正方形的性质与判断

合集下载

《第2课时 正方形的判定》教案 (公开课)2022年人教版数学

《第2课时 正方形的判定》教案 (公开课)2022年人教版数学

第2课时正方形的判定1.掌握正方形的判定条件;(重点)2.能熟练运用正方形的性质和判定进行有关的证明和计算.(难点)一、情境导入老师给学生一个任务:从一张彩色纸中剪出一个正方形.小明剪完后,这样检验它:比拟了边的长度,发现4条边是相等的,小明就判定他完成了这个任务.这种检验可信吗?小兵用另一种方法检验:量对角线,发现对角线是相等的,小兵就认为他正确地剪出了正方形.这种检验对吗?小英剪完后,比拟了由对角线相互分成的4条线段,发现它们是相等的.按照小英的意见,这说明剪出的四边形是正方形.你的意见怎样?你认为应该如何检验,才能又快又准确呢?二、合作探究探究点一:正方形的判定【类型一】利用“一组邻边相等的矩形是正方形〞证明四边形是正方形如图,在Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.解析:要证四边形CEDF是正方形,那么要先证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC =90°.又∵∠ACB=90°,∴四边形CEDF是矩形.∵DE=DF,∴矩形CEDF是正方形.方法总结:要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.【类型二】利用“有一个角是直角的菱形是正方形〞证明四边形是正方形如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试判断四边形BECF是什么四边形?并说明理由;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请答复并证明你的结论.解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC.又∵CF=AE,∴可证BE=EC =BF=FC.根据“四边相等的四边形是菱形〞,∴四边形BECF是菱形;(2)菱形对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形.根据“直角三角形中两个角锐角互余〞得∠A=45°.解:(1)四边形BECF是菱形.理由如下:∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1.∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE.∵CF=AE,∴BE=EC=CF =BF,∴四边形BECF是菱形;(2)当∠A=45°时,菱形BECF是正方形.证明如下:∵∠A=45°,∠ACB=90°,∴∠3=45°,∴∠EBF=2∠3=90°,∴菱形BECF是正方形.方法总结:正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用判定定理1或判定定理2进行判定.探究点二:正方形的判定的应用【类型一】 正方形的性质和判定的综合应用如图,点E ,F ,P ,Q 分别是正方形ABCD 的四条边上的点,并且AF =BP =CQ =DE .求证:(1)EF =FP =PQ =QE ; (2)四边形EFPQ 是正方形. 解析:(1)证明△APF ≌△DFE ≌△CEQ ≌△BQP ,即可证得EF =FP =PQ =QE ;(2)由EF =FP =PQ =QE ,可判定四边形EFPQ 是菱形,又由△APF ≌△BQP ,易得∠FPQ =90°,即可证得四边形EFPQ 是正方形.证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =AD .∵AF =BP =CQ =DE ,∴DF =CE =BQ =AP .在△APF 和△DFE 和△CEQ 和△BQP 中,⎩⎪⎨⎪⎧AF =DE =CQ =BP ,∠A =∠D =∠C =∠B ,AP =DF =CE =BQ ,∴△APF ≌△DFE ≌△CEQ ≌△BQP (SAS),∴EF =FP =PQ =QE ;(2)∵EF =FP =PQ =QE ,∴四边形EFPQ 是菱形.∵△APF ≌△BQP ,∴∠AFP =∠BPQ .∵∠AFP +∠APF =90°,∴∠APF +∠BPQ =90°,∴∠FPQ =90°,∴四边形EFPQ 是正方形.方法总结:此题考查了正方形的判定与性质以及全等三角形的判定与性质.注意解题的关键是证得△APF ≌△DFE ≌△CEQ ≌△BQP .【类型二】 与正方形的判定有关的综合应用题如图,△ABC 中,点O 是AC 上的一动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角∠ACG 的平分线于点F ,连接AE 、AF .(1)求证:∠ECF =90°; (2)当点O 运动到何处时,四边形AECF 是矩形?请说明理由;(3)在(2)的条件下,要使四边形AECF 为正方形,△ABC 应该满足条件:______________________(直接添加条件,无需证明).解析:(1)由CE 、CF 分别平分∠BCO 和∠GCO ,可推出∠BCE =∠OCE ,∠GCF =∠OCF ,那么∠ECF =12×180°=90°;(2)由MN ∥BC ,可得∠BCE =∠OEC ,∠GCF =∠OFC ,可推出∠OEC =∠OCE ,∠OFC =∠OCF ,得出EO =CO =FO ,点O 运动到AC 的中点时,那么EO =CO =FO =AO ,这时四边形AECF 是矩形;(3)由和(2)得到的结论,点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角时,那么推出四边形AECF 是矩形且对角线垂直,因而四边形AECF 是正方形.(1)证明:∵CE 平分∠BCO ,CF 平分∠GCO ,∴∠OCE =∠BCE ,∠OCF =∠GCF ,∴∠ECF =12×180°=90°;(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.理由如下:∵MN ∥BC ,∴∠OEC =∠BCE ,∠OFC =∠GCF .又∵∠OCE =∠BCE ,∠OCF =∠GCF ,∴∠OCE =∠OEC ,∠OCF =∠OFC ,∴EO =CO ,FO =CO ,∴OE =OF .又∵当点O 运动到AC 的中点时,AO =CO ,∴四边形AECF 是平行四边形.∵∠ECF =90°,∴四边形AECF 是矩形.(3)∠ACB =90°.方法总结:在解决正方形的判定问题时,可从与其判定有关的其他知识点入手,例如等腰三角形,平行线和角平分线.从中发现与正方形有关联的条件求解.三、板书设计1.正方形的判定方法一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.2.正方形性质和判定的应用本节课采用探究式教学,让学生产生学习兴趣,通过实践活动调动学生的积极性,给学生动手操作的时机,变被动为主动学习,引导通过感官的思维去观察、探究、分析知识形成的过程,以此深化知识、更深刻理解知识、主动获取知识,养成良好的学习习惯.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x 越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm 2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s ;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm 3/s ,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm ,根据圆柱的体积公式得a ·(30-15)=18×5,解得a =6,于是得到“几何体〞上方圆柱的高为5cm ,设“几何体〞上方圆柱的底面积为S cm 2,根据圆柱的体积公式得5×(30-S )=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体〞的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

