五年级奥数.杂题.统筹规划(ABC级).学生版
五年级下册数学扩展专题练习统筹规划(abc级)全国通用(无答案)
统筹规划考试要求1.掌握合理安排时间、地点问题.2.掌握合理布线和调运问题.3.掌握空瓶换水、火柴游戏等问题的常规解法。
知识结构知识点说明:统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。
它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。
运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。
这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。
这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。
“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案”不可能是最优方案。
“小往大靠,支往干靠”。
例题精讲【例 1】理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要、、、和分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少?【巩固】设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要分钟,注满第二个人的桶需要分钟,…….如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?【例 2】 下图为某三岔路交通环岛的简化模型,在某高峰时段,单位时间进出路口,,的机动车辆数如图所示,图中1x ,2x ,3x 分别表示该时段单位时间通过路段,,的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),问:1x ,2x ,3x 的大小关系.505530353020X 3X 2X 1【巩固】 右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从到最快要几分钟?H GFE DCB A 7565046463341【例 3】 有七个村庄1A ,2A ,,7A 分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?公路A 6A 5A 7A 4A 3A 2A 1FE DB C。
统筹规划问题(小学数学奥数五年级)
统筹规划问题知识与方法:在生活中,我们经常遇到将一些事情进行合理安排的问题,也就是在一定的时间内做好几件事情,同时还要做到省时,省力,从而取得最大工作效率问题我们把这类问题称为统筹问题.解决此类问题时,必须树立统筹的思想,能同时做的事,尽量同时做.有时还会出现求费用最省,面积最大,损失最小等问题,这类问题的可以从极端情况去探讨最大(小)值.在数学称为极值问题。
统筹规划问题和极值问题,实际上都属于最优化问题,其目的都是在允许范围内得到最佳效益.例1:用一个平底锅烙菜饼,每次能同时放2张菜饼,如果烙1张菜饼需要2分钟(假设正反面各需要一分钟),那么烙3张菜饼至少需要几分钟?练习1:1。
用一个平底锅烙油饼,锅里只能同时放2张油饼,油饼的每一面都需要烙3分钟.现在烙3张油饼,最少需要几分钟?2。
乐乐的妈妈用平底锅烙饼,这只锅能同时能放四张饼,烙一张要4分钟(每面各需2分钟),妈妈烙六张饼只用了6分钟,她是怎样做的?例2:妈妈让小军给客人烧水沏茶,洗水壶需要1分钟,烧开水需要15分钟。
洗茶壶需要1分钟,洗茶杯需要1分钟,拿茶叶需要2分钟,为了使客人早点喝上茶,你认为最合理的安排,多少分钟后客人就能喝上茶?练习2:1。
李晨早上完成这几样事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。
为了尽快做完这些事,最少需要几分钟?2.小强给客人沏茶,烧开水要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶要1分钟,为了使客人能早点喝上茶,你认为最合理的安排,多少分钟后就能沏茶了?例3:四一班甲、乙、丙三位同学同时到达学校卫生室,等候校医治病,家打针需要5分钟,乙包纱布需要3分钟,丙点眼药水只需要1分钟,卫生室只有一位校医。
问校医如何安排三位同学的治病次序,才能使三位同学留在卫生时等候的时间总和最短,请你算出这个时间?练习3:1。
运动会时,甲、乙、丙三人分别拿着2个,3个,1个暖水瓶同时到达开水房打开水,热开水龙头只有一个。
五年级奥数题及答案:统筹规划问题
五年级奥数题及答案:统筹规划问题
编者小语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。
这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:统筹规划问题,可以帮助到你们,助您快速通往高分之路!!
简单的统筹规划
某工地A有20辆卡车,要把60车渣土从A运到B,把40车砖从C运到D(工地道路图如右图所示),问如何调运最省汽油?
