管理经济学计算题及参考答案(已分类整理)复习课程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、计算题

某种商品的需求曲线为QD=260-60P,供给曲线为QS=100+40P。其中,QD与QS分别表示需求量和供给量(万斤),P表示价格(元/斤)。假定政府对于每单位产品征收0.5元税收。①求税收后的均衡产量Q与消费者支付的价格PD以及生产者获得的价格PS。②计算政府的税收收入与社会的福利净损失。

解:(1)在征税前,根据QD=QS,得均衡价格P=1.6, Q=164

令T=0.5,新的均衡价格为P',新的供给量为QS',新的需求量为QD'.则有:

QS'=100+40( P'-T) QD'=260-60 P'

得新的均衡价格为P'= 1.8新的均衡价格为Q'=152

所以税收后的均衡产量为152万斤,消费者支付价格1.8元,生产者获得价格1.3元.

(2)政府的税收收入=T×Q'=76万元,社会福利损失=(1/2)×0.5×(164-152)=3万元.

2.设砂糖的市场需求函数为:P=12-0.3QD;砂糖的市场供给函数为P=0.5QS。(P为价格,单位为元;QD、QS分别为需求量和供给量,单位为万千克)。问:

(1)砂糖的均衡价格是多少?

(2)砂糖的均衡交易量是多少?

(3)若政府规定砂糖的最高价格为7元/万千克,砂糖的供求关系会是何种状况?

(4)如果政府对砂糖每万千克征税1元,征税后的均衡价格是多少?7.875元/万千克7

解:(1)供求均衡时,即QD =Qs

P=12-0.3Q D,P=0.5Q S

Q D=(12-P)÷0.3,Q S= P÷0.5 那么(12-P)÷0.3=P÷0.5 解得P=7.5(元)

(2)Q D =Qs=(12-P) ÷0.3=15(万千克)

(3)需求量:Q D =(12-P) ÷0.3=16.7(万千克)

供给量:Qs=P÷0.5=14(万千克)可见P=7时,Q D> Qs

所以,若政府规定砂糖的最高价格为7元/万千克,就会出现供不应求的局面。

(4)设税后价格为P’,征税后新的供给曲线就应为:

Qs=(P’-1) ÷0.5 均衡条件为Q D =Qs

(12-P’)÷0.3=(P’-1) ÷0.5

P’=7.875 (元/万千克)

故税后的均衡价格为7.875元。

、已知某人的生产函数U=xy, 他打算购买x和y两种商品,当其每月收入为120元,Px=2元,Py=3元时,试问:(1)为获得最大效用,他应该如何选择x和y的组合?

(2)假设x的价格提高44%,y的价格不变,他必须增加多少收入才能保持原有的效用水平?

⑴因为MUx=y,MUy=x,由

MUx/MUy=y/x=Px/Py, PxX+PyY=120

则有Y/x=2/3 2x=3y=120

解得X=30 , y=20

(2)由MUx/MUy=y/x=Px/Py xy=600,解得

x=25, y=24

所以M1=2.88=3y=144

M1-M=24

2.若消费者张某的收入为270元,他在商品X和Y的无差异曲线上的斜率为dY/dX=-20/Y的点上实现均衡。已知商品X 和商品Y的价格分别为PX=2,PY=5,那么此时张某将消费X和Y各多少?

消费者的均衡的均衡条件-dY/dX=MRS=PX/PY

所以-(-20/Y)=2/5 Y=50

根据收入I=XPX+YPY,可以得出270=X*2+50*5,X=10

3.某人每周花360元买X和Y,Px=3,Py=2,效用函数为:U=2X2Y,求在均衡状态下,他如何购买效用最大?

解:max:U=2X2Y

S.T 360=3X+2Y

构造拉格朗日函数得:W=2X2Y+λ(360-3X-2Y)

dW/Dx=MUx-3λ=4xy-3λ=0

dW/Dy=MUy-2λ=2x2-2λ=0

求得:4Y=3X,又360=3X+2Y,得X=80,Y=60

4.所有收入用于购买x,y的一个消费者的效用函数为u=xy,收入为100,y的价格为10,当x的价格由2上升至8时,其补偿收入(为维持效用水平不变所需的最小收入)是多少?

