五年级奥数等差数列计算题教师版
小学奥数知识名师点拨 例题精讲 解题思路 等差数列应用题.教师版
等差数列应用题例题精讲【例 1】100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】100以内的自然数中是3的倍数的数有0,共33个,他们的和是3,6,9,99 ,则他们的平均数为1683÷34=49.5。
()09934179916832+⨯=⨯=【答案】49.5【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】平均每只猴分8个野果,所以最后一只猴摘了只果,共有15只猴.821=15⨯-【答案】只猴子15【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有(个);又因为从右边起学学报12,15105-=所以,学学的左边还有(个),(个)学学和思思中间排着5位同学.15123-=15645--=<考点> 排队问题【答案】位5【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++ =2+10025=10325=2550⨯⨯()(方法二)根据,从这个和中减去的和,就12398991005050++++++= 1357...99+++++可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第项首项公差,n =+1n ⨯-()所以,第102项;由“项数(末项首项)公差”,999所处的项数是:321021205=+⨯=(-)=-÷1+ 999321996214981499-÷+=÷+=+=()【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
小学奥数等差数列练习及答案
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出(2)根据公式:末项=首项+公差(项数-1 )解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67 个数,第201 个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1 的所有两位数的和。
分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
小学奥数教程-等差数列计算题1 (含答案)
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
最新等差数列(小数数学-五年级奥数)
等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
小学五年级奥数等差数列练习题
【导语】等差数列是常见的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字母d表⽰。
以下是⽆忧考整理的《⼩学五年级奥数等差数列练习题》相关资料,希望帮助到您。
1.⼩学五年级奥数等差数列练习题 1、设数列{an}的⾸项a1=-7,且满⾜an+1=an+2(nN*),则a1+a2+…+a17=________. 解析:由题意得an+1-an=2, {an}是⼀个⾸项a1=-7,公差d=2的等差数列. a1+a2+…+a17=S17=17(-7)+171622=153. 答案:153 2、已知{an}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=__________. 解析:a4+a6=a1+3d+a1+5d=6.① S5=5a1+125(5-1)d=10.②w 由①②得a1=1,d=12. 答案:12 3、设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=________. 解析:由等差数列的性质知S9=9a5=-9,a5=-1. ⼜∵a5+a12=a1+a16=-9, S16=16a1+a162=8(a1+a16)=-72. 答案:-72 2.⼩学五年级奥数等差数列练习题 1、⼀个递增后项⽐前项⼤的等差数列公差是7,第28项⽐第73项________多或少______。
2、⼀个递减后项⽐前项⼩的等差数列公差是6,第46项⽐⾸项________多或少______。
3、⼀个递减后项⽐前项⼩的等差数列公差是7,第74项⽐第91项________多或少______。
4、⼀个递增后项⽐前项⼤的等差数列公差是8,⾸项⽐第73项________多或少______。
5、⼀个递增后项⽐前项⼤的等差数列公差是5,第55项⽐第37项________多或少______。
6、⼀个递增后项⽐前项⼤的等差数列公差是3,第28项⽐第53项________多或少______。
【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析
【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析奥数专题:精编人教版小学数学五年级上册等差数列(试题)含答案与解析题目一:计算:5, 10, 15, 20, ...第20项是多少?每相邻两项之差是多少?解析一:根据题目,我们可以观察到数列中的每一项相差5,说明这是一个等差数列。
首先,我们可以通过找规律来求解第20项。
观察前几项,我们看到第1项是5,第2项是10,第3项是15,可以发现每一项都是前一项加上5得到,如此往复。
我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。
代入题目中的数据:A1 = 5d = 5那么我们可以用公式计算第20项是多少:A20 = A1 + (20-1)dA20 = 5 + 19(5)A20 = 5 + 95A20 = 100所以第20项是100。
接下来我们来计算每相邻两项的差:d = A2 - A1d = 10 - 5d = 5所以每相邻两项之差是5。
题目二:在等差数列2, 5, 8, 11, ...中,求第n项的值,并计算前n项和。
解析二:根据题目,我们可以观察到数列中的每一项相差3,说明这是一个等差数列。
我们同样可以通过找规律来求解第n项。
观察前几项,我们看到第1项是2,第2项是5,第3项是8,可以发现每一项都是前一项加上3得到,如此往复。
我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。
代入题目中的数据:A1 = 2d = 3根据通项公式,第n项的值可以计算如下:An = A1 + (n-1)d接下来,我们计算前n项的和,可以利用求和公式Sn = (n/2)(A1 + An):Sn = (n/2)(A1 + An)= (n/2)(2 + A1 + (n-1)d)= (n/2)(2 + 2 + (n-1)3)= (n/2)(4 + 3n - 3)= (n/2)(3n + 1)现在我们可以根据题目来计算第n项的值和前n项的和。
人教版五年级数学奥数专题第2讲 等差数列(基础卷+提高卷)
人教版五年级奥数专题第2讲等差数列(基础卷+提高卷)
姓名:________ 班级:________ 成绩:________
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、计算题
1 . 计算.
