主学习相结合的方式,培养学生的合作精神和自主学习能力。

六. 教学准备1.准备相关的教学案例和例子。

2.准备教学PPT,进行教学展示。

3.准备课后作业,进行巩固练习。

七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是命题,命题由哪两部分组成。

例如,给出一个命题:“所有的正整数都是奇数”,让学生判断这个命题是否正确。

2.呈现(10分钟)通过PPT展示,介绍命题的概念和组成,解释命题是由题设和结论两部分组成的。

同时,展示命题的真假判断方法,以及命题的符号表示方法。

3.操练(10分钟)让学生通过自主学习,尝试判断给出的命题是否正确,并用符号表示命题的真假。

教师在这个过程中进行个别辅导,帮助学生理解和掌握命题的判断方法。

4.巩固(10分钟)采用小组合作学习的方式,让学生分组讨论,分享自己判断命题的经验和方法。

教师在这个过程中进行巡回指导,对学生的疑问进行解答。

新华师大版八年级数学上册《命题》教案

新华师大版八年级数学上册《命题》教案

新华师大版八年级数学上册《命题》教案一、教学内容本节课选自新华师大版八年级数学上册第四章《命题》。

教学内容包括:4.1节《命题的概念》,4.2节《真命题与假命题》,4.3节《互逆命题、互否命题和逆否命题》。

二、教学目标1. 理解命题的概念,能够识别各种命题类型。

2. 学会判断命题的真假,并能够运用逆否命题等方法证明命题。

3. 培养学生的逻辑思维能力和抽象概括能力。

三、教学难点与重点教学难点:逆否命题的构造及真假判断。

教学重点:命题的概念、真命题与假命题的判断、互逆命题、互否命题和逆否命题的理解。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:通过生活中的例子,如“今天是星期五”,让学生了解命题的概念。

2. 新课导入:引导学生阅读教材,了解命题的定义及分类。

3. 例题讲解:4. 随堂练习:让学生独立完成教材课后习题,巩固所学知识。

5. 知识拓展:介绍数学中的著名命题,如勾股定理、欧拉公式等。

六、板书设计1. 命题的概念2. 真命题与假命题3. 互逆命题、互否命题和逆否命题4. 例题解析5. 课后习题七、作业设计1. 作业题目:2. 答案:见教材课后习题答案。

八、课后反思及拓展延伸1. 反思:本节课学生对命题的概念、分类及真假判断掌握较好,但对逆否命题的理解仍需加强。

2. 拓展延伸:引导学生思考生活中的命题,如“努力就能成功”,让学生体会命题的内涵和逻辑关系,培养逻辑思维能力。

重点和难点解析1. 教学难点:逆否命题的构造及真假判断。

2. 例题讲解:命题的真假判断和逆否命题的理解。

3. 作业设计:作业题目的难度和答案的准确性。

4. 课后反思及拓展延伸:学生对逆否命题的理解和逻辑思维能力的培养。

详细补充和说明:一、教学难点解析1. 逆否命题的构造:教师要引导学生理解原命题的否定是指对原命题的主语和谓语都进行否定。

逆序是指将原命题中的主语和谓语互换位置。

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课的主要内容是让学生理解并掌握命题与定理的概念,学会如何用数学语言表述命题,以及如何通过推理和证明来判断命题的真假。

本节课的内容是学生学习更高级数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析学生在七年级时已经接触过简单的命题和定理,对命题和定理的概念有初步的了解。

但是,对于如何准确地表述命题,如何通过推理和证明来判断命题的真假,以及如何运用命题和定理解决实际问题等方面,还需要进一步的学习和掌握。

因此,在教学过程中,教师需要根据学生的实际情况,从简单的例子入手,逐步引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。

三. 教学目标1.理解命题与定理的概念,掌握如何用数学语言表述命题。

2.学会通过推理和证明来判断命题的真假。

3.能够运用命题和定理解决实际问题。

4.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.重点:理解命题与定理的概念,掌握如何用数学语言表述命题,学会通过推理和证明来判断命题的真假。

2.难点:如何引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。

五. 教学方法1.讲授法:教师通过讲解和举例,引导学生理解和掌握命题与定理的概念。

2.实践法:学生通过动手操作和思考,培养学生的逻辑思维能力和数学素养。

3.讨论法:学生分组讨论,交流自己的理解和思路,培养学生的合作意识和沟通能力。

六. 教学准备1.教师准备PPT,内容包括教材中的重点和难点,以及一些相关的例子和练习题。

2.准备一些与本节课内容相关的实物或图片,用于导入和呈现。

七. 教学过程1.导入(5分钟)教师通过展示一些与本节课内容相关的实物或图片,引导学生观察和思考,激发学生的兴趣。

然后,教师简要介绍本节课的主要内容,让学生对课程有一个初步的了解。

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。

本节内容是在学生已经掌握了实数、不等式等基础知识的基础上进行讲授的,是学生学习数学语言和逻辑推理的重要基础。

本节课的主要内容是让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、不等式等概念有一定的了解。

但是,学生对于抽象的数学概念的理解还存在一定的困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。

此外,学生的逻辑思维能力和判断能力还在发展中,需要通过教师的引导和培养。

三. 说教学目标1.知识与技能目标:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的逻辑思维能力和判断能力。

