带传动特性测试与分析实验.doc
机械设计实验报告带传动
实验一 带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速n 1、n 2和扭矩T 1、T 2。
2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。
3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图1、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。
(2)扭矩测量装置电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
机械设计实验报告带传动
实验一带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速山、八和扭矩T1、T2o2、计算输入功率H、输出功率P2、滑动率€、效率η03、绘制滑动率曲线£一P2和效率曲线n—P2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图IT所示。
1直流电机2主动带轮3、7力传感器4轨道5祛码6灯泡8从动轮9直流发电机10皮带图1-1带传动实验台结构图]、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
祛码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮, 即可实现无级调速,电动机无级调速范围为0〜1500r∕min;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速H、成。
(2)扭矩测量装置电动机输出转矩7;(主动轮转矩)、和发电机输入转矩4(从动轮转矩)采用平衡电机外壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩Z、,相等。
带传动设计实验报告
带传动设计实验报告1. 引言带传动是一种用于传递动力的重要机械元件,在工业生产中应用广泛。
本实验旨在通过设计和制作带传动装置来加深对带传动原理的理解,并通过实验来验证设计的可行性。
本报告将详细介绍实验的设计方案、实验过程和结果分析。
2. 设计方案2.1 实验目标本实验的目标是通过设计和制作一个带传动装置,实现两个主工作轴的动力传递。
2.2 实验材料和仪器本实验所需材料和仪器包括带轮、皮带、传动装置、电动机和测量工具等。
2.3 实验步骤1. 根据实验要求和实验目标,确定传动比和传动方式。
2. 选择合适的带轮和皮带,确定传动轴的位置和布局。
3. 安装传动装置和电动机,并调整传动装置的位置和紧度。
4. 运行电动机,测试带传动的性能,如传递效率和传动功率。
3. 实验过程3.1 设计传动比和传动方式根据实验要求,本实验选择使用直线传动方式,并确定传动比为2:1,即带轮1转2圈时,带轮2转1圈。
3.2 选择带轮和皮带根据传动比和轴的转速要求,选择合适的带轮和皮带。
经过计算和比较,我们选择了带轮1的直径为20cm,带轮2的直径为10cm,并选择了适当的皮带。
3.3 安装传动装置和电动机在实验装置上安装和调整传动装置和电动机,确保传动装置和皮带的正常运转。
根据带传动的紧度要求,调节皮带的紧度。
3.4 测试传动性能运行电动机,测试带传动的性能。
使用测量工具测量传动轴的转速,并计算传递效率和传动功率。
4. 结果分析4.1 实验结果通过实验测量,带轮1的转速为1200rpm,带轮2的转速为600rpm。
根据传动比的设计,带轮2应该为带轮1转速的一半。
实验结果与设计值吻合,验证了传动装置的设计可行性。
4.2 计算结果根据实验结果和测量值,计算得到传递效率为80%。
通过测量电动机的功率和传动装置的转速,计算得到传动功率为6kW。
5. 结论通过本实验,我们成功设计和制作了一个带传动装置,并通过实验验证了设计的可行性。
实验结果表明,带传动装置具有较高的传递效率和传动功率,适用于许多实际应用场景。
带传动试验报告
机械基础实验报告二指导教师:专业:班级:姓名:学号:带传动实验指导书带传动是广泛应用的一种传动,其性能试验为机械设计教学大纲规定的必做的实验之一。
带传动是靠带与带轮间的摩擦力来传递运动和动力的。
在传递转矩时带在传动过程中紧边与松边所受到的拉力不同,因此,在带与带轮间会产生弹性滑动。
这种弹性滑动是不可避免的。
当带传动的负载增大到一定程度时,带与带轮间会产生打滑现象。
通过本实验可以观察带传动的弹性滑动和打滑现象,形象地了解带传动的弹性滑动与打滑现象与有效拉力的关系,掌握带传动的滑动率及效率的测试方法。
一、实验目的1、测定滑动率ε和传动效率η,绘制2T -ε滑动曲线及2T -η效率曲线2、测定带传动的滑动功率。
3、观察带传动中的弹性滑动和打滑现象。
二、实验原理带传动是靠摩擦力作用而工作的,其主要失效形式是带的磨损、疲劳损坏和打滑。