2+4+6+8……+198+200
2 . 求首项为10,公差为5的等差数列的前5000项的和。
3 . 计算:9000-8997+8994-8991+......+6-3
4 . 求的和.
5 . 已知:.则?
6 . 计算:2+3+4+5+ (2588)
7 . 计算:92+90+88+......+2
二、解答题
8 . 用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按下图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边能放10根火柴棒,那么这个大的等边三角形中一共要放多少根火柴
棒?
9 . 1999,1998,1,1997,1996,1,1995,…从第3个数起,每一个数都是它前面2个数中大数减小数的差,那么第2000个数是几?
参考答案一、计算题
1、
2、
3、
4、
5、
6、
7、
二、解答题
1、
2、。
等差数列五年级奥数练习题
等差数列五年级奥数练习题等差数列是数学中常见的一种序列形式,它的每一个元素与前一个元素之间具有相等的差值。
在五年级奥数练习题中,等差数列也是一个常见的考点。
下面我们将介绍几个与等差数列相关的五年级奥数练习题。
练习题一:已知等差数列的前四项依次是2,5,8,11,求这个等差数列的通项公式。
解析:我们可以观察到这个等差数列的公差是3,第一项是2。
根据等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。
代入已知条件可得:an = 2 + (n-1)3。
简化后得到通项公式为:an = 3n-1。
练习题二:已知等差数列的前五项依次是1,4,7,10,13,求这个等差数列的第十项。
解析:我们可以观察到这个等差数列的公差是3,第一项是1。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:a10 = 1 + (10-1)3。
简化后得到第十项为:a10 = 28。
练习题三:已知等差数列的第五项是13,公差是4,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是4,第五项是13。
根据等差数列的求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示第一项,an表示第n项。
代入已知条件可得:S10 = (10/2)(13 + a10)。
由于已知条件中只给出了第五项,我们需要根据公差和第五项求得第十项a10。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:13 = a1 + (5-1)4。
解方程得到第一项a1为1。
将a1和公差d代入求和公式,得到S10 = (10/2)(13 + (1 + (10-1)4))/2。
简化后得到前十项的和为:S10 = 265。
练习题四:已知等差数列的前三项之和是12,公差是2,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是2,前三项之和是12。
小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)
2a ba 22ab b 2.为便于记忆,可形象的叙述为:首平方,尾平方,2倍乘积在中央、常用技巧1. abcabc abc 1001 ;2. ababab ab 10101 ;3. 1 0.142857 , 2 0.285714 , 30.428571 ,7 7 7 4 1 5 1 6—0.571428 , — 0.714285 , — 0.857142 ; 7 7 7 4. %驰 %邨 123|||n||(321 ,其中 n 9.n 个1n 个1且隹例题精讲一'、前n 项和 【例 1】12 32 52"192【考点】公式法之求和公式 【解析】12 32 52 "I 192(12 22 32 ||| 192) (221 /2 2 —19 20 39 4 (1 2 6自tut/、常用公式1.2 3III2. 12 22 323. 13 23 334.5.6. 7.知识点拨IIIIll 10 n (n 1) 2n 等比数列求和公式: 平方差公式: b2n (n 1) (2n 1)S n II IIl la〔q1a 〔q公式法计算22n (n 1) a 〔qn n 1III a 1(q n1)(q 3 2 1 n2;1);完全平方公式: 用文字表述为:2ab b 2,2 一2a 2ab b两数和(或差)的平方,等于这两个数的平方和, 加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:【难度】2星42 || 182)III 92) 【题型】计算57600 门平 c2 ---- 2 7 8 4 8128【答案】81281 2 23333-100 101 21 2 501 2 2 3 1 2 2 —100 