3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题。

2.教学难点:让学生能够判断一个命题是真命题还是假命题。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个具体的例子,引出定义和命题的概念,激发学生的兴趣。

2.自主学习:让学生自主阅读教材,理解定义和命题的概念,并尝试判断一些简单的命题的真假。

3.合作交流:让学生分组讨论,分享自己的理解和判断,互相学习和交流。

4.教师引导:教师通过讲解和示范,引导学生理解和掌握定义和命题的概念,并教会学生如何判断一个命题是真命题还是假命题。

5.练习巩固:让学生进行一些相关的练习,巩固所学知识。

青岛版八年级上册数学教学设计《5-1定义与命题》

青岛版八年级上册数学教学设计《5-1定义与命题》

青岛版八年级上册数学教学设计《5-1定义与命题》一. 教材分析《5-1定义与命题》这一节内容是青岛版八年级上册数学的一个重点章节。

主要内容包括命题与定理的概念、命题的构成、命题的分类、定理的定义以及公理化等知识点。

通过这一节内容的学习,使学生理解命题与定理的概念,掌握命题的构成与分类,了解定理的定义以及公理化的基本方法。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,如方程、不等式等知识。

但学生在理解抽象的数学概念方面,可能还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,用生动形象的语言和实例,帮助学生理解和掌握抽象的数学概念。

三. 教学目标1.知识与技能:使学生理解命题与定理的概念,掌握命题的构成与分类,了解定理的定义以及公理化的基本方法。

2.过程与方法:通过自主学习、合作交流等方法,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.重点:命题与定理的概念,命题的构成与分类,定理的定义以及公理化的基本方法。

2.难点:命题的分类,定理的定义以及公理化的方法。

五. 教学方法1.情境教学法:通过生动的实例,引导学生理解和掌握抽象的数学概念。

2.自主学习法:鼓励学生自主探索,培养学生的数学思维能力和解决问题的能力。

3.合作交流法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的学习效果。

六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备等。

2.教学材料:教材、PPT课件、练习题等。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出命题与定理的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解命题与定理的概念,引导学生理解命题的构成与分类,讲解定理的定义以及公理化的基本方法。

3.操练(10分钟)让学生通过自主学习,理解并掌握命题与定理的概念,能够正确地对命题进行分类。

沪科版数学八年级上册《命题的概念与判断》教学设计2

沪科版数学八年级上册《命题的概念与判断》教学设计2

沪科版数学八年级上册《命题的概念与判断》教学设计2一. 教材分析《命题的概念与判断》是沪科版数学八年级上册的一章内容。

这一章节的主要目的是让学生理解命题的概念,掌握判断命题真假的方法,以及了解逆否命题、逆命题和原命题之间的关系。

教材通过生活中的实例,引导学生理解命题的含义,并通过大量的练习题,让学生在实践中掌握命题的真假判断。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对于生活中的实例能够进行一定的分析。

但是,对于抽象的命题概念和逆否命题等概念,可能还有一定的困难。

因此,在教学过程中,需要通过生动的实例和丰富的练习,帮助学生理解和掌握这些概念。

三. 说教学目标1.知识与技能:让学生理解命题的概念,掌握判断命题真假的方法,了解逆否命题、逆命题和原命题之间的关系。

2.过程与方法:通过生活中的实例,引导学生理解命题的含义,并通过大量的练习题,让学生在实践中掌握命题的真假判断。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。

四. 说教学重难点1.教学重点:命题的概念,判断命题真假的方法,逆否命题、逆命题和原命题之间的关系。

2.教学难点:逆否命题、逆命题和原命题之间的关系的理解。

五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法。

通过生动的实例和丰富的练习,帮助学生理解和掌握命题的概念和真假判断方法。

同时,利用多媒体教学手段,展示实例和练习题,提高教学效果。

六. 说教学过程1.导入:通过一个生活中的实例,引导学生理解命题的概念。

2.讲解:讲解命题的概念,判断命题真假的方法,以及逆否命题、逆命题和原命题之间的关系。

3.练习:让学生通过练习题,在实践中掌握命题的真假判断。

4.总结:对本节课的内容进行总结,强调命题的概念和真假判断方法。

5.作业布置:布置相关的练习题,巩固所学知识。

七. 说板书设计板书设计主要包括以下几个部分:1.命题的概念2.命题的真假判断方法3.逆否命题、逆命题和原命题之间的关系八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况以及课后作业的完成情况进行评价。