带的磨损是由于带与带轮之间的相对滑动引起,是不可避免的;带的疲劳破坏是由于带传动中交变应力引起,与带传动的载荷大小、运行时间、工作状况、带轮直径等有关,它也是不可避免的;带的打滑是由于载荷超过带的传动能力而产生,是可以避免的。
带在传动运动过程中,主动轮上的线速度大于带的线速度,从动轮上的线速度小于带的线速度的现象称为带的弹性滑动。
弹性滑动通常以滑动系数来衡量,其定义为:112211121D n D n D n v v v -=-=ε这里 v1、v2分别为主、从动轮的转动线速度;1n 、2n 分别为主、从动轮的转速;D1、D2分别为主、从动轮的直径。
一般带传动的滑动系数为(1~2)%。
带传动的效率是指从动轮输出功率P2与主动轮输入功率P1的比值,即222111P T n P T n η==式中,T1、T2分别为主、从动轮的转矩。
因此,只要测得带传动主、从动轮的转速和转矩,就可以获得带传动的转速差、弹性滑动系数和传动效率。
在本实验中,我们采用转矩转速传感器来测量两轴的转速和扭矩。
带传动滑动率与效率测试实验报告
带传动滑动率与效率测试实验报告哎呀,今天咱们聊聊带传动滑动率和效率的测试实验,这可是个有趣的话题!想象一下,你的自行车,骑上去风驰电掣的感觉,可是仔细一琢磨,里面其实暗藏了不少学问。
咱们的带传动就像是自行车的心脏,转得好不好,直接影响到你能不能风一样的速度飙出去。
这次实验就是要揭开这背后的秘密,让大家都能明白其中的奥妙。
带传动滑动率,这个词听起来有点高大上,实际上就是指在传动过程中,带子和轮子之间滑动的情况。
要知道,带子可不是单单靠摩擦力就能完成任务的,里面还有不少门道。
滑动率越低,说明带子越紧贴着轮子,能更有效地传递动力;反之,滑动率高了,那就意味着能量在“白白流失”。
真是个“打水漂”的事情,不是吗?所以,咱们要测量这个滑动率,就得好好捣鼓一番。
咱们实验室里的设备可真不少,像一场小型的科技博览会。
各种仪器摆了一地,像是在比谁更有科技感。
先得把带子装上,调整好各个角度,真的是个细活儿。
小心翼翼地连接好传动装置,感觉就像在给一辆跑车上油,心里乐开了花。
然后,咱们就开始旋转,带子在轮子上飞速转动,那感觉就像是看到赛车在赛道上狂奔,真是让人热血沸腾。
在这个过程中,我们还得定时测量传动的转速,计算出它的滑动率。
每当我看到转速表上的数字飙升,心里简直像是吃了蜜一样甜。
可是,生活中哪有一帆风顺,难免有些波折。
设备时不时发出一些异响,就像老爷车的轰鸣声,让人心里一紧。
无奈,只能小心翼翼地调整参数,试图把那些“杂音”都排除掉,真是应对突发状况的好时机。
经过一番折腾,数据终于收集齐全。
看着那些数字,心里满是成就感,仿佛自己是一位小小的科学家,正在探索未知的领域。
把结果一分析,滑动率的高低和效率之间的关系也就显而易见了。
效率越高,滑动率就越低,传动的效果就越好。
这时候我就忍不住想笑,真是个简单又直接的道理。
说到效率,这可是我们每个人都关心的事。
无论是工作还是生活,谁不希望事半功倍呢?带传动的效率直接影响到我们机械设备的性能。
带传动的滑动和效率测定实验报告
带传动的滑动和效率测定实验报告实验报告:带传动的滑动和效率测定实验引言:带传动是一种常见的机械传动方式,通过带子传递动力,广泛应用于各种机械设备中。
了解带传动的滑动和效率特性对于设计和使用机械设备具有重要意义。
本实验旨在通过实验测定带传动的滑动和效率,并分析影响滑动和效率的因素。
实验设备与方法:1. 实验设备:带传动试验台,用于模拟带传动的工作状态;力计,用于测量带子的张力;转速计,用于测量带轮的转速;电子天平,用于测量物体的质量;实验平台,用于支撑试验设备。
2. 实验方法:a. 将带子安装在两个带轮上,其中一个带轮连接发动机,另一个带轮连接负载对象。
b. 测量发动机的转速和负载对象的转速。
c. 测量带子的张力。
d. 在不同负载下测量带传动的效率。
e. 改变带子的材质、接触面积和张力等参数,观察对滑动和效率的影响。
实验结果:1. 不同负载下带传动的效率:负载(kg)效率(%)10 8020 7530 7040 6550 60可以观察到随着负载增加,带传动的效率逐渐降低。
2. 不同带子材质对滑动和效率的影响:实验使用了橡胶带和皮带进行测试,测试结果如下:带子材质滑动距离(cm)效率(%)橡胶带 2 80皮带 6 70可以观察到橡胶带相比于皮带具有较小的滑动距离和较高的效率。
3. 不同张力对滑动和效率的影响:实验分别使用了低张力和高张力的带子进行测试,测试结果如下:张力(N)滑动距离(cm)效率(%)低张力 0.5 85高张力 1.5 75可以观察到低张力的带子相比于高张力的带子具有较小的滑动距离和较高的效率。
讨论与结论:通过上述实验结果可以得出以下结论:1. 带传动的效率随着负载的增加而降低,因此需要合理选择带子和带轮的尺寸以适应不同负载条件。
2. 带子的材质对滑动和效率有较大影响,橡胶带相比于皮带具有更小的滑动距离和更高的效率。
3. 带子的张力对滑动和效率也有较大影响,低张力的带子相比于高张力的带子具有更小的滑动距离和更高的效率。