101 2 50 51 4 42470 2470【答案】21851—9 10 19 6285 2185 222222【巩固】124 5 7 8 【考点】公式法之求和公式【解析】原式(12 22 I0 162) (12 22 ||| 162) 2222210 11 13 14 16【难度】3星 (32 62 92 122 152)32 (12 2232 4252) 【题型】计算16 17 33 5 6 11--------- 9 ---------6 61496 495 1001【答案】1001[例 2 ] 计算:36 49 64 81 III 400 【考点】公式法之求和公式 【难度】3星【解析】原式62 72 82 H 2021222 32 ” 20212 2 2 32 42 521 120 21 41 5 6 11 6 6 2870 55 2815【答案】2815【题型】计算【例3】 计算:13 33 53 73 【考点】公式法之求和公式 33339 11 13 15【难度】3星【题型】计算【解析】原式13 23 33 432215 15 1 ---------- 8 III 143 13 23 153 III 23 73 43 III314【巩固】计算:13 33 53 \\\ 【考点】公式法之求和公式 【解析】 与公式13 23\\\ n 3先补上偶数项. 3991 2【难度】3星212n n m -------- 相比,4【题型】填空13 33 53”993缺少偶数项,所以可以原式 13 23 33 \\\ 100323 43 \\\ 1003_2 _2_ 2502 1012 2 512 12497500 【答案】124975001 23 33 20063【例4 ] 计算:------------------------------ 11 2 3 2006【关键词】西城实验 2003 2 2001 22 13 5 I]) 2001 2 1 2003 1002 2 2008008其中也可以直接根据公式 1 3 5 7 “ 2n 1 n 2得出1 3 5 ” 2001 2003 10022【答案】2008008 【例 6】计算:1 22 2 32 3 42 \[[ 18 192 19 202 【考点】公式法之求和公式 【难度】3星【题型】计算【解析】 分拆(21) 22 23 22 (3 1 ) 32 33321HHi 再用公式4 川丁( I( (J (II ( ( ( ( ( ( \J I ) 。
五年级奥数等差数列精编版
等差数列一、知识要点什么是等差数列?数列中每相邻两个数的差是一个固定值,这样的数列就是等差数列,这个固定的差值教等差数列的公差,数列中第一项叫做首项,依次第二项,第三项...最后一项叫末项。
有关等差数列,我们通常会用到下列三个公式公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1总和=(首项+末项)×项数÷2二、精讲精练【例题1】等差数列2,7,12,17, 22…的第100项是多少?【例题2】下列等差数列共各有多少项?(1)2, 5, 8, 11,...98,101 (2)1、4、7、10...100 (3)4、9、14、19 (109)【例题3】计算。
6+11+16+…+76 452+443+…+29+20+11880-3-6-9-...-57 1-2+3-4+5-6+…+97-98+99【例题4】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手赛一场。
(1)若有20人参赛,那么一共要进行多少场选拔赛?(2)若一共进行了78场比赛,有多少人参加了选拔赛?巩固练习1、有一列数:5,8,11,14,……它的第100项是多少?前100项的和是多少?2、计算:3+7+11+…+99 5000-1-2-3-4-5-6-…-98-991-2-3+4+5-6-7+8+9-10-11+12+...+1997-1998-1999+20003、有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?4、某中心剧院,第一排有30个座位,后一排都比前一排多2个座位,最后一排有60个座位,问这个中心剧院共有多少个座位?5、时钟一点敲1小,两点敲2下,依次类推,十二点时敲12下,每半点时敲一下,一昼夜共敲多少下?。
(教师版)小学奥数1-2-1-3 等差数列应用题.专项检测题及答案解析
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()例题精讲等差数列应用题(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
【奥数专题】精编人教版小学数学五年级上册 等差数列(试题)含答案与解析