初中数学_定义与命题教学设计学情分析教材分析课后反思

初中数学_定义与命题教学设计学情分析教材分析课后反思

《定义与命题》教学设计一、教学目标知识与技能1.理解定义与命题的概念.2.分清命题的条件和结论,会把命题改写成“如果……那么……”的形式,并能判断命题的真假.3.会用反例说明一个命题是假命题过程与方法在实例中体会定义、命题的含义,通过举反例判定一个命题是假命题,使学生学会从反面思考问题的方法.情感、态度与价值观通过从具体例子中提炼数学概念,使学生体会数学与实践的联系;通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体;通过了解数学知识,拓展学生视野,从而激发学生学习的兴趣.二、教学重难点正确理解定义和命题的概念,能找出命题的条件和结论三、教学环节(一)创设情境导入新课同学们,今天老师给大家带来一则笑话。

希望大家喜欢。

儿子问:爸爸,法律是什么?爸爸回答:法律就是法国的律师。

儿子又问:那法盲是什么呢?爸爸回答:法盲就是法国的盲人。

看到这,大家是不是觉得特别的搞笑为什么呢?是不是因为老板没有准确给出法律和法盲的意思好,这就是我们本节课所要学习的内容,定义与命题通过对话得出结论:在交流中要对名称和术语有共同的认识才行,(二)引出课题出示学习目标,师生互动,探索新知。

1、理解定义与命题的概念2、分清命题的条件和结论,会把命题改写成“如果……那么……”的形式,并能判断命题的真假3、会用反例说明一个命题是假命题(三)探索新知探究一:定义1、温故知新:让学生回顾以前学过的定义。

例如:方程、等式、等边三角形等。

得出结论:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义2、同学们说一说自己知道的定义。

3、跟踪练习:让学生判断哪些句子是定义(1)下列语句属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.等角的补角相等D.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形跟踪练习(2)下列语句属于定义的是()A.对顶角相等B.两直线平行,同位角相等吗?C.小刚比小明跑得快D.线段是直线上的两点和两点之间的部分在学生回答后,抓住跟踪练习(2)的A选项对顶角相等这个语句展开讨论,为什么不是命题?从而进入下一个探究环节。

北师大版数学八年级上册《认识定义与命题》教案

北师大版数学八年级上册《认识定义与命题》教案

北师大版数学八年级上册《认识定义与命题》教案一. 教材分析北师大版数学八年级上册《认识定义与命题》一课,主要让学生了解数学中的定义与命题的概念,理解命题的题设和结论部分,学会判断一个命题是真命题还是假命题,培养学生逻辑思维能力。

二. 学情分析学生在七年级时已经接触过一些简单的定义和命题,对本节课的内容有一定的认知基础。

但部分学生对定义和命题的概念理解不深,逻辑思维能力有待提高。

三. 教学目标1.让学生了解定义与命题的概念,理解命题的题设和结论部分。

2.培养学生判断命题真假的能力。

3.提高学生逻辑思维能力。

四. 教学重难点1.教学重点:定义与命题的概念,命题的题设和结论部分。

2.教学难点:判断命题的真假。

五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的关系。

2.运用案例分析法,让学生通过分析具体例子,理解命题的题设和结论部分。

3.采用小组合作学习法,培养学生团队协作能力和逻辑思维能力。

六. 教学准备1.准备相关定义与命题的案例,用于课堂分析和讨论。

2.设计好针对本节课的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如“勾股定理”的定义,引导学生思考:什么是定义?什么是命题?2.呈现(15分钟)呈现一组勾股定理的例子,让学生分析其中的题设和结论部分,引导学生理解命题的结构。