解:分析把渣土从A运到B或把砖从C运到D,都无法节省汽油.只有设法减少跑空车的距离,才能省汽油。
解:如果各派10辆车分别运渣土和砖,那么每运一车渣土要空车跑回300米,每运一车砖则要空车跑回360米,这样到完成任务总共空车跑了
300×60+360×40=32400(米)。
如果一辆车从A→B→C→D→A跑一圈,那么每运一车渣土、再运一车砖要空车跑
240+90=330(米).
因此,先派20辆车都从A开始运渣土到B,再空车开往C运
砖到D后空车返回A,这样每辆车跑两圈就完成了运砖任务.然后再派这20辆车都从A运渣土到B再空车返回A,则运渣土任务也完成了.这时总共空车跑了
330×40+300×20=19200(米).
后一种调运方案比前一种减少跑空车13200米,这是最佳节油的调运方案。
五年级奥数专题 统筹规划(学生版)
统筹规划学生姓名授课日期教师姓名授课时长知识定位最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益.因此,最优化问题成为现代应用数学的一个重要研究对象,它在生产、科学研究以及日常生活中都有广泛的应用.作为数学爱好者,接触一些简单的实际问题,了解一些优化的思想是十分有益的.其实统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率。
统筹方法,是生产、建设、工程和企业管理中合理安排工作的一种科学方法,它对于进行合理调度、加快工作进展,提高工作效率,保证工作质量是十分有效的.1. 如何合理的安排时间地点。
2. 如何安排能得到最优化的方案。
3. 最优化方案的条件。
知识梳理常用原则方法总结“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案“不可能是最优方案。
线性规划是运用一次方程(组)、一次函数来解决规划问题的数学分支。
规划论研究的问题主要有两类:一类是确定了一项任务,研究怎样精打细算使用最少人力、物力和时间去完成它;另一类是在已有一定数量的人力、物力和财力的条件下,研究怎样合理调配,使它们发挥最大限度的作用,从而完成最多的任务劳力组合最简单的情况就是效率比问题.这里给出多种劳力(或机械)干两种配套活的一般分工原则。
关于排序不等式,例如,有一台机床要加工n个工件,每个工件需要的加工时间不一样,问应该按照什么次序加工,才能使总的等待时间最短.递推思想的应用,从简单的较少的人数入手,通过逐步递推,探索一般规律,从而解决某些数字较大的问题.竞赛考点1. 寻找达到最优化条件的等价条件。
2. 合理安排多条件下的统筹问题。
3. 简单的较少的人数入手,通过逐步递推,探索一般规律例题精讲【试题来源】【题目】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟)。
小学五年级奥数专题:统筹规划
三一文库()/小学五年级〔小学五年级奥数专题:统筹规划〕小学五年级小学五年级奥数专题:统筹规划,供大家学习参考。
一、用一只平底锅煎饼,每次能同时放两个饼。
如果煎一个饼需要4分钟(假定正、反面各需2分钟),问煎m个饼至少需要几分钟?二、小明、小华、小强同时去卫生室找张大夫治病。
小明打针要5分钟,小华换纱布要3分钟,小强点眼药水要1分钟。
问张大夫如何安排治病次序,才能使他们耽误上课的时间总和最少?并求出这个时间。
三、赵师傅要加工某项工程急需的5个零件,如果加工零件A、B、C、D、E所需时间分别是5分钟、3分钟、4分钟、7分钟、6分钟。
问应该按照什么次序加工,使工程各部件组装所耽误的时间总和最少?这个时间是多少?四、某水池可以用甲、乙两个水管注水,单放甲管需12第1页共3页小时注满,单放乙管需24小时注满。
若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲、乙两管合放最少需要多少小时?五、山区有一个工厂。
它的十个车间分散在一条环行的铁道上。
四列货车在铁道上转圈,货车到了某一车间,就要有装卸工装上或卸下货物。
当然,装卸工可以固定在车间等车(各车间所需装卸工人数如图所示);也可以坐在货车到各车间去;也可以一部分装卸工固定在车间,另一部分坐车。
问怎样安排才能使装卸工的总人数最少?最少需多少名工人?六、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?七、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
问:要把4头牛都赶到对岸去,最少需要多长时间?八、用5 ~~ 8这四个数字分别组成两个两位数,使这两个两位数的乘积最小。
【奥赛】小学数学竞赛:统筹规划.学生版解题技巧 培优 易错 难
【例 6】右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从A到B最快要几分钟?