经典奥数:等差数列(专项试题)一.选择题(共8小题)1.与1+3+5+7+9+5+3+1表示相同结果的算式是()A.42B.32C.52+32D.52﹣322.有这样一组数:8、12、16、20……第n个数是()A.n B.n+4C.4n D.4n+43.小明在计算器上从1开始,按自然数的顺序做连加练习,当他加到某数时,结果是2014,后来发现中间有个数多加了一次,那么多加的那个数是()A.29B.37C.54D.614.电影院第一排有m个座位,后面每一排比前一排多1个座位.第n排的座位数是()A.n B.m+n C.m+n﹣15.QQ是一种流行的中文网络即时通讯软件,注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0:00~24:00)使用QQ在2小时以上(包括2小时),其“活跃天数,累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳,网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是()A.205天B.204天C.203天D.202天6.小王在做加法运算,他从自然数1开始,按从小到大的顺序求和:1+2+3+4+…,当加到某个数时得到的“和”是1500,但是他发现在加的过程中少加了一个两位数,那么这个被少加的数是()A.25B.36C.40D.56E.897.物体从空中落下,第一秒落下4.9米,以后每秒比前一秒多落下9.8米,经过10秒到地面.物体离地面()米.A.500B.490C.390D.4808.一列有明显规律的数,2,5,8,11,14,17……,那么2017()A.是第671个B.是第672个C.是第673个D.不在这列数中二.填空题(共6小题)9.一个扇形剧场观众席,第一排有48个座位,往后逐排比前一排多2个座位,最后一排有100个座位。
小学奥数1-2-1-2等差数列计算题教师版
小学奥数1-2-1-2等差数列计算题教师版等差数列计算题知识点拨等差数列的相关公式(1)三个重要的公式①通项公式:递增数列:末项首项(项数)公差,递减数列:末项首项(项数)公差,回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:,②项数公式:项数(末项首项)公差+1由通项公式可以得到:(若);(若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有项,每组3个数,所以共组,原数列有15组.当然还可以有其他的配组方法.③求和公式:和=(首项末项)项数÷2对于这个公式的得到可以从两个方面入手:(思路1) (思路2)这道题目,还可以这样理解:即,和(2)中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:①,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于;②,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于.例题精讲【例1】用等差数列的求和公式会计算下面各题吗?⑴⑵⑶【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:⑵算式中的等差数列一共有50项,所以:⑶算式中的等差数列一共有15项,所以:【答案】⑴⑵⑶【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
【考点】等差数列计算题【难度】2星【题型】计算【关键词】希望杯,四年级,二试【解析】1+2+3+…+n+…+3+2+1=n×n,所以原式=10×10=100【答案】【巩固】1966、1976、1986、1996、2022这五个数的总和是多少?【考点】等差数列计算题【难度】1星【题型】计算【关键词】华杯赛,初赛【解析】1986是这五个数的平均数,所以和=1986×5=9930。
(完整版)2、五年级奥数:等差数列(教师版)
专题 2和=(首项+末项)x 项数十2 项数=(末项一首项)十公差+ 1 某一项二首项+ (项数—1)x 公差 例题:1、求等差数列3, 8, 13, 18,…的第38项和第69项2、等差数列4、12、20、…中,580是第几项?3、 36 个小学生排成一排玩报数游戏, 后一个同学报的数总比前一个同学多报 8, 已知最后一个同学报的数是 286,第一个同学报的数是几?4.一批货箱,上面的标号是按等差数列排列的,第1 项是 3.6, 第 5 项是 12,求它的第 2项。
今日作业:1、学校举办运动会,共 54 个人参加,每人都有参赛号码,已知前一个人的号 码比后一个人的号码总是少 4,最后一个人的号码是 215,第一个人的号码是多 少?2、一个等差数列的第 1项是 1.2,第 8项是 9.6,求它的第 10项3.求1至 100以内所有不能被 5或7整除的三位数的和等差数列 s =( a i + a n )x n * 2 n =( a n — a i )* d + 1 a n =a i + (n — 1)x d4.平面上共有50 个点,没有3 个点在同一直线上,试问,连接这些点最多可以画出多少条线段?巩固练习:1、上体育课的时候,同学们按照身高顺序来排队,相邻两个同学之间的身高差距都是 2 厘米,最矮的同学身高是160 厘米,最高的同学180 厘米,请问一共有多少个同学排队?2、一个礼堂有20排座位,第一排有10 个座位,以后每排比前一排多1个座位。