3.操练(10分钟)让学生分组讨论,分析给出的几个命题,判断它们是真命题还是假命题。

每组选取一个命题进行分析,并汇报答案。

4.巩固(10分钟)让学生完成教材中的相关练习题,巩固对定义与命题的理解。

教师及时给予反馈,解答学生的疑问。

5.拓展(10分钟)引导学生思考:如何证明一个命题是真命题?如何证明一个命题是假命题?让学生举例说明。

6.小结(5分钟)对本节课的内容进行总结,强调定义与命题的概念,以及判断命题真假的方法。

7.家庭作业(5分钟)布置一道有关定义与命题的家庭作业,让学生课后思考。

8.板书(课后整理)整理本节课的主要内容,包括定义与命题的概念,命题的题设和结论部分,以及判断命题真假的方法。

2024年北师大版八年级上册教学设计第七章7.2 定义与命题

2024年北师大版八年级上册教学设计第七章7.2   定义与命题

第1课时定义与命题课时目标1.掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.2.理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.3.通过观察、猜想、推理的过程,发展学生的探索意识与合作交流的意识,关注现实,培养学生进行思考的能力和质疑精神.学习重点掌握定义、命题的含义,并感受其在数学和生活中的广泛应用.学习难点理解命题的结构,会将命题写成“如果……那么……”的形式,会区分命题的条件和结论,并判断其真假.课时活动设计情境引入通过多媒体播放图片,创设小华和小刚对话的场景,让学生发现有关的数学问题.小华与小刚正在津津有味地阅读《我们爱科学》.小华:哈!这个黑客终于被逮住了.小刚:是的,现在的因特网广泛运用于我们的生活中,给我们带来了方便,但……小华:这个黑客是个小偷吧?小刚:可能是个喜欢穿黑衣服的贼.设计意图:创设这个情境,激发和引导学生更主动地参与课堂交流,感受到为了进行有效交流必须引入定义和命题.用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个贯穿的背景.更重要的是,希望学生初步感受定义的重要性.探究新知教师引导学生回答下面问题.1.阅读下面的内容,并填一填.(1)“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“中华人民共和国公民”的定义;(2)“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义;(3)“无限不循环小数被称为无理数”是“无理数”的定义;(4)“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形”是“多边形”的定义;(5)“有两条边相等的三角形叫做等腰三角形”是“等腰三角形”的定义.教师通过上述例子,引出定义的含义.证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2.从本册数学课本中找找有哪些定义?设计意图:这里的例子,既有几何概念方面的定义,也有代数方面的定义,还有生活中的定义,力图让学生认识到定义在工作、学习、生活中的广泛应用,达成定义的必要性以及科学性、准确性、简洁性、唯一性的共识;然后通过在教材上找定义,体验定义的无所不在,突显教材在学习中的指导作用.鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案给予肯定,激发他们学习数学的兴趣.探究新知下列各语句中,哪些语句对事情作出了判断,哪些没有?(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.学生组内合作,互相交流讨论.教师引导,通过上述例子引出命题的概念.解:(1)(2)(3)(4)作出了判断,(5)(6)没有作出判断.教师总结:判断一件事情的句子叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题是一个陈述句.设计意图:让学生在经历活动环节和独立思考的基础上道出对命题的认识和理解,表示判断的句子都是命题,而不管判断是否正确.不表示判断的句子就不是命题,在此过程中培养学生的表达能力和总结能力.探究新知观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.学生组内合作,互相交流讨论.教师引导,总结交流结果.教师总结:一般地,每个命题都由条件和结论两部分组成,条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.设计意图:这些命题都是“如果…那么……”的形式,让学生进一步体会命题的含义,并概括出命题的结构特征:有“如果……那么……”的结构,进而明晰命题的条件和结论,使学生更好地认识命题及其结构.典例精讲例指出下列命题的条件和结论,其中哪些命题是错误的?你是如何判断的?(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.学生分组进行讨论交流,教师展示答案.解:(1)条件:两个角相等;结论:它们是对顶角.例:等腰三角形的两个底角相等,但它们不是对顶角,所以命题不正确.(2)条件:a≠b,b≠c;结论:a≠c.例:a=c=3,b=1,同样满足条件a≠b,b≠c.所以命题不正确.(3)条件:两个三角形全等;结论:这两个三角形的面积相等.命题正确.(4)条件:室外气温低于0℃;结论:地面上的水一定会结冰.例:结冰需要一个过程,在室外温度低于0℃时才刚刚开始结冰.所以命题不正确.教师总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.设计意图:明晰了命题的结构之后,自然应让学生结合实例分析命题的条件和结论.