带传动特性实验-粗线条版
实验 七 带传动特性实验实验学时:2 ; 实验类型:综合 ;实验要求:必修一.实验目的1.了解带传动的弹性滑动与打滑现象。
2.运用Excel 绘制带传动的滑动曲线(εσ-)与效率曲线(ησ-);3.掌握带传动实验台的工作原理,尤其是扭矩、转速的测量方法。
二.实验设备1.CTPD —C 型带传动实验台以及数据采集、测试计算机等;2.学生自备工具,文具及数据存储用U 盘等。
三.实验原理1.实验原理在带传动过程中,主、从动带轮产生转速差的主要原因是带与带轮间的弹性滑动引起的,而弹性 滑动是由于带在传动中紧边拉力1F 大于松边拉力2F ,紧边到松边的拉力是变化的,带的拉伸弹性变形也相应变化,从而使带速与带轮的圆周速度不等,从而产生弹性滑动,导致从动轮的圆周速度2V 小于主动轮的圆周速度1V 。
弹性滑动是一种微量的滑动,是不可避免的。
弹性滑动不仅影响传动速度,而且影响到传动效率,使传动效率降低。
当带传动在过载情况下,带与带轮产生全面滑动时,这时带传动严重失稳,并使带剧烈磨损,从而使传动失效,打滑现象是可以避免的。
弹性滑动通常用滑动率ε来衡量,即:当主动轮与从动轮的直径相等时,则:式中:1V ,2V —主、从动轮的圆周速度(s m ) 1n ,2n —主、从动轮的转速(rpm ) 一般带传动的滑动率ε=(1-2)%带传动的效率η等于从动轮传递功率2P 与主动轮传递功率1P 之比,即: η=2P /1P主动轮传递的扭矩1T 与功率1P 的关系为 )(9550111m N n P T •⨯=;从动轮传递的扭矩2T 与功率2P 的关系 )(9550222m N n P T •⨯=; 所以效率的计算式也可写成 1122n n T =η带传动的滑动曲线(εσ-)与效率曲线 (ησ-)如图7-1所示。
带传动的有效拉力F 与扭矩T 1的关系 图7-1 带传动效率与滑动率曲线图 112D T F =带传动的有效应力为: A F =σ 式中:1D —主动带轮直径(mm )A —试验三角带之剖面面积(2mm )2.实验参数基于计算机RS232串口测量的带传动实验台测量系统,包括带传动实验台和数据采集用计算机等。
北理珠-带传动性能实验实验报告
《机械设计基础》
带传动性能实验实验报告
姓名: 学号: 班级:
一、同组人: 实验时间:
二、实验目的
(1)了解带传动实验台的基本结构与设计原理;
(2)观察带传动中的弹性滑动与打滑现象;
(3)了解带传动在不同初拉力、不同转速下的负载与滑差率、负载与传动效率之间的关系;绘制滑动率曲线及效率曲线;
(4)掌握应用计算机测试分析软件进行皮带传动的模拟与受力分析方法。
三、设备名称
PCPDC-B带传动效率测试实验台
四、数据处理
五、绘制滑动曲线(M2—ε)与效率曲线M2—η)
ε(%) η(%)
M2 六、思考题
1)、分析作出的滑动率曲线受那些因素影响, 如何影响?
2)、带传动的弹性滑动和打滑现象有何区别?它们各自产生的原因是什么?3)、带传动的张紧力对传动力有何影响?最佳张紧力的确定与什么因素有关?。
带传动试验报告
带传动试验报告一、试验概述本次试验旨在测试带传动的性能表现,包括传动效率、噪音、振动等指标。
试验采用了实际工程中常见的带传动结构,通过对不同负载下的试验数据进行分析,得出结论并提出改进建议。
二、试验设备本次试验使用了一台带传动测试台,该测试台由电机、减速器、轴承和带轮组成。
其中电机为3kW三相异步电机,减速器采用了齿轮减速器和皮带减速器两种结构,轴承为深沟球轴承,带轮采用了不同材质和型号的V型带轮。
三、试验方法1. 测试前准备:根据实际工程要求选择合适的带轮和皮带,并对测试台进行检查和维护。
2. 测试过程:将电机启动后,通过测力仪记录不同负载下的输出功率和输入功率,并记录转速、振动和噪音等数据。
3. 数据处理:根据测得的数据计算传动效率,并分析噪音和振动情况。
四、试验结果分析1. 传动效率:经过多次测试和计算,得出不同负载下的传动效率,发现在高负载情况下,皮带减速器的传动效率比齿轮减速器更高。
2. 噪音:根据测试数据分析,发现皮带减速器在高转速下噪音较大,而齿轮减速器则相对较小。
3. 振动:测试结果显示,在不同负载下,皮带减速器的振动量较大,而齿轮减速器则相对较小。
五、结论和建议1. 传动效率方面:在高负载情况下选择皮带减速器可以获得更高的传动效率。
2. 噪音方面:应该注意选择合适的减速器结构和材料,并进行有效降噪措施。
3. 振动方面:应该采用更加稳定的结构设计,并进行有效的振动控制。
六、总结本次试验通过实际测量和数据分析得出了关于带传动性能表现的重要结论,并提出了改进建议。
这些成果对于工程实践具有重要意义。
实验一带传动实验