若学生在这里考试,要求每排任意两人不能挨着坐,则礼堂最多可容纳多少名3.小明练习打算盘,他按照自然数的顺序从1 开始求和,当加到某个数时,和是1997,但他发现计算时少加了一个。
问:小明少加了哪个数?4.小明练习打算盘,他按照自然数的顺序从1 开始求和,当加到某个数时,和是1997,但他发现计算时少加了一个。
问:小明少加了哪个数?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数等差数列计算题教师版(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),知识点拨等差数列计算题题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:+++++++=+⨯÷=()471013404346446152375【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
【考点】等差数列计算题【难度】2星【题型】计算【关键词】希望杯,四年级,二试【解析】1+2+3+…+n+…+3+2+1=n×n,所以原式=10×10=100【答案】100【巩固】1966、1976、1986、1996、2006这五个数的总和是多少?【考点】等差数列计算题【难度】1星【题型】计算【关键词】华杯赛,初赛【解析】1986是这五个数的平均数,所以和=1986×5=9930。
【答案】9930【巩固】计算:110+111+112+ (126)【考点】等差数列计算题【难度】2星【题型】计算【关键词】走美杯,四年级,初赛【解析】原式(110126)1722006=+⨯÷=【答案】2006【巩固】计算下面结果.⑴4812163236++++++⑵656361531++++++⑶34599100+++++【考点】等差数列计算题【难度】2星【题型】计算【解析】根据刚刚学过的求项数以及求和公式,项数=(末项-首项)÷公差1+等差数列的和=(首项+末项)⨯项数2÷⑴项数:364419()();和:43692180-÷+=+⨯÷=⑵项数:6512133-÷+=();和:16533233331089+⨯÷=⨯=()⑶项数:10031198-÷+=();和:31009825047+⨯÷=()【答案】⑴180 ⑵1089 ⑶5047【巩固】 用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题 【难度】2星 【题型】计算【解析】(1)算式中的等差数列一共有76项,所以:34567677783787623078+++++++=+⨯÷=()(2)算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=(3)算式中的等差数列一共有15项,所以:471013404346446152375+++++++=+⨯÷=()【答案】(1)3078 (2)2500 (3)375【巩固】 计算下列一组数的和:105,110,115,120,…,195,200【考点】等差数列计算题 【难度】2星 【题型】计算【解析】 根据等差数列求和公式,必须知道首项、末项和项数,这里首项是105,末项是200,但项数不知道.若利用1(1)n a a n d =+-⨯,可有1()1n n a a d =-÷+据此可先求出项数,再求数列的和.解:数列的项数1()1n n a a d =-÷+(200105)51=-÷+9551=÷+20=.故数列的和是:1()2n S a a n =+⨯÷(105200)202=+⨯÷305202=⨯÷3050=【答案】3050【巩固】 聪明的小朋友们,PK 一下吧.⑴4812163236++++++⑵656361531++++++【考点】等差数列计算题 【难度】2星 【题型】计算【解析】 根据刚刚学过的求项数以及求和公式,项数=(末项-首项)÷公差1+等差数列的和=(首项+末项)⨯项数2÷⑴项数:364419-÷+=(); 和:43692180+⨯÷=();⑵项数:6512133-÷+=();和:16533233331089+⨯÷=⨯=().【答案】⑴180 ⑵1089【巩固】 巧算下题:⑴500024698100-----⑵1357199519971999+++++++【考点】等差数列计算题 【难度】2星 【题型】计算【解析】 ⑴原式50002469810050002100502500025502450=-+++++=-+⨯÷=-=()()⑵这一串加数可以组成首项为1、末项为1999,公差为2的等差数列,项数199********=-÷+=(),原式11999100022000100021000000=+⨯÷=⨯÷=()【答案】⑴2450 ⑵1000000【巩固】 (123200720082007321)2008+++⋯++++⋯+++÷=【考点】等差数列计算题 【难度】2星 【题型】计算【关键词】走美杯,四年级,初赛【解析】 观察原式可知,1、2、3…2007分别可与2007、2006、2005…1组成2008,于是括号中有2008个2008,故原式结果为2008。