在这样的分析过程中,必然会思考这些命题的真假.巩固学生分析命题的条件和结论,进一步引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.同时,与前面内容相呼应:要说明一个命题是正确的,无论验证多少个特殊的例子,也无法保证命题的正确性.巩固训练1.指出下列命题的条件和结论,并判断是真命题还是假命题.(1)互为补角的两个角相等;(2)如果a=b,那么a+c=b+c;(3)如果两个长方形的周长相等,那么这两个长方形的面积相等.解:(1)条件:两个角互为补角;结论:这两个角相等.假命题.(2)条件:a=b;结论:a+c=b+c.真命题.(3)条件:两个长方形的周长相等;结论:这两个长方形的面积相等.假命题.2.分别把下列命题写成“如果……,那么……”的形式.(1)两点确定一条直线;(2)在同一平面内,垂直于同一条直线的两条直线平行;(3)内错角相等.解:(1)如果经过两点画直线,那么只能画出一条直线.(2)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.(3)如果两个角是内错角,那么这两个角相等.设计意图:旧知识和新知识的结合体,巩固真命题与假命题的概念,学会用举反例来证明假命题,体会命题的完备性,促进了学生对教学内容的整体理解和把握,同时也加深对“如果……,那么……”形式的理解与掌握,培养学生的核心素养.课堂小结1.定义和命题的概念.2.命题的条件和结论.3.判断真假命题.设计意图:通过回顾本节所学的知识,加深学生对本节所学内容的理解,培养学生善于反思的习惯.课堂8分钟.1.教材第167页习题7.2第2,3题.2.七彩作业.教学反思第2课时公理、定理和证明课时目标1.了解真命题的证明,通过实例感受证明的过程与格式.2.初步感受公理化思想,并了解本套教科书所采用的基本事实.3.阅读有关《原本》和公理化的资料,感受公理化方法对数学发展和促进人类文明进步的价值.学习重点了解公理、定理与证明的概念并了解本套教材所采用的基本事实.学习难点体会命题证明的必要性,体验数学思维的严谨性.课时活动设计复习回顾1.回忆我们上次学习到了哪些知识?对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.判断一件事情的句子,叫做命题.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.2.举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?设计意图:开门见山,引导学生回忆命题引出下面活动.情境引入公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(公元前300年前后)编写了一本书,书名叫做《原本》.为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断.演绎推理的过程称为证明,经过证明的真命题称为定理.每个定理都只能用公理、定义和已经证明为真的命题来证明.已学的八条基本事实有:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行).5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据.例如,如果a=b,b=c,那么a=c,这一性质也可以作为证明的依据,称为“等量代换”.又如,如果a>b,b>c,那么a>c,这一性质同样可以作为证明的依据.设计意图:经历实际情境,初步体会公理化思想和方法,了解本教材所采用的基本事实,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.探究新知定理证明学生组内合作,互相交流完成下面问题,教师及时指导,规范学生证明过程的书写.1.定理:同角的补角相等.已知:℃B和℃C是℃A的补角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的补角,℃℃B=180°-℃A,℃C=180°-℃A.℃℃B=℃C(等量代换).℃同角的补角相等.2.定理:同角的余角相等.已知:℃B和℃C是℃A的余角,求证:℃B=℃C.证明:℃℃B和℃C是℃A的余角,℃℃B=90°-℃A,℃C=90°-℃A.℃℃B=℃C(等量代换).℃同角的余角相等.设计意图:通过学生合作交流,培养了学生互助交流的意识;让学生初步感受证明推理的过程,体会证明的思路,体验书写的过程以及数学的严谨性.典例精讲例已知:如图,直线AB与直线CD相交于点O,℃AOC与℃BOD是对顶角.求证:℃AOC=℃BOD.证明:℃直线AB与直线CD相交于点O,℃℃AOB与℃COD都是平角(平角的定义).℃℃AOC=℃BOD都是℃AOD的补角(补角的定义).℃℃AOC=℃BOD(同角的补角相等).由例题得到定理:对顶角相等.设计意图:让学生进一步体会证明的思路与书写的过程.巩固训练已知:如图,℃ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:℃AC是以点A,点C为端点的线段,℃AB+BC>AC(两点之间线段最短).同理BC+CA>AB,CA+AB>BC.设计意图:让学生进一步感受证明推理的过程,体会证明思路,体验书写的过程以及数学的严谨性.课堂小结1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.设计意图:通过回顾本节课所学的内容,加深学生对本节所学内容的理解,掌握证明推理的过程,体验数学的严谨性,培养学生反思的习惯.课堂8分钟.1.教材第171页习题7.3第3,4题.2.七彩作业.第2课时公理、定理和证明1.公理:公认的真命题.2.定理:经过证明的真命题.3.证明:演绎推理的过程.教学反思。