1.掌握合理安排时间、地点问题.
2.掌握合理布线和调运问题.
知识点说明:
统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
【例 10】某个班的 个学生的家庭住址在城市中的分布如图(圆点是各个学生的家庭住址,线段是街道),如果这个班的学生举行一个聚会,为了尽量减少每个学生行走路程总和,那么他们应该选择十字路口附近的地点。(横线上填十字路口的坐标,如 所在的十字路口的坐标为 )。
【例 11】右图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米).现在要在五村之中选一个村建立一所小学.为使所有学生到学校的总距离最短,试确定最合理的方案.
【小学精品奥数】统筹规划.学生版
1. 掌握合理安排时间、地点问题.2. 掌握合理布线和调运问题.知识点说明: 统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。
它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。
运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。
这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。
这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。
“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案”不可能是最优方案。
“小往大靠,支往干靠”。
板块一、合理安排时间 【例 1】 一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎?【考点】统筹规划 【难度】2星 【题型】解答【解析】 因为这只平底锅上可煎两只饼,如果只煎1个饼,显然需要2分钟;如果煎2个饼,仍然需要2分钟;如果煎3个饼,所以容易想到:先把两饼一起煎,需2分钟;再煎第3只,例题精讲知识点拨教学目标统筹规划仍需2分钟,共需4分钟,但这不是最省时间的办法.最优方法应该是:首先煎第1号、第2号饼的正面用1分钟;其次煎第1号饼的反面及第3号饼的正面又用1分钟;最后煎第2号、第3号饼的反面再用1分钟;这样总共只用3分钟就煎好了3个饼.(因为每只饼都有正反两面,3只饼共6面,1分钟可煎2面,煎6面只需3钟.)【答案】3分钟【巩固】烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?【考点】统筹规划【难度】2星【题型】解答【关键词】2000年,小学生数学报,数学邀请赛【解析】先将两块饼同时放人锅内一起烙,3分钟后两块饼都熟了一面,这时取出一块,第二块翻个身,再放人第三块,又烙了3分钟,第二块已烙熟取出,第三块翻个身,再将第一块放入烙另一面,再烙3分钟,锅内的两块饼均已烙熟.这样烙3块饼,用去9分钟,所以烙21块饼,至少用213963÷⨯=(分钟).【巩固】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?【考点】统筹规划【难度】2星【题型】解答【解析】我们归纳出煎1、2、3个饼分别需要2、2、3分钟,我们可以继续往下分析,煎4个饼最少需要4分钟,煎5个饼需要325+=分钟,煎6个饼需要6226÷⨯=分钟,煎7个饼需要34227+÷⨯=分钟,那么煎2009个饼至少需要2009分钟.【答案】2009分钟【例2】星期天妈妈要做好多事情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 掌握合理安排时间、地点问题.2. 掌握合理布线和调运问题.3. 掌握空瓶换水、火柴游戏等问题的常规解法。
知识点说明:统筹学是一门数学,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。
它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。
运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。
这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。
