Liapunov函数的构造

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Liapunov 函数的构造

摘要:Liapunov 函数是一种判定微分方程零解稳定性的重要方法,所以本文首先介绍了Liapunov 函数以及判断微分方程的稳定性定理,然后着重介绍了Liapunov 函数的几种构造方法,包括常系数线性系统的巴尔巴欣公式、线性类比法.通过这两种构造方法,我们将初步了解Liapunov 函数的构造在判断微分方程零解稳定性中的重要作用. 关键词:Liapunov 函数;零解;稳定性.

引言

在常微分方程中,稳定性理论研究是很重要的一部分,即研究当时间趋于无穷时,其解的形态将会怎样变化,他在自然科学、工程力学、环境生态、社会经济等方面有着重要的应用。

在本章第一节中介绍了稳定性的相关定义,也介绍了对于可以求得微分方程的解析解时,如何利用定义判断其零解的稳定性。但是在实际问题中提出的微分方程往往是很复杂的,无法求得其解析解,这就需要从方程本身来判断零解的稳定性Liapunov 直接方法就是求解这一问题的有效途径。本文先引入Liapunov 函数,即V 函数的定义,以及Liapunov 稳定性的定理,然后介绍几种构造Liapunov 函数方法。

1 Liapunov 稳定性的定理

1.1 V 函数

设函数(x)V 在n

R 中原点的某邻域U 中有定义,(x)V 在U 中连续可微,且满足

(0)0V =

定义 1.1若除原点外对所有x U ∈均有(x)0((x)0)V V ><,则称(x)V 为正定函数(负定函数);若除原点外对所有x U ∈均有(x)0((x)0)V V ≥≤,则称(x)V 为半正定函数(半负定函数);若在U 中原点的任一邻域内(x)V 既可以取正,也可以取负,则称(x)V 为变号函数.

例如,2

2

2

123(x)x x x V =++是3

R 中的正定函数,但在4

R 中确实半正定函数,而

222123(x)x x x V =+-是3R 中的变号函数.

一般(x)V 函数的符号判断十分困难,通常把(x)V 在原点展开为Taylor 级数

12(x)V (x)V (x)V (x),m m m V ++=+++

其中12V (x),V (x),V (x)m m m ++分C 是x 的m 次,1m +,2m +齐次函数,根据(x)V 展开式中的最低次项的系数,通常就可以判断(x)V 在原点邻域内的符号.因为再原点附近其他项都

可以视为第一项的高阶无穷小. 1.2 Liapunov 稳定性定理

设n 维自治微分方程

(t)

(x),(0)0dx f f dt

==(1.1) 的解为12(t)(x (t),x (t),x (t))T

n x = ,为了研究方程(1.1)零解的稳定性,考察随时间变化时(x(t))V 的变化情况,将(x(t))V 视为t 的复合函数,关于t 求导可得

11(x(t))(x)(x)n n k k k k k k

dx dV V V

f V dt x dt x ==∂∂==∂∂∑∑ (1.2) 式(1.2)称为函数(x)V 沿着方程(1.1)轨线的全导数.

介绍了(x)V 以及其全导数后,接下来简单介绍下Liapunov 稳定性理论的几个定理. 定理1.1若有原点的邻域U 和一个正定(负定)函数(x)V ,使得其全导数(x)V

是半负定(半正定),则称系统(1.1)的零解是稳定的;特别地,当(x)V

是负定(正定)时,系统(1.1)的零解是渐进稳定的.

定理1.2设在原点的邻域U 内有函数(x)V ,它沿着方程(1.1)的轨线的全导数(x)V

是正定(负定)的,而(x)V 本身不是半负定(半正定)的,则方程(1.1)的零解是不稳定的. 这两个定理是直接通过构造Liapunov 函数,来判断方程的零解是否稳定的,定理在本

章第2节已经详细的证明过,这里不再做证明.

2 Liapunov 函数的构造

第一节中所讨论的两个定理都是一个函数稳定的充分条件,即存在一个()V x ,和它的全导数满足定理1.1时,系统的零解是稳定的. 满足定理1.2的条件时,系统的零解是不稳定的. 在使用Liapunov 函数判定稳定性时应当注意,当找不到满足稳定性定理的条件的函数()V x 时,并无法断言此系统的零解是不稳定的,并且构造的Liapunov 函数不同时,判断零解是否渐进稳定以及吸引域的大小也会有些差异.再利用Liapunov 方法判断系统零解稳定性时,需要明确满足一定条件的Liapunov 函数是否存在,即当系统的零解有某种稳定性时,满足这个稳定性定理的()V x 是否存在,这就是上述定理1.1和定理1.2的逆命题.是否成立. 2.1 Liapunov 函数的存在性

考虑微分方程组

d (t,x),(t,0)0x

f f dt

==(2.1)

记(){}0,|,

G t x t t x h =

≥≤,设(t,)f x 在G 连续,关于x 满足Liapunov 条件.令

00(t)(t,t ,)x x φ=是方程组(2.1)满足00(t )x φ=的解.

定理2.1 若方程组2.1的零解是稳定的,则有正定函数(t,)V x ,使得其全导数(t,)V x

是半负定的.

证 首先根据方程组(2.1)的零解构造出正定函数(t,)V x ,在验证(t,)V x

是半负定.取

02

(t t )0(t,)(1)(t ,t,)V x e x φ--=+

02

0,()min

(t ,t,)t t x y h

W x y φ≥≤≤=

其中0(t ,t,)x φ表示方程组(2.1)在t 时刻过x 的解在0t 时刻的位置坐标. 显然有

02

(t t )0(t,0)(1)(t ,t,0)0V e φ--=+=

因为方程组(2.1)的零解是稳定的,所以对任意的0ε>,有0δ>,使得当x δ<时,有

00(t,t ,),x t t φε<≥(2.2)

于是当x h ε≤≤时,对所有的0t t ≥有0(t ,t,)0x φδ≥>.否则就有0x ,0x h ε≤≤,

以及10t t ≥,使得

010(t ,t ,)x φδ<.由式(2.2)得

1001010(t ,t ,(t ,t ,x )),t t φφε<≥

又因为1001001000(t ,t ,(t ,t ,x ))(t ,t ,x )x ,x φφφε==≥与式(2.2)矛盾. 由此得(x)W 是正定函数,显然有

2

010(t,x)(t ,t ,x )(x)V W φ≥≥

即(t,x)V 是正定函数,另一方面

002

(t t )000002

(t t )

(t,(t,t ,x ))(1)(t ,t,(t,t ,x ))(1)V e e

x φφφ----=+=+

所以有

02

(t t )000

(t,(t,t ,x ))

0dV e x dt

φ--=-<

即(t,x)V

是半负定的.

例1研究下述微分方程组零解的稳定性.

相关文档
最新文档