高中数学命题理解教案

高中数学命题理解教案

高中数学命题理解教案
教学内容:数学命题的理解
教学目标:通过本课教学,使学生能够理解数学命题的概念、特点以及解题方法,提高其解题能力和思维能力。

教学重点:数学命题的概念和特点
教学难点:数学命题的解题方法
教学过程:
一、导入新知识(5分钟)
教师向学生提出一个简单的问题:“什么是数学命题?”引导学生思考并回答问题。

二、概念讲解(10分钟)
1. 数学命题的定义:命题是陈述性句子,可以判断真假的陈述句称为命题。

2. 数学命题的特点:具有唯一真值(真或假)。

三、示例分析(15分钟)
1. 教师给出几个数学命题的例子,让学生分析其真值,并解释为什么是命题。

2. 学生互相讨论,共同分析这些命题的特点。

四、练习和讨论(15分钟)
1. 学生完成一些关于数学命题的练习题,通过实际操作加深理解。

2. 学生将自己的答案与同学讨论,让学生感受思维碰撞的乐趣。

五、课堂小结(5分钟)
教师对本节课的重点内容进行总结,并提出下节课的学习安排。

六、课后作业(5分钟)
布置相关的课后作业,包括练习题或阅读材料。

教学反思:通过本节课的教学,学生对数学命题的概念和特点有了深入的了解,提高了解题能力和思维能力。

但在教学过程中,应重视引导学生自主探究,培养其自主学习和分析问题的能力。

北师大版八年级数学上册:7.2定义与命题(教案)

北师大版八年级数学上册:7.2定义与命题(教案)
然而,我也注意到在讲解复合命题和反证法的时候,部分学生似乎有些吃力。这让我意识到,这些概念对于他们来说可能还是有些抽象和难以理解。在今后的教学中,我需要更多地使用具体实例和图示,帮助学生形象地理解这些难点。
另外,小组讨论的环节,学生的参与度很高,大家能够积极地表达自己的观点。但在引导讨论的过程中,我发现有些学生对于命题在实际生活中的应用还是感到困惑。这可能是因为我对这个环节的引导不够到位,或者学生对这些概念的理解还不够深入。下次我会尝试提供更多的实际情境,让学生更好地体会命题的应用。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对命题的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我尝试通过引入日常生活中的例子,帮助学生理解命题的概念。我发现这种方法确实能够激发学生的兴趣,让他们更积极地参与到课堂讨论中来。大家在分析真假命题的时候,表现出了很强的逻辑思维能力,这是我很欣慰的地方。
在实践活动方面,我发现学生通过动手操作,能够更直观地理解命题的真假判断。但我也观察到,有些小组在实验操作时,分工不够明确,导致效率不高。在接下来的课堂中,我会强调团队合作的重要性,并指导他们如何更有效地进行分工合作。
1.讨论主题:学生将围绕“命题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

初中数学命题和概念的区别

初中数学命题和概念的区别

初中数学命题和概念的区别
初中数学命题和概念是两个不同的概念,虽然它们都是数学中的基本元素。

命题是一个陈述,它可以被证明为真或假,而概念则是一种事物的定义或描述。

在数学中,命题通常以符号和语言表示,而概念则更多地涉及到图形和模型。

例如,一个命题可以是“一个正方形的所有边长相等”,而一个概念可以是“正方形”,它是一个四边形,其所有边长相等且所有角度均为直角。

一个命题可以是一个等式,如“2 + 2 = 4”,而一个概念可以是“平面几何图形”,它是由点、线段和角所组成的图形。

在数学教学中,理解命题和概念的区别非常重要。

命题可以帮助学生理解数学的基本原理和概念,而概念则可以帮助学生理解数学的实际应用和意义。

因此,在学习数学时,学生应该注意区分命题和概念,并尝试将它们联系起来,以更好地理解数学知识。

- 1 -。

浙教版数学八年级上册《1.2定义与命题》说课稿

浙教版数学八年级上册《1.2定义与命题》说课稿

浙教版数学八年级上册《1.2 定义与命题》说课稿一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一课时,本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。

教材通过具体的例子,让学生初步认识定义与命题,并学会如何判断一个命题的真假。

本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力具有重要意义。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对于新知识有一定的接受能力。

但是,学生在学习过程中可能会对定义与命题的概念理解不深,难以区分两者之间的区别。

因此,在教学过程中,教师需要通过具体例子,让学生反复体会定义与命题的含义,提高学生的理解能力。

三. 说教学目标1.知识与技能目标:使学生了解定义与命题的概念,理解它们之间的联系与区别,学会判断一个命题的真假。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,提高学生运用数学知识解决实际问题的能力。

四. 说教学重难点1.教学重点:定义与命题的概念,以及如何判断一个命题的真假。

2.教学难点:定义与命题之间的联系与区别,以及如何运用它们解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合具体例子,生动形象地展示定义与命题的概念。