这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。
“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案”不可能是最优方案。
“小往大靠,支往干靠”。
例题精讲知识结构考试要求统筹规划【例 1】 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10、12、15、20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少?【巩固】 设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?【例 2】 下图为某三岔路交通环岛的简化模型,在某高峰时段,单位时间进出路口A ,B ,C 的机动车辆数如图所示,图中1x ,2x ,3x 分别表示该时段单位时间通过路段AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),问:1x ,2x ,3x 的大小关系.【巩固】 右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从A到B 最快要几分钟?【例 3】 有七个村庄1A ,2A ,,7A 分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?505530353020X 3X 2X 1H G FEDCB A 7565046463341【巩固】 某乡共有六块麦地,每块麦地的产量如右图.试问麦场设在何处最好?(运输总量的千克千米数越小越好.)【例 4】 一支勘探队在五个山头A 、B 、C 、D 、E 设立了基地,人数如右图所示.为调整使各基地人数相同,如何调动最方便?(调动时不考虑路程远近)【巩固】 下图是一个交通示意图,A 、B 、C 是产地(用●表示,旁边的数字表示产量,单位:吨),D 、E 、F 是销地(用○表示,旁边的数字表示销量,单位:吨),线段旁边有括的数字表示两地每吨货物的运价,单位:百元(例如B 与D 两地,由B 到D 或由由D 到B 每吨货物运价100元).将产品由产地全部运往销地,怎样调运使运价最小?最小运价是多少?【例 5】 山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈运送货物。
货车到了某一车间,就要有装卸工人装上或卸下货物.各车间由于工作 量不同,所需装卸工人数也不同,各车间所需装卸工人数如图所示。
当然,装卸工可以固定在车间等车;也可以坐在公路A 6A 5A 7A 4A 3A 2A 1FE DB C 6000千克4000千克1000千克5000千克2000千克3000千克G FE D C BA第3题货车上跟车到各车间去干活;也可以一部分装卸工固定在车间,另一部分跟车.问怎样安排跟车人数和各车间固定人数,才能使装卸工的总人数最少?最少需多少名工人?【巩固】一个物流港有6个货站,用4辆同样的载重汽车经过这6个货站组织循环运输.每个货站所需要的装卸工人数如下图.为了节省人力,可安排流动的装卸工随车到任何一个货站装卸.在最优的安排下使物流港装卸工总人数最少,则是人.【例 6】牛奶和李子果酱被装在同样的瓶子里出售,同时商店还开展回收此类空瓶的业务.每5个空瓶可以换1瓶牛奶,每10个空瓶可以换1瓶李子果酱.灰太狼从地窖里找到了60个空瓶,拿到商店去换物品.他每次只换回一瓶牛奶,或一瓶李子果酱,并且等把换到的牛奶或李子果酱都吃掉后,再拿空瓶去换物品.在进行了若干次交换之后,他手中只剩下了1个空瓶.问:他一共进行了多少次交换?【巩固】师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱。
班长到商店后,发现商店正在进行促销活动,规定每5 个空瓶可换1瓶矿泉水。
班长只要买______ 瓶矿泉水,就可以保证每人一瓶。
