北师版九下数学确定二次函数的表达式 说课稿

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版九年级下册数学《确定二次函数表达式》说课稿

尊敬的各位评委、各位老师:

大家好!我说课的题目是《确定二次函数的表达式》。我将从教材分析、教法学法、教学过程、板书设计和教学评级及反思五个方面对本节课进行说明。

第一方面,教材分析

1.地位和作用

本节课是鲁教版九年级上册第二章《二次函数》的第六节的内容。本章是在之前学习了一次函数、反比例函数及一元二次方程等知识的基础上进行学习的,主要内容有二次函数的图像、性质及应用,这些知识的学习均与二次函数表达式有关。因此,本节课的学习即是对以前所学方程及方程组解法的巩固,又是研究综合题的基础。所以,无论从生产实际和生活需要,还是发展学生的应用意识和能力本节课都具有极其重要的意义。

2.教学目标

新课程强调以培养学生的能力,培养学生的兴趣为根本目标,考虑到学生已有的知识结构和心理特征,我制定本节课的教学目标如下:

知识目标

1、会用待定系数法求各种形式的二次函数的表达式

2、会用二次函数的表达式解决实际为题

能力目标

通过用二次函数表达式解决实际问题,体会“一题多变”、“一题多解”的思想,逐步提高学生的分析能力、整合能力及创新能力情感目标

通过解决实际问题,进一步增强“数学来源于生活,回归生活”的意识,从而培养学生热爱科学,勇于探索的精神

3.教学重点和难点

考虑到九年级学生观察、分析、认识问题的能力,都已得到一定的锻炼,计算能力也有了一定的提高,结合课标的要求,我确定本节课的教学重、难点如下:

会确定各种形式的二次函数表达式的方法和思路为本节的教学重点,教学难点是实际问题中二次函数表达式确定的方法。

第二方面,教法学法分析

1.教法数学课程标准指出,类比、联想是数学学习的一种优秀思

维品质,是数学发现和创造的源泉;而转化则是一种重要的数学思想。因此本节课,我采用类比、联想、转化式的教学方法;2.学法按照知识发现理论,一般情况下,学习者在学习过程中对

学习材料的发现,才是学习者所获得的最有价值的东西,教师在教授过程中,必须设法教会学生学习方法,促使学生从学会到会学,最后到乐学。因此本节课我采用自主探究、合作交流的研讨式学习方法。

那么本节课就采用多媒体教学。

第三方面,教学过程分析

教学过程是教学目标的体现过程,是教法、学法的实施过程,是教学理念的展现过程,是使知识和能力在现实背景中的呈现过程。为了达到本节课的教学目标,最大限度的激发学生的主动性、探索性、积极性,我将本节课的教学过程设计为以下六个环节。

环节一,走进生活,引入新课

“良好的开端是成功的一半”为了激发学生的好奇心,促进学生动脑筋思考,我设计了如下的引课,詹姆斯站在离球篮4米处,能否准确投篮?水池半径至少是多少时?才能使喷出的水流不止落到池外?郭晶晶在一次试跳过程中距池边3.6米时,外出规定动作,会不会失误?这是我校车棚的一般部分,他的截面是抛物线的一部分,根据条件,你能解答本题吗?这些问题要想解决首先要会求二次函数的表达式,顺其自然引出本节课题“确定二次函数表达式”。设计目的,结合实际,用有悬念的引课将学生置身于“解决问题”的情景中,使学生深深体会到数学就在生活中。

环节二,温故知新

复习待定系数法及用待定系数法解题的一般步骤和二次函数各

种形式的表达式,教师并一一板书在黑板上。设计目的,用类比联想的方法,化未知为已知,在学生已有知识即会用待定系数法求一次函数,反比例函数的表达式的基础上,顺利理解并掌握本节课所学内容“确定二次函数表达式”。

环节三,典型例题

教材中的例题都是编写者精心设计的,其目的是通过例题的讲解,

帮助学生很好的掌握知识,激发思维和培养能力,并且例题中往往蕴含着一些“奥秘”,这些“奥秘”有的是学生对所学知识拓展、引深的关键,有的是一些重要的数学思想的应用。因此,感悟于中考压轴题的第(1)问,我在讲授本节例题的基础上,为本节例题设计了变式练习。例1,例2中教师引导学生结合待定系数法解题的一般步骤,一设,二代,三解,四还,设出相应的表达式,解答例题。此处,教师要给出规范的解答过程,便于学生模仿。紧接着,引导学生对例1,例2进行变式练习,即能否变换一种说法,表述方法在变,但解答过程大致不变。教师强调学生应抓住问题中关键的一个条件进行变式。进过分析,学生不难得到,例1中点(0,2)、点(1,0),其实是图像与坐标轴的交点;;例2中,顶点(-1,-6)的横坐标与对称轴有关,纵坐标于函数最值有关。此环节,应鼓励学生积极思考,大胆尝试,勇于发言,充分利用所学知识对例1、例2进行变式,最后经过学生发言,教师对学生没说全的,没说到的进行补充,大致有以下集中变式:点转化成与坐标抽的交点横、纵坐标;顶点化为对称轴和最值;顶点在某一直线上;用图像表达;平移得到对称轴;图像与x轴交点横坐标与对称轴的关系。这些都是往年各省的中考压轴题的第(1)问。要求学生对每种变式都给出解题思路和大致方法。这样,学生既有效的复习了以往所学知识,同时有品尝到了学习的快乐。设计目的,深入挖掘课本中例题的潜在价值,不仅可以使彼此孤立的知识窜成线,前后贯通,使学生“解一题而明一路”,还可以优化学生的思维品质,有效的提高学生分析问题,解决问题和探索创新的能力。在达

到本节课教学目标的同时,突破本节重点。

环节四,学以致用,回归生活

按照知识掌握理论,数学学习,要求学生必须有独立思考的时间和空间,然后交流各自想法,才能有更大的收获。本节课,教师要求学生先独立思考几分钟,然后小组合作交流,最后派代表发言。教师趁此机会,在黑板上画出四个截面图备用。经过个小组积极发言总结,大致有四种建立坐标系和解题的方法。而一道题无论解法再多,总有一种是最简单的,我们选出一种最简单的,教师给出规范的解答过程,便于学生模仿。而“听十遍不如讲一遍,写一遍胜似讲十遍”所以,如时间允许,再选一种建立坐标系的方法,让刚才发言的同学模仿规范步骤,说出自己的解答过程,并要求全体学生课下把自己解决本题的规范步骤整理到作业本上。这样,在实际为题解决的同时,顺利突破本节难点。

环节五,学有所思,感悟收获

为了很好的掌握本节课的内容,接下来同学们一起总结求二次函数表达式的一般步骤。经过同学们讨论、互相补充及教师提醒,求二次函数表达式的一般步骤如下。尤其是第六步“实际问题”中一定要注明自变量的取值范围。并要求学生能对每步做出解释。这样,在巩固值得同时,学生的语言概括能力会在总结中进一步得到提高。

环节六,分层作业,拓展提高

新课标强调,“人人学有价值的数学,不同的人在数学上得到不同的发展”,传统的“一刀切”、“齐步走”已不符合教改的要求。因此,

相关文档
最新文档