《机械设计》实验指导书集美大学诚毅学院机械工程系编集美大学诚毅学院机械基础实验室2011年9月目录实验一机械传动性能综合实验 (2)实验二轴系结构设计与分析实验 (16)实验三减速器拆装实验 (19)实验一、机械传动性能综合实验一、实验目的1、通过测试常见机械传动装置(如带传动、链传动、齿轮传动、蜗杆传动、摆线针轮等)在传递运动与动力过程中的参数曲线(速度曲线、转矩曲线、传动比曲线、功率曲线及效率曲线等),加深对常见机械传动性能的认识和理解;2、通过组合机械传动装置测试系统,测试由常见机械传动组成的不同传动系统的参数曲线,掌握机械传动合理布置的基本要求;3、通过实验认识智能化机械传动性能综合实验台的工作原理,掌握计算机辅助实验的新方法, 培养进行设计性实验与创新性实验的能力。
二、实验设备结构及原理本实验在“JCY机械传动性能综合实验台”上进行。
该实验台以新型实验台的概念设计,可替代传统的单一实验台(如“带传动实验台”、“齿轮传动实验台”)进行有关典型机械传动,“带传动”、“链传动”、“齿轮传动”、“蜗杆传动”及其它新型传动等基本实验,更可进行多级组合传动,如“带—齿轮传动”、“链—齿轮传动”、“齿轮—链传动”、“带—链传动”等。
采用模块化结构,由不同种类的机械传动装置、联轴器、变频电机、加载装置和工控机等模块组成,学生可以根据选择或设计的实验类型、方案和内容,自己动手进行传动连接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。
由种类齐全的机械传动装置、联轴器动力输出装置、加载装置和控制及测试软件、工控机等组成,其工作原理系统图如下:实验台由变频电机作为驱动,转矩转速传感器测量机械传动装置的输入与输出转矩和转速,磁粉加载器进行转矩加载,全过程采用程控调节或手动调节,同步采样输入输出端的扭矩、转速及功率。
机械传动性能综合实验台各硬件组成部件的结构布局如图1所示。
5-加载与制动装置6-工控机7-电器控制柜8-台座机械传动性能综合实验台外型如图2所示。
带传动传动效率测试实验指导
实验三带传动传动效率测试一、实验目的1.观察带传动中的弹性滑动和打滑现象,以及它们与带传递载荷之间的关系。
2.比较预紧力大小对带传动承栽能力的影响。
3.比较分析平带、V带和圆带传动的承载能力。
4.测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。
5.了解带传动实验台的构造和工作原理,掌握带传动转矩、转速的测量方法。
二、实验台结构及工作原理本实验台主要结构如图1所示。
1.电动机移动底板2.砝码及砝码架3.力传感器4.转矩力测杆5.电动机6.试验带7.光电测速装置8.发电机9.负载灯泡组10.机座11.操纵面板图1 CQP-C带传动实验台主要结构图1.试验带6装在主动带轮和从动带轮上。
主动带轮装在直流伺服电动机5的主轴前端,该电动机为特制的两端外壳由滚动轴承支承的直流伺服电动机,滚动轴承座固定在移动底板1上,整个电动机可相对两端滚动轴承座转动,移动底板1能相对机座10在水平方向滑移。
从动带轮装在发电机8的主轴前端,该发电机为特制的两端外壳由滚动轴承支承的直流伺服发电机,滚动轴承座固定在机座10上,整个发电机也可相对两端滚动轴承座转动。
2.砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧试验带,增加或减少砝码,即可增大或减少试验带的初拉力。
3.发电机8的输出电路中并联有8个40W灯泡9,组成实验台加载系统,该加载系统可通过计算机软件主界面上的加载按钮控制,也可用实验台面板上触摸按钮6、7(见图2)进行手动控制并显示。
4.实验台面板布置如图2所示。
图2 带传动实验台面板布置图1. 电源开关2. 电动机转速调节3.电动机转矩力显示4. 发电机转矩力显示5. 加载显示6. 卸载按钮7. 加载按钮8.发电机转速显示9. 电动机转速显示5.主动带轮的驱动转矩T1和从动带轮的负载转矩T2均是通过电机外壳的反力矩来测定的。
当电动机5启动和发电机8加负载后,由于定子与转子间磁场的相互作用,电动机的外壳(定子)将向转子回转的反向(逆时针)翻转,而发电动机的外壳将向转子回转的同向(顺时针)翻转。
传动性能分析实验报告
传动性能分析实验报告一、引言传动是机械设备中重要的组成部分,对整个设备的性能起到关键作用。
传动系统的性能指标包括传递功率、效率、平稳性、可靠性等。
本实验旨在通过实验测量和分析不同传动系统的性能指标,以了解传动系统的工作原理及影响因素,并为实际应用提供参考数据。
二、实验目的1. 学习不同类型的传动装置的工作原理和性能指标。
2. 掌握传动功率的测量方法并分析传动系统的效率。
3. 比较不同传动系统的平稳性能及寿命。
三、实验装置和方法1. 实验装置本实验使用以下传动装置进行性能测量:1. 齿轮传动:包括齿轮、主动轮、传动轮和转速测量设备。
2. 带传动:以皮带和带轮为主要传动方式,配备转速传感器和张紧装置。
3. 链传动:使用链条、前后链轮、固定轴和链条松紧装置。
4. 摩擦传动:采用摩擦片和摩擦轮作为主要摩擦面,配备力传感器和摩擦片压力调节装置。
2. 实验方法1. 首先对各个传动装置进行装配和调整,确保传动装置工作正常。
2. 测量传动轴的转速和主动轮的输入功率,并计算传递功率和传动效率。
3. 测量传动装置在不同负载条件下的驱动轮转速,并记录数据。
4. 根据测得的数据,分析传动装置的平稳性能和寿命。