【答案】2008【巩固】 =÷++++++2008)2011201020092008200720062005(__________【考点】等差数列计算题 【难度】2星 【题型】计算【关键词】希望杯,4年级,1试【解析】根据中项定理知: 2005+2006+2007+2008+2009+2010+2011=2008×7,所以原式= 2008×7÷2008=7【答案】7【巩固】 计算:1÷50+2÷50+……+98÷50+99÷50=【考点】等差数列计算题 【难度】2星 【题型】计算【关键词】希望杯,4年级,1试【解析】原式=()()+++++++÷=+⨯÷÷=123459899501999925099【答案】99【例 1】 计算:⑴1351997199924619961998++++++++++()-()⑵40005101595100------⑶99198297396495594693792891990+++++++++【考点】等差数列计算题 【难度】3星 【题型】计算【解析】 ⑴(方法一)第一个数列的项数1000,第二个数列的项数为999,利用求和公式得:11999100022199899921000+⨯÷-+⨯÷=()().(方法二)第一个括号内共有1000个数,第二个括号内有999个数.把1除外,第一个括号内的各数依次比第二个括号里相应的数大1,因此可简捷求和.原式1325419991998111l =+-+-++-=++++()()()(共1000个1)1000=⑵通过观察可知,题目中的减数可以组成等差数列,所以,可先求这些减数的和,再从被减数中减去这个和.400051015951004000510159510040005100202------=-+++++=-+⨯÷()()() 400010502950=-=.当一个数连续减去几个数,这些减数能组成等差数列时,可以先求这些减数的和,再从被减数中减去这个和.⑶99198297396495594693792891990+++++++++100120023003100010=-+-+-++-100200300100012310=++++-++++()1001000102110102=+⨯÷-+⨯÷()()550055=-5445=【答案】⑴1000 ⑵2950 ⑶5445【巩固】 计算246198419861988135198319851987++++++-++++++()()【考点】等差数列计算题 【难度】3星 【题型】计算【解析】 根据求项数公式可知两个括号内的算式都各有994项原式21432143(19881987)=-+-++-+-+++()()()()11111994++++=994个【答案】994【巩固】 计算:20072006200520042003200254321-+-+-++-+-+【考点】等差数列计算题 【难度】3星 【题型】计算【关键词】走美杯,3年级,决赛【解析】 找规律并分组计算如下:20072006200520042003200254321-+-+-++-+-+ ()()()()()20031=20072006200520042003200254321=1+1++1+1=2004-+-+-++-+-+个【答案】2004【巩固】 计算:⑴ 2469698100135959799++++++-++++++()()⑵ 13467910121366676970+++++++++++++;⑶ 1000999998997996995106105104103102101+-++-+++-++-. ⑷ 616926993699946999956999996+++++【考点】等差数列计算题 【难度】3星 【题型】计算【解析】⑴ 和式2498100++++,1359799+++++中的项成等差数列,从而可能想到先求和,再做减法.这样做,很自然,也比较简便,有其他更为简便的解法吗?再看题,你会冒出一个好想法:运用加减运算性质先做减法:21-,43-,65-,,10099-,它们的差都等于1,然后,计算等于1的差数有多少个.由于题中1至100的全部偶数之和作为被减数,奇数之和为减数,所以,相邻的奇偶数相减(以大减小),共得50个差数1,从而,原式214398*********=-+-++-+-=()()()(). ⑵ 以把这个数列拆分为两个数列14710136770+++++++和369126669++++++,对它们分别求和:原式1702423692321680=+⨯÷++⨯÷=()();⑶ 本题也可以按照上题的方法做,但还有更简便的办法,把式子中的减法都计算出来可以得到下式:10001997110611031++++++++.