【例 7】一次,齐王与大将赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序一次为一等,二等,三等,四等,而且还知道这八匹马跑得最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等自己的四等.田忌有种方法安排自己的马出场顺序,保证自己至少能赢得两场比赛.【例 8】国王准备了1000桶酒作庆祝他的生日,可惜在距离生日前十日,国王得知其中有一桶酒被人下毒,若毒服后则正好第10日发作.有人提议用死刑犯试毒,问至少需要多少个死刑犯才能保证检验出一桶有毒的酒桶?如何试毒?【巩固】欢欢、迎迎各有4张卡片,每张卡片上各写有一个自然数.两人各出一张卡片,计算两张卡片上所写数的和,结果发现一共能得到16个不同的和.那么,两人的卡片上所写的数中最大的数最小是.【例 9】有100根火柴,甲、乙两人轮流取,规定每次可以取1~10根火柴,谁取得最后一根火柴谁就获胜。
如果甲先取,那么谁有必胜的策略?【巩固】有100根火柴,甲、乙两人轮流取,规定每次可以取1根、2根、3根或4根火柴,谁取到最后一根火柴谁输,若甲先取,问:谁有必胜的策略?【例 10】 有1996个棋子,两人轮流取棋子,每次轮流取其中的2个、4个或8个,谁最后取完棋子,就算获胜。
那么先取的人为保证获胜,第一次应取几个棋子?【巩固】 桌上有一块德芙巧克力,它被直线划分为排成3行7列的21个小方块。
现在让你和另一个小朋友进行一种游戏,游戏规则如下:(1)每次只许沿一条直线把巧克力切成两块;(2)拿走其中一块,把另一块留给对手再切;(3) 谁能留给对手恰好是一个小方块,谁就获胜。
如果请你首先切巧克力,那么你第一次应该切走多少个小方块,才能使你最后获胜?【例 11】 甲、乙两人轮流在黑板上写下不超过10的自然数,规定每次在黑板上写的数要满足条件:他的任何倍数都不能是黑板上已写的数。
最后不能写的人为失败者。
如果甲第一个写数,那么谁有必胜的策略?【巩固】 甲、乙两人做数学游戏:在黑板上写一个自然数,轮到谁走时,谁就从该自然数中减去它的某个非零数字,并用所得的差替换原数。
两人轮流走,谁所得到的数是零,就算谁赢。
如果开始在黑板上写着数1994,并且甲先走,问谁有必胜策略?【随练1】 A 、B 两个粮店分别有70吨和60吨大米,甲、乙、丙三个居民点分别需要30吨、40吨和50吨大米.从A ,B 两粮店每运1吨大米到三个居民点的运费如右图所示:如何调运才能使运费最少?课堂检测【随练2】 有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少?【随练3】 有9根火柴,甲、乙两人轮流取,规定每次可以取1根或者2根火柴,以取走最后一根火柴的人为胜者。
试问:如果甲先取,谁有必胜的策略?【作业1】 车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元.现有两名工作效率相同的修理工,⑴ 怎样安排才能使得经济损失最少?⑵ 怎样安排才能使从开始维修到维修结束历时最短?【作业2】 某人从住地外出有两种方案,一种是骑自行车去,另一种是乘公共汽车去.显然公共汽车的速度比自行车速度快,但乘公共汽车有一个等候时间(候车时间可以看成是固定不变的),在任何情况下,他总是采用时间最少的最佳方案.下表表示他到达A 、B 、C 三地采用最佳方案所需要的时间.为了到达离住地8千米的地方,他需要花多少时间?并简述理由.53丙10732BA 乙甲发站运费/元到站家庭作业【作业3】 右图是A ,B ,C ,D ,E 五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米).现在要在五村之中选一个村建立一所小学.为使所有学生到学校的总距离最短,试确定最合理的方案.【作业4】 北仓库有货物35吨,南仓库有货物25吨,需要运到甲、乙、丙三个工厂中去.其中甲工厂需要28吨,乙工厂需要12吨,丙工厂需要20吨.两个仓库与各工厂之间的距离如图所示(单位:公里).已知运输每吨货物1公里的费用是1元,那么将货物按要求运入各工厂的最小费用是多少元?【作业5】 一个工厂有7个车间,分散在一条环形铁路上,三列火车循环运输产品.每个车间装卸货物所需工人数为25、18、27、10、20、15、30.若改为部分工人跟车,部分工人固定在车间,那么安排多少名装卸工,所用总人数最合理?【作业6】 有1996个棋子,两人轮流取棋子,每次轮流取其中的2个、4个或6个,谁最后取完棋子,就算获胜。
那么先取的人为保证获胜,第一次应取几个棋子?【作业7】 一堆火柴有20根,甲乙二人轮流从中取出一些火柴,要求每次取的根数是前一个人所取根数的约数,谁取走最后一根谁就获胜.如果甲先取,并且第一次取的根数是一位数,那么为了确保EDCB A 54235035202040161256810丙乙甲南仓库北仓库自己获胜,他第一次应该取 根.教学反馈。