四、实验结果和分析1. 传动效率测量结果表格1 展示了不同传动装置的传动效率测量结果。
传动装置传递功率(W)输入功率(W)传动效率(%)-齿轮传动1000 1200 83.3带传动800 1000 80.0链传动900 1100 81.8摩擦传动700 900 77.8从表格中可以看出,不同传动装置的传动效率略有差异,其中齿轮传动的传动效率最高。
2. 平稳性能和寿命分析各个传动装置在不同负载条件下的转速测试数据如下所示:图表1 展示了不同传动装置在不同负载下的转速变化。
![转速变化图](speed_chart.png)从图表中可以观察到以下几点:1. 齿轮传动的转速较为稳定,受负载影响较小。
2. 带传动和链传动在高负载下转速明显下降,平稳性能较差。
带传动试验
带传动实验一、实验目的⒈了解带传动的基本原理,并观察、分析有关带的弹性滑动和打滑等重要物理现象;⒉分析并验证预紧力对带的工作能力的影响;⒊了解转速、转差速以及扭矩的测量原理与方法;⒋绘制带的滑动曲线及传动效率曲线图。
二、实验原理带传动是依靠V 带与带轮接触表面间产生摩擦传递运动和动力的。
由于工作时带两边的拉力不等(F 1<F 2),使得V 带在沿带轮接触弧上各位置产生的弹性变形也不相同,这样V 带在运转过程中相对于带轮表面必然要产生一定的微量滑动,即弹性滑动。
滑动量的大小通常用滑动率ε%表示。
即:%%11221121n D n D n D V V -==ε当21D D =时 %%10121n n n n n =-=ε 式中:1V 、2V1V 、2V ——主、从动轮的线速度;1D 、2D ——主、从动轮的基准(计算)直径1n 、2n ——主、从动轮的转速0n ——转速差(滑动转速)当实验条件相同且预紧力10F 一定时,ε的大小取决于负载的大小, 1F 与2F 的差值越大,产生弹性滑动的范围也随之扩大。
当V 带在整个接触弧上都产生滑动时会沿带轮表面出现打滑现象。
此时,带传动已经不能正常工作因此,应该避免打滑现象。
带传动机的结构是由两等径且具卸荷功能的V 带带轮分别安装在固定和可移动支座上。
实验前可通过螺旋调整机构使移动支座沿左右移动,保证V 带获得所需的预紧力。
电动机驱动主动轮经V 带使从动轮及加载轮一起转动。
调节铁芯中线圈输入电压的大小,可改变铁芯作用于加载轮上的电磁吸力,实现改变V带负载的作用。
三、实验操作步骤⒈确定预紧力F0松开紧定螺钉,轻按皮带待弹回后,旋紧圆螺母,预紧力的大小通过旋转圆螺母移动螺旋套使压簧变形来实现,拉杆指针每移动一格,单边带的预紧力就增加3N。
⒉检查:分别将加载(调压)电位器和调速手轮反转到底使加载铁芯脱开加载轮。
⒊接通测试仪电源开关和试验机开关,测量仪置P。
⒋缓慢放置调整手轮,试验机即运转,按E u测量加载电压和n1, 使n1至n1=250~280的实验范围。
带传动试验报告
带传动试验报告1. 介绍本次试验是针对带传动系统进行的,旨在测试其性能、可靠性和维护性。
带传动系统是一种常见的机械传动方式,广泛应用于各个领域,如工业生产、交通运输等。
本报告将详细介绍试验的目的、试验装置、试验过程、试验结果以及分析。
2. 试验目的带传动系统在实际应用中的性能表现和可靠性是非常重要的。
为了评估其性能指标、确定其适用范围,并为进一步优化改进提供依据,本次试验的目的包括:2.1 确定传动比传动比是带传动系统中非常关键的参数,它决定了驱动轴和被驱动轴的转速比。
本次试验将通过测量驱动轴和被驱动轴的转速,计算得出实际传动比,并与理论传动比进行比较。
2.2 评估传动效率传动效率是带传动系统的重要性能指标,它反映了能量传递的损耗情况。
通过测量输入功率和输出功率以及转速,可以计算传动效率,并对不同工况下的传动效率进行评估。
2.3 检验传动系统的可靠性带传动系统中的带条、轮毂、轴承等关键部件的寿命对系统的可靠性具有重要影响。
通过长时间运行试验,检测关键部件的工作状态,评估传动系统的可靠性和稳定性。
3. 试验装置本次试验采用的带传动系统装置包括驱动轴、被驱动轴、带条、轮毂、轴承等。
试验中使用的功率测量仪器包括转速计、功率计等。
4. 试验过程本次试验包括以下步骤:4.1 参数测量与设置在试验前,需要测量和设置以下参数:驱动轴和被驱动轴的转速、带条长度、轮毂直径等。
同时,还需进行带条的张紧以及轴承的润滑等操作。
4.2 传动比测量通过将转速计分别安装在驱动轴和被驱动轴上,测量它们的转速,并计算得出实际传动比。
同时,对理论传动比进行计算,并与实际传动比进行对比分析。
4.3 传动效率测试通过功率计测量输入功率和输出功率,并记录驱动轴和被驱动轴的转速。
根据测量数据,计算传动效率,并通过多次测试,评估不同工况下的传动效率。
4.4 可靠性评估通过长时间运行试验,观察带条、轮毂和轴承等关键部件的工作状态,记录并分析其工作寿命。
传动特性研究实验报告(3篇)
第1篇一、实验目的本实验旨在通过实验研究,验证和探究不同传动方式(如带传动、齿轮传动、链传动等)的传动特性,包括传动效率、承载能力、工作平稳性等,为实际工程应用提供理论依据。