2020年中考数学必考高分考点:正方形(学生版)

2020年中考数学必考高分考点:正方形(学生版)

专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。

即有一个角是直角的菱形是正方形。

4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。

2024年(精编试卷)小学六年级数学下册全套单元试卷及答案

2024年(精编试卷)小学六年级数学下册全套单元试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 下列哪个图形是正方形?A.B.C.D.3. 下列哪个数是偶数?A. 15B. 16C. 17D. 184. 下列哪个分数可以化简?A. 3/4B. 4/5C. 5/6D. 6/75. 下列哪个数是平方数?A. 8B. 9C. 10D. 11二、判断题(每题1分,共5分)1. 一个质数只有两个因数,即1和它本身。

()2. 两个正方形的边长相等,则它们的面积也相等。

()3. 一个数的个位数是0,那么这个数一定是偶数。

()4. 两个分数的分子相等,分母越大,这个分数就越小。

()5. 两个数的和一定大于它们中的任意一个数。

()三、填空题(每题1分,共5分)1. 12的因数有:______。

2. 8的倍数有:______。

3. 15和20的最大公因数是:______。

4. 4/5和2/3的最小公倍数是:______。

5. 一个等边三角形的内角和是:______。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请简述分数的分子和分母的含义。

3. 请简述正方形的性质。

4. 请简述平方数的定义。

5. 请简述等边三角形的性质。

五、应用题(每题2分,共10分)1. 一个长方形的长是8厘米,宽是5厘米,请计算它的面积。

2. 一个圆的半径是4厘米,请计算它的周长。

3. 一个班级有男生20人,女生25人,请计算这个班级总共有多少人。

4. 一个分数的分子是3,分母是5,请计算这个分数的值。

5. 一个等边三角形的边长是6厘米,请计算它的面积。

六、分析题(每题5分,共10分)1. 分析质数和合数的性质,并举例说明。

2. 分析分数的加减乘除运算规则,并举例说明。

七、实践操作题(每题5分,共10分)1. 请用尺子和圆规画出一个半径为5厘米的圆。

2. 请用尺子和直角器画出一个边长为4厘米的正方形。

正方形的性质和判断

正方形的性质和判断

正方形温故知新1. 如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2. 如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.课前热身1. 在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分2. 已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.遗漏分析1.对正方形的性质不熟悉;2.对正方形和菱形、矩形的转换关系不清楚.知识精讲精讲:正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.性质:正方形是特殊的矩形和菱形,所以正方形既具有矩形的性质,又有菱形的性质.按边、角、对角线分类,正方形的性质有:①正方形的四个角都是直角;②正方形的四条边都相等;③正方形的两条对角线相等,并且互相垂直平分,每条对角线相等,并且互相垂直平分,每条对角线平分一组对角;④正方形是轴对称图形,它有四条对称轴,分别是过对边中点的直线和两条对角线所在的直线.判定方法:①平行四边形+一组邻边相等+一个角为直角(定义法);②矩形+一组邻边相等;③矩形+对角线互相垂直;④菱形+一个角为直角;⑤菱形+对角线相等.例:下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形巩固练习1. 在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,在正方形ABCD的外侧,作等边三角形AEB,则∠AED为()A.10°B.15°C.20°D.125°3. 在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF,则下列结论中错误的是()A.∠AFB+∠BEC=90°B.AF⊥BE C.∠DAF=∠BEC D.BE=AF4. 正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.35. 平行四边形、矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直平分且相等5. 