六. 说教学过程1.导入新课:通过一个生活中的实例,引导学生思考如何用数学语言来描述这个实例,从而引出定义与命题的概念。

2.讲解新课:详细讲解定义与命题的概念,并通过具体例子让学生体会它们之间的联系与区别。

3.巩固新知:布置一些练习题,让学生独立完成,检验学生对定义与命题的理解程度。

4.拓展应用:引导学生运用定义与命题解决实际问题,提高学生的运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-11-15
32
1、命题学习的分类
(1)下位学习(归属学习) 下位关系:学习的新命题是原有知识、认 知的特例。
所学的命题与原有认知结构中的命题的关
系是下位关系,那么关于这种命题的学习 叫下位学习。
注意事项:
1)新知识与原认知存在下位关系 2)“推论”学习是典型的下位学习 2014-11-15
“扇形”就像“扇子”那样的图形? ——日常概念 ——不是扇形的“数学概念”!
扇形的定义:两条半径和圆周的一部分围成的封闭图 形 由于认知水平有限,儿童不可能获得这个精确概念 只能从大量扇形的正例和反例中归纳出共同属性:
学生的判别过程,就 是不断舍弃非本质属 性、从而发现本质属 性的过程。
概念形成的心理过程:
2014-11-15
24
3.注意概念的对比和直观化
4)较抽象的概念——借助图形将概念具体化、形象化 如何使学生弄清楚函数的“最值”与“极 值”? D
B y
C O x
A
2014-11-15 25
4.注意概念体系的建立
新概念是在原有概念的基础上形成的,或是原有概念 的限制、延伸、扩充。 新旧概念的内在联系:相邻关系、对立关系、矛盾关 系、交差关系、从属关系、并列关系等。

例如:学习函数概念:
先是按表达式找若干个自变量的值去计算对 应的因变量的值,后来再把它变为一个以定 义域、值域、对应关系三要素构成的对象。
四、数学概念学习的方法
观点一
(1)概念的形成 (2)概念的同化
1.概念的形成: 指从大量的具体例子出发,归纳概括出一类事物 的共同本质属性的过程。这是一种发现学习法。 学生如何通过概念的形成方式来获得“扇形”概念?
观点二: APOS理论
杜宾斯基认为,学生学习数学概念是要进
行心理建构的,这一建构过程要经历4个 阶段(以函数概念为例): 第一阶段—操作(Action)阶段。 第二阶段—过程(Process)阶段。 第三阶段—对象(Object)阶段。 第四阶段—图式(Scheme)阶段。
第一阶段—操作(Action)阶段。理解函
1 1 2 2 1.414 0.71 2 2 2 2 2
2014-11-15
再提出(总结)分母有理化这个概念的意义。
30
第三讲 数学命题学习
2014-11-15
31
小组合作
你能够想到的数学命题有哪些?
回忆你当时学习它的时候所经历的一些过
程,并用自己的话概括出学习命题的几个阶 段.
2 a a2 | a | 与( a)
2014-11-15
23
3.注意概念的对比和直观化
3)教材一般从正面阐述概念——注意引导学生从正 反两方面认识概念 定义域和值域相同的两个函数相同? 反例: f ( x ) ( x 1)2 与g( x) ( x 1)2 , x {1,0,1}
命题的形成
学习方式是发现式
——发现三角和内角和定理的教学过程
2014-11-15 37
(2)命题证明

命题证明是下位学习形式,即要利用已学过的命题 来推证当前命题。
在命题的证明过程中,学习者要以已获得的原有若 干命题为逻辑依据。 命题的证明要求规范、严谨、清晰。 在具体的教学中,命题证明这一过程的学习主要在 教师引导下完成的,提供给学习者的主要是智能信 息。
等于 a;在数轴上它可能是原
点也可能在原点的右边

三、数学概念的二重性

概念既表现为一种过程性操作,又表现为对象、 结构,概念往往兼有这样的二重性。二者有着紧 密的依赖关系。 学习一个概念,往往要经历由过程开始,然后转 变为对象的认知过程,而最终结果是二者在认知 结构中共存,在适当的时候分别发挥作用。
概念的同化:
在数学中,大多数概念的定义方式:属概念(在概念的 从属关系中,外延大的概念称为属概念)+种差(即关键属 性 )。 譬如“梯形”及其学习方式?
"一组对边平行而另一组对边不平行的四边形叫做梯形" 属概念:四边形; 种差:一组对边平行而另一组对边不平行
梯形概念同化学习包括: 先分类(四边形);分类依据为种差; 再借助丰富的例证,使学习者明确梯形概念的内涵外延。
第二讲 数学概念学习
我们是如何教会小孩子认识数字的?
数学概念怎么样在我们的头脑中形成? 数学概念的掌握需要经历一些什么样的过程?
一、数学概念的本质
数学概念是反映客观事物数量关系或空间形式方 面的本质属性的思维形式,是人们通过实践,从数 学所研究的事物对象的许多属性中,抽象出其本质 属性概括而成的。 数学概念是进行数学推理和证明的基础和依据。 数学概念学习是数学学习的基础,数学概念的教 学是数学教学最重要的组成部分。
2014-11-15 38