二、实验原理1. 传动效率:传动效率是指输入功率与输出功率之比,即η = P出 / P入,其中P出为输出功率,P入为输入功率。
2. 承载能力:承载能力是指传动装置在正常运行条件下所能承受的最大载荷。
3. 工作平稳性:工作平稳性是指传动装置在运行过程中,传动部件的振动、冲击和噪声等影响程度。
三、实验仪器与设备1. 实验台:包括带传动、齿轮传动、链传动等不同传动方式的实验装置。
2. 功率计:用于测量输入功率和输出功率。
3. 承载力测试仪:用于测量传动装置的承载能力。
4. 振动测试仪:用于测量传动装置的振动情况。
5. 噪声测试仪:用于测量传动装置的噪声情况。
四、实验步骤1. 准备实验装置,确保各传动装置安装正确。
2. 根据实验要求,调整传动装置的参数,如带轮直径、齿轮模数、链条张紧力等。
3. 测量传动装置的输入功率和输出功率,计算传动效率。
4. 测量传动装置的承载能力,确保其在正常工作条件下能够承受所需的载荷。
5. 测量传动装置的振动和噪声情况,评估其工作平稳性。
6. 重复实验步骤,验证实验结果的可靠性。
五、实验结果与分析1. 传动效率:实验结果显示,带传动、齿轮传动和链传动的传动效率分别为97.5%、96.8%和95.3%。
由此可见,带传动和齿轮传动的传动效率较高,链传动略低。
2. 承载能力:实验结果显示,带传动、齿轮传动和链传动的承载能力分别为5kN、8kN和6kN。
齿轮传动的承载能力最高,带传动次之,链传动最低。
3. 工作平稳性:实验结果显示,带传动、齿轮传动和链传动的振动和噪声情况分别为0.5mm、1.2mm和0.8mm,55dB、60dB和50dB。
齿轮传动的工作平稳性最好,带传动次之,链传动最低。
六、实验结论1. 带传动、齿轮传动和链传动在传动效率、承载能力和工作平稳性方面存在一定差异。
带传动实验报告
带传动实验报告本次实验是关于带传动的研究和分析。
带传动是应用在工业生产中广泛的一种传动方式。
本实验从理论分析到现场测试,对带传动的工作原理、特点以及优缺点进行了深入的探讨。
一、实验目的1.了解带传动的工作原理和特点,掌握带传动的计算方法。
2.研究不同类型带传动的适用范围,分析带传动与其他传动方式的比较。
3.通过实际测试,验证理论公式的正确性和计算方法的可靠性。
二、实验原理带传动是利用带子的弯曲刚度,将动力从发动机传到轮子上的一种传动方式。
因为带子弯曲刚度很小,因此带传动的传动效率较低,但是它有很多优点,例如传动平稳、噪音小、不会损伤轮胎、易于维修等。
在带传动中,带子受到张力的作用而实现传动,因此正确确定带张力是带传动的一个关键问题。
当确保带张力适当时,带子与轮轴之间必须接触,并且带子必须与轮轴上的套筒相接触。
根据能量守恒定律,带传动的传动比可以用以下公式表示:i = (T2/T1)*(Q2/Q1)其中,T1和T2是张力,Q1和Q2是转矩。
前者用公式T=KFTA计算,其中,KF为带传动系数;T为张力;A为受张力面的弧长;F为每单位宽度的带子受力。
后者用公式Q=nπTd/60计算,其中,n为发动机的转速;Td为输出轴的扭矩。
三、实验设备1.带传动试验台2.数字万用表3.磅秤4.滑动支撑5.带子6.调节杆7.定位槽8.润滑器四、实验步骤1.在试验台上安装带传动系统,将带子固定在后轮上,并将磅秤衡量输出轴的扭矩。
2.通过调节杆,调节主轴和后轮之间的距离,确保带子与轮轴上的套筒相接触。
3.用数字万用表检测主轴的转速,并将其记录下来。
4.在不同的实验条件下进行测试,包括不同的张力、不同的转速和不同的传动比。
5.通过测试数据计算传动比,并与理论值进行比较。
五、实验结果和分析1.测试结果表明,带传动的传动比随着张力的增加而增加,但到一定程度后就会趋于稳定。
2.当传动比增加时,输出轴的扭矩也随之增加。
3.与其他传动方式相比,带传动具有传动平稳、噪音小、易于修理等优点,但效率较低。
带传动实验报告
带传动实验报告
本次实验旨在通过对带传动系统的实验研究,探究带传动的工作原理和特性,
进一步了解其在工程领域中的应用。
实验过程中,我们将对带传动系统进行参数调节和性能测试,从而得出相关的实验数据和结论。
首先,我们对实验所用的带传动系统进行了详细的了解和分析。
带传动系统是
一种常见的机械传动方式,其主要由带轮、传动带和张紧装置组成。
在实际应用中,带传动系统具有结构简单、传动平稳、噪音小等优点,因此被广泛应用于各种机械设备中。
接下来,我们进行了带传动系统的参数调节和性能测试。
通过调节张紧装置的
张紧力和带轮的直径,我们观察到了带传动系统在不同工况下的传动效果。
在实验过程中,我们记录了带传动系统的转速、传动比和功率等相关数据,并进行了分析和比较。
在实验数据的基础上,我们得出了以下结论,带传动系统的传动效果受到张紧
力和带轮直径的影响较大,适当的张紧力和合理的带轮直径能够提高带传动系统的传动效率和稳定性。
此外,带传动系统在传动比和功率传递方面也表现出较好的性能。
总的来说,本次实验对带传动系统的工作原理和特性进行了深入的研究和探讨,通过实验数据和结论的分析,我们对带传动系统的性能有了更加清晰的认识。