解:最初的预算约束式为

2x+10y=100

效用极大化条件MUx/Muy=Px/Py=2/10由此得y/x=1/5

x=25,y=5,u=125

价格变化后,为维持u=125效用水平,在所有组合(x,y)中所需收入为m=8x+10y=8x+10·125/x

最小化条件(在xy=125的约束条件下)dm/dx=8-1250x-2=0

解得x=12.5,y=10,m=200

5.设某消费者的效用函数为U(x,y)=2lnx+(1-α)lny;消费者的收入为M; x,y两商品的价格分别为PX,PY;求对于X、Y两商品的需求。

解: 构造拉格朗日函数L=2lnX+(1-α)lnY+λ(M-PXX-PYY)

对X 、Y 分别求一阶偏导得2Y/(1-α)X=PX/PY 代入PXX+PYY=M

:X=2M/(3-) PX Y=(1-α)M/(3-α) PY

.某种化妆品的需求弹性系数为3,如果其价格下降25%,则需求量会增加多少?假设当价格为2元时,需求量为2000瓶,降价后需求量应该为多少?总收益有何变化?

已知E d=-3, ΔP/P=-25%,P1=2,Q1=2000ΔQ/Q, Q2 ,TR2。

(1)根据计算弹性系数的一般公式:E d=ΔQ/Q/ΔP/P

将已知数据代入公式,则有:ΔQ/Q=E d*ΔP/P=-3*-25%=%75 ,即需求量会增加75%。

(2)降价后的需求量Q2为:Q2=Q1(1+75%)=2000+2000×75%=3500(瓶)

(3)降价前的总收益:TR1=P1*Q1=2×2000=4000(元)。

降价后的总收益:TR2=P2*Q2=P1(1-25%)*Q2=2(1-25%)×3500=5250(元)。

从而:TR2-TR1= 5250-4000=1250(元)

即商品降价后总收益增加了1250元。

2.设需求曲线的方程为Q=10-2P,求其点弹性为多少?怎样调整价格,可以使总收益增加?

解:根据点弹性的定义

Edp = —(dQ/Q)/ (dP/P)= —(dQ/dP)·(P/Q) = —(-2)·(P/Q)=2·(P/Q)

价格的调整与总收益的变化之间的关系与弹性的大小有关。

若Edp <1,则表示需求缺乏弹性。此时若提高价格,则需求量降低不太显著,从而总收益会增加;

若Edp >1,则表示需求富于弹性。此时若降低价格,则需求量会增加很多,从而总收益会增加;

若Edp =1,则表示单位需求弹性。此时调整价格,对总收益没有影响。

3.已知某商品的需求方和供给方程分别为:QD=14-3P;QS=2+6P 试求该商品的均衡价格,以及均衡时的需求价格和供给价格弹性

解:均衡时,供给量等于需求量,即:QD=QS也就是14-3P=2+6P

解得P=4/3,QS=QD=10

需求价格弹性为EDP= -(dQD/dP)·(P/QD)=3·(P/QD),所以,均衡时的需求价格弹性为EDP=3*[(4/3)/10]=2/5

同理,供给价格弹性为ESP=(dQS/dP)·(P/QS)=6·(P/QS),所以,均衡时的供给弹性为ESP=6*[(4/3)/10]=4/5

4.某商品的需求价格弹性系数为0.15,现价格为1.2元,试问该商品的价格上涨多少元,才能使其消费量减少10%?

已知Ed = 0.15,P=1.2,△Q/Q=10% ,根据计算弹性系数的一般公式:Ed = △Q/Q÷△P/P

将已知数据代人上式:0.15=10%÷△P/1.2

△P = 0.8 (元),该商品的价格上涨0.8元才能使其消费量减少10%。

.出租车与私人汽车之间的需求交叉弹性为0.2,如果出租车服务价格上升20%,私人汽车的需求量会如何变化?已知Ecx=0.2,△Py/Py=20%。

根据交叉弹性系数的计算公式:Ecx=△Qx/Qx/△Py/Py。

将已知数据代入公式,则有:△Qx/Qx/20%=0.2,△Qx/Qx=4%,即私人汽车的需求量会增加4%。

2.公司甲和已是某行业的两个竞争者,目前两家公司的销售量分别100单位和250单位,其产品的需求曲线分别如下:甲公司:P甲=1000-5Q甲乙公司:P乙=1600-4Q乙

相关文档
最新文档