(3)命题应用
包括两方面 一是数学命题在解决数学问题中的应用
二是数学命题在解决实际问题中的应用
2014-11-15
39
2014-11-15
40
如何展开“分母有理化”概念这个课题?
2014-11-15
28
如何展开“分母有理化”概念这个课题?
设计一: 先让学生阅读“分母有理化”这个概念的意义 “把分母含有根号的式子化为等值的而且分母不含根 号的的式子”,并举例:
1 1 2 2 , 2 2 2 2
最后指出其中的 2为有理化因子。
2014-11-15
注意事项: 1)新知识与原认知的关系是并列关系 2)并列学习要比上、下位学习困难
2014-11-15
35
2、命题学习的过程
(1)命题获得 (2)命题证明
(3)命题应用2014-11Fra bibliotek1536
(1)命题获得
数学命题获得通常采用两种方式:
学习方式是接受式
同化形式
——有理数乘法法则教学
数需要进行活动或操作。
例如,在有现实背景的问题中建立函数关
系y = x2,需要用具体的数字构造对应:2 →4;3 →9;4 →16……通过操作,理解 函数的意义。
第二阶段—过程(Process)阶段。
把上述操作活动综合成函数过程。

一般地有x →x2;其它各种函数也可以概 括为一般的对应过程:x → f(x)。
29
1 先让学生计算 设计二: 2
1 1 解: 0.707 0.71 2 0.1414 学生完成后,提出以下问题让学生思考: 有无更简便的方法?(以上计算复杂的原因是什么?) 有没有办法把分母变成整数,又使式子的值不变? 使分式的值不变,分式的基本性质是什么? 分子分母同乘以一个什么数,才使分母变成整数且 分式的值不变?
的值,都有唯一确定的比值与之对应,所以这个“比”
3.注意概念的对比和直观化
1)平行相关的概念——用类比 譬如? 分数与分式; 数列极限与函数极限; 平面几何与立体几何; 椭圆、双曲线、抛物线;
2014-11-15
22
3.注意概念的对比和直观化
2)形式相似、差别较小的概念——比较其内涵和外延 譬如: “任一直线和平面所称的角”VS“任一斜线和平 面所成的角”。都是角,但范围有差别; “不等式的解”较难理解,可将它和“方程的解” 进行比较; 区别或联系?
二、数学概念学习的本质
数学概念学习的本质:概括出数学中一类事物对象 的共同本质属性,正确区分同类事物的本质属性与非 本质属性,正确形成数学概念的内涵和外延。 数学概念学习包括4个方面:概念的名称、概念的定 义、概念的例子(正反例子)、概念的属性。 概念教学的本质:使学生在脑中形成概念表象,帮 助学生在脑中建构起良好的概念图式。 良好的图式是由一系列反应概念的本质属性的观念 组成。譬如: a是一个数;它不会是负 数;它的平方
辨别分析 比较 正例 类化
找出共 同属性
抽象 检验
确认本 质属性
概括
形成 概念
2.概念的同化——学生获得概念的主要形式
指学习者利用原有的认知结构中的观念来理解、 接纳新的概念的过程。概念同化不仅使新概念获得了 意义,而且扩大和深化了原有的认知结构。
概念同化的心理过程:
阅读 定义 以旧观念来明确 定义的内涵外延 区分和联系 新旧概念
18


2014-11-15
六、数学概念教学的5个注意
1.加强对数学概念的解剖分析
数学概念特点:用数学符号表达;用词严密精炼; 寓意深刻;高度概括等等。 注意:抓住概念中的关键词句进行解剖分析,揭示 每一个词、句、符号、式子的内在含义,使学生深刻 理解。 如何剖析“正弦函数”的概念?
2014-11-15
33
(2)上位学习(归总学习)
所学新知识是原有知识的综合,一般化的
学习。
注意事项:
1)新知识与原认知存在上位关系
2)上位学习比下位学习困难
2014-11-15
34
(3)并列学习:新命题与原有认知结构
中的知识不是上、下位学习,而与原有知 识有一定关系的学习,互不包含,互不归 属。
学习一章后,应引导学生将所学的概念加以整理、归 纳,理清概念之间的关系,并将这些概念联点串线, 建立成概念的网络体系,从而建构良好的认知结构。
2014-11-15
26
5.注意概念产生的背景
让学生知道为什么要学这个内容,由“知其 然”发展到“知其所以然”,能帮助学生透彻 理解并掌握所学的数学概念。
思考
你还能够用APOS理论解释其他的数学概
念学习吗?
你在哪些概念的学习中是“概念同化”在
哪些概念的学习中是“概念的形成”?
5.概念教学的基本环节

典型丰富的具体例证——属性的分析、比较、综合
相关文档
最新文档