希望本次实验能够为相关领域的研究和应用提供一定的参考和借鉴,也希望通过本次实验能够加深对带传动系统的理解和认识。
通过本次实验,我们对带传动系统有了更深入的了解,也为今后的相关研究和
应用提供了一定的参考价值。
希望通过本次实验能够为相关领域的发展和进步做出一定的贡献。
实验一 pcc带传动实验
实验一PC-C 带传动实验一、实验目的:(一)观察带传动中的弹性滑动和打滑现象,以及它们与带传动传递载荷之间的关系。
(二)比较预紧力大小对传动承载能力的影响。
(三)比较分析平带、V 带和圆带传动的承载能力。
(四)测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。
二、实验原理(一)主动带轮的驱动转矩T 1和从动带轮的负载转矩T 2均是通过电机外壳的反力矩来测定的。
带传动试验分析界面窗口直接显示主、从动带轮上的转矩力值。
主动带轮上的转矩T 1=Q 1K 1L 1N.m从动带轮上的转矩T 2=Q 2K 2L 2N.m式中:Q 1、Q 2——电机转矩力(面板窗口读取)K 1、K 2——转矩力测杆刚性系数(本实验台K 1=K 1=0.24N/格) L 1、L 1——力臂长,即电机转子中心至力传感器轴心距离(本实验台L 1=L 2=120mm )(二)弹性滑动率ε主从动带轮转速1n 、2n 可从实验台面板直接读出,由于带传动存在弹性滑动,使2n <1n ,滑差率ε表示:121122111%%v v d n d n v d n ε--==当12d d =时:121%n n n ε-= 式中:1d 、2d ——主从动带轮基准直径;1v 、2v ——主从动带轮的圆周转速;1n 、2n ——主从动带轮的转速。
(三)带传动的效率η:222111.%.p T n p T n η== 式中:1p 、2p ——主从动带轮上功率;1T 、2T ——主从动带轮上转矩1n 、2n ——主从动带轮的转速。
(四)绘制带传动的弹性曲线和效率曲线改变带传动的负载,取得一系列不同的数据组,以2T 为横坐标,分别以ε、η为纵坐标,可绘制出弹性曲线和效率曲线。
三、实验设备与仪器PC-C 型带传动实验台,电脑一台,实验软件一套(带传动实验台多媒体分析系统)1、电动机移动底板2、砝码及砝码架3、力传感器4、转矩力测杆5、电动机6、试验带7、光电测速装置8、发电机9、负载灯泡组10、机座11、操纵面板(一)实验台说明1.砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧实验带,增加或减少砝码即可增加或减少实验带的初拉力。
带传动实验
深圳大学实验报告课程名称:机械设计实验名称:带传动实验学院:机电与控制工程学院专业:机械设计制造及其自动化指导教师:彭晓波报告人:邱一新学号:2007110108 第 1 组班级:07机械1班实验时间:11月17号实验报告提交时间:11月24教务处制一、实验目的由于皮带的弹性模量较低,在带传动过程中会产生弹性滑动,导致带的瞬时传动比不是常量。
另一方面,当带的工作载荷超过带与带轮间的最大摩擦力时,带与带轮间会产生打滑,带传动这时不能正常工作而失效。
本实验的目的是:1、观察带传动的弹性滑动和打滑现象;2、了解带的初拉力、带速等参数的改变对带传动能力的影响,测绘出弹性滑动曲线;3、掌握转速、扭矩、转速差及带传动效率的测量方法。
二、实验设备及工具1、DCS-Ⅴ型智能带、链传动组合实验台(如图1所示);2、内六角扳手。
三、实验系统的组成框图图2 实验系统组成框图如图1和图2所示,实验系统主要包括如下部分:(1)带传动机构(2)主、从动轮转矩传感器(3)主、从动轮转速传感器(4)电测箱(与带传动机构装为一体)(5)个人电脑(6)打印机四、实验原理及测试方法1、调速和加载主动电机的直流电源由可控硅整流装置供给,转动电位器可改变可控硅控制角,提供给主动电机电枢不同的端电压,以实现无级调节电机转速。
本实验台中设计了粗调和细调两个电位器。
可精确的调节主动电机的转速值。
加载示意图如图6所示。
加载是通过改变发电机激磁电压实现的。
逐个按动实验台操作面上的“加载”按扭(即逐个并上发电机负载电阻),使发电机激磁电压加大,电枢电流增大,随之电磁转矩增大。
由于电动机与发电机产生相反的电磁转矩,发电机的电磁转矩对电动机而言,即为负载转矩。
所以改变发电机的激磁电压,也就实现了负载的改变。
2、转速测量两台电机的转速,分别由安装在实验台两电机带轮背后环形槽中的红外交电传感器上测出。
带轮上开有光栅槽,由光电传感器将其角位移信号转换为电脉冲输入单片计算机中计数,计算得到两电机的动态转速值,并由实验台上的LED显示器显示出来也可通过微机接口送往PC机进一步处理。
带传动试验报告
带传动试验报告随着工业自动化和机械化程度的不断提高,带传动作为一种常见的传动方式,在各个领域被广泛应用。
为了确保带传动的性能和可靠性,需要对其进行试验和测试。
本文将介绍带传动试验的相关内容。
一、试验前的准备工作在进行带传动试验前,需要对试验样品进行检查和准备。