这是1000997106103++++和1111++++的组合,分别计算结果即可: 原式100010330021300165750=+⨯÷+⨯=()⑷ 原式709700870007700006700000570000004=-+-+-+-+-+-()()()()()()77777709876547777731=-+++++=()【答案】⑴50 ⑵1680 ⑶165750 ⑷7777731【巩固】 计算:13520092462008++++-++++()()【考点】等差数列计算题 【难度】3星 【题型】计算【解析】方法一:让学生用等差数列求和公式分别计算前后两部分,然后讲方法二,这样可以让学生体会观察数列规律,动脑思考的重要性.原式120091005222008100421005=+⨯÷-+⨯÷=()()方法二:把括号去掉,两两结合,简便计算.原式1005113254200920081111111005=+-+-++-=+++++=个()()()【答案】1005【巩固】 计算:24620081352007++++-++++()(). 【考点】等差数列计算题 【难度】3星 【题型】计算【解析】方法一:等差数列求和.原式220081004212007100421004=+⨯÷-+⨯÷=()().方法二:把括号去掉,两两结合,简便计算.原式100412143200820071111111004=-+-++-=+++++=个()()().【答案】1004【巩固】 计算:200820072006200520042003200220014321+--++--+++--.【考点】等差数列计算题 【难度】2星 【题型】计算【解析】方法一:原式200820072006200520042003200220014321=+--++--+++--()()()502444445022008=+++=⨯=个方法二:原式20082007200620052004200320022001200054=+---+---+--+()()()()()321200811111112008--=+-+-+-+-=() 方法三:20082006200720052004200242312-=-=-==-=-=,观察到这一点就好办了,改变原来的运算顺序不难发现每两个数放在一起就是2,就等于说每一个数都看成1就行了,原式有2008项,所以最后答案就是2008.(让学生体会观察数列规律动脑思考的重要性.)【答案】2008【巩固】 计算:123456789979899+-++-++-+++-.【考点】等差数列计算题 【难度】3星 【题型】计算【解析】原式123456789979899=+-++-++-+++-()()()()036996396[96331]21584=+++++=+⨯-÷+÷=()()【答案】1584【例 2】 计算: 1.1 3.3 5.57.79.911.1113.1315.1517.1719.19+++++++++.【考点】等差数列计算题 【难度】2星 【题型】计算【关键词】第十三届,迎春杯,试题【解析】原式 5.5515.155=⨯+⨯5.515.15520.565103.25=+⨯=⨯=() 【答案】103.25【例 3】 计算12319901990199019901990+++=______ 【考点】等差数列计算题 【难度】3星 【题型】计算【解析】 原式12319901990++++= (11990)199021990+⨯÷= 19952= 【答案】19952【巩固】 ⑴计算468103436++++++⑵以质数71做分母的最简真分数有123,,......,7171716970,;7171求这列数的和 ⑶计算:56789101113579111313131313131313++++++ 【考点】等差数列计算题 【难度】3星 【题型】计算【解析】 ⑴这是一个等差数列,根据等差数列求和公式计算得:(436)172340+⨯÷=⑵方法一:将这列数的分子从左往右排起来是1,2,3,4…69,70.可以发现这是一个等差数列,首项是1,末项是70,项数是70.我们可以用等差数列求和公式“和=(首项+末项)⨯项数2÷”求出分子相加的和,再求出以质数71做分母的最简真分数的和.12346970 (717171717171)1234.....6970(170)7027135++++++++++++=+⨯÷==方法二:将这列数排列起来,可以发现:第二项比第一项多171, 第三项比第二项多171, 第四项比第三项多171, ………… 因此,可以直接使用等差数列求和公式求和.12346970 (717171717171)170702717135++++++⎛⎫=+⨯÷ ⎪⎝⎭= ⑶带分数加法,我们先计算整数部分,再计算分数部分,认真观察我们发现整数部分和分数部分都可以利用等差数列求和公式进行计算.56789101113579111313131313131313567891011(135791113)()13131313131313(511)72(113)721344941345313++++++=++++++++++++++⨯÷=+⨯÷+=+= 【答案】⑴340 ⑵35⑶45313。