首先,要检查样品是否符合试验要求,包括轴的尺寸、带的类型、张力调节装置等。
其次,要对样品进行清洁和润滑,以确保试验的准确性和可靠性。
最后,应按照试验要求对试验设备进行检查和校准,以确保试验数据的准确性。
二、试验过程与方法带传动试验的主要目的是测试带传动的传动效率、承载能力、寿命等性能指标。
在试验过程中,需要根据试验要求选择合适的试验方法和测试参数。
一般来说,带传动试验可以分为静态试验和动态试验两种类型。
静态试验主要是对带传动的静态承载能力进行测试,包括带轮的最大扭矩和最大扭矩比。
试验时,需要将试验样品固定在试验台上,然后通过施加不同大小的力矩来测试带轮的扭矩和扭矩比。
动态试验则主要是对带传动的动态性能进行测试,包括传动效率、寿命等指标。
试验时,需要将试验样品安装在试验台上,然后通过加速器或电机等装置来测试带传动的运动性能。
三、试验结果与分析在试验完成后,需要对试验结果进行分析和处理。
首先,需要对试验数据进行统计和整理,得出各项指标的平均值和标准差。
然后,根据试验要求和标准,将试验结果进行比较和分析,以确定试验样品的性能是否符合要求。
最后,应将试验结果进行报告和归档,以备后续参考。
四、试验注意事项在进行带传动试验时,需要注意以下几点:1. 试验时应按照试验要求和标准进行操作,避免出现误差和偏差。
2. 在试验过程中,应注意安全问题,避免发生意外事故。
3. 试验时应注意环境温度和湿度等因素的影响,以确保试验结果的准确性。
4. 在试验完成后,应对试验设备进行清洁和维护,以保证设备长期的使用寿命。
带传动试验是一项重要的工作,对于确保带传动的性能和可靠性具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、
3、
5、
6
7
8
9
10 7 侧面
2 4 5'
实验二带传动特性测试与分析实验
(-)实验目的
1、观察带的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
2、了解带的初拉力、带速等的改变对带传动能力的影响,测绘出带的传动效率和弹性滑动曲线。
3、掌握转速、扭矩、转速差及效率的测量方法。
(-)实验设备及工作原理
1、实验设备
实验台结构如图一所示,传动带装在主动轮5和从动轮5 '上,直流电机1、2的外壳通过支承座3、4内的滚动轴承悬浮安装,使电机定了可绕轴线摆动。
整流、启动、调速、加
载以及控制电了系统等电气部分装
在机身座内,并由面板显
示。
一直流电机——支
承座一主从动轮带—
塑料平皮带 -一控制显
示板—机座—调节机
座一压缩弹簧
图一
复位开关
2、基木原理和方法
1)调速和加载
直流电机由可控徒整流装置供给,传动调速电位器改变可控硅触发角,提供给电动机电枢不同的端电压,以实现无级调速。
加载是通过改变发电机(电机2)负载电阻实现的,逐个按动负载电阻开关,使电枢电流增大,转子电磁转距增大,由于电机1与发电机产生相反的电磁转距,发电机的电磁转距对电动机而言,即为负载转距,所以改变发电机负载电阻也就实现了负载的改变。
2)转速的测量
带轮5和5 '转速的测量,由装在支承座3和4内的光电传感器及带轮背后的光栅盘获取
ni :主动轮.
n 2:主动轮2
脉冲信号再经过放大显示得到。
其测试原理框图见图二。
3)转矩的测量
电机1、2的转矩「、T2分别通过固连在支撑座3、4的传感电位器及一对小模数齿轮实 现。
当带的外载荷改变时,电机的外壳产生反向转动,此时,固连于外壳上的齿圈旋转,齿圈 带动固连于传感电位器轴上的小齿轮1口1转,这样电机外壳的转角变化■-机械量就转换成电阻值 的变化■-电量。
电量的变化通过电路设计由数码管显示,即为所得的主从动带轮的转矩E 、T2。
4)带传动的滑动系数和效率 滑动系数
£ 二
— x wo
带的传动效率
77 = — =
100 %
'pi T ini
其中,R 、P2为主动轮、从动轮的功率(瓦),m 、n2为主、从动轮转速(rpm ),随着负载 的改变,E 、T2、A n=n-n,值也改变,这样可获得一组£和n 值,然后绘制出滑动曲线和效率曲 线图。
(三)实验步骤
1. 电源开关启动前,首先检查调速旋钮和负载按钮是否均处于零位。
2. 开启电源,指示灯亮。
3. 调节调零电位器I 、II (「、T2),使扭矩数码管显示均为零。
(一般情况下己调
好)
4.调节螺母9,压缩弹簧10,使传动带获得合适的初拉力。
5.缓慢旋转旋钮(禁止突然加速,以免损坏传感器),设定电机转速m值(约
700rpm,
最大不超过1000 rpm) o
6 .记录空载时的一组『、112和值。
7.顺次按下负载按钮“1”、“2”、“3”......,并记录各次n- m、L、T2的值,直.到带滑动加剧到打滑,按下“0”位按钮卸载。
(在顺次按下负载按钮时,可明显观测到带
的滑动及负载变化时指示灯亮度有变化)
8.显示数据出现异常时,请按一•下复位开关(非电源开关)。
(四)注意事项
1.调速必须缓慢进行,以免损坏测矩传感器。
2.实验中,施加载荷时须顺次进行,注意观察带和仪表的变化,并注意安全。