如图,四边形ABCD中,∠ABC=∠BCD=∠CDA=90°,请添加一个条件,可得出该四边形是正方形.课堂小结补充:正方形:正方形的性质=矩形的性质+菱形的性质;矩形的判定条件+菱形的判定条件=正方形的判定条件.强化提升1. 顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形 B.矩形 C.菱形 D.正方形2. 已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm3. 正方形面积为36,则对角线的长为()A.6 B. C.9 D.4. 如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30°B.45°C.60°D.90°5. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=90°时,测得AC=2,当∠C=120°时,如图2,AC=()A.2 B.C.D.课后作业【第1天】1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是正方形D.当AC=BD时,它是矩形2. 有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:93. 如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【第7天】1. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为()A.B.3C.5 D.62. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【第15天】1. 如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°2. 如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【第28天】1. 下列命题中,不成立的是()A.等腰梯形的两条对角线相等B.菱形的对角线平分一组对角C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个3. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【阶段检测】1. 用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A .①④⑤B .②⑤⑥C .①②③D .①②⑤2. 正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是( )A.62B.122 C .6 D .83. 如图,已知正方形的面积为25,且AC 比AB 小1,BC 的长为( )A .3B .4C .5D .64. 下列说法中,正确的是( )A .等腰梯形的对角线互相垂直B .菱形的对角线相等C .矩形的对角线互相垂直D .正方形的对角线互相垂直且相等5. 如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为( )A .6B .8C .10D .126. 如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.7. 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若添加条件,则四边形AEDF是矩形;(3)若添加条件,则四边形AEDF是菱形;(4)若添加条件,则四边形AEDF是正方形.。

(完整版)正方形知识点复习总结

(完整版)正方形知识点复习总结

(完整版)正方形知识点复习总结正方形知识点复总结1. 正方形的定义正方形是一种特殊的四边形,具有以下特点:- 四条边的长度相等。

- 四个内角都是90度。

- 对角线相等且垂直平分。

2. 正方形的性质2.1 逆向性质正方形的逆向性质可以由其定义推导得出:- 如果一个四边形的四条边都相等且四个内角都是90度,则它是正方形。

2.2 边长和对角线的关系在一个正方形中,边长和对角线之间存在以下关系:- 对角线的长度等于边长的根号2倍。

- 边长等于对角线长度的根号2的一半。

2.3 面积和周长正方形的面积和周长计算公式如下:- 面积:边长的平方。

- 周长:边长的四倍。

2.4 正方形与其他几何图形的关系正方形与其他几何图形的关系如下:- 正方形是一个长方形,其中长和宽相等。

- 正方形也是一个菱形,其中每个角都是90度。

3. 判断正方形的方法在解决问题时,我们有时需要判断一个四边形是否是正方形。

以下是几种判断的方法:- 判断边长:检查四条边是否长度相等。

- 判断角度:检查四个内角是否都是90度。

- 判断对角线:检查对角线长度是否相等且垂直平分。

4. 示例题目下面是一些关于正方形的示例题目,帮助巩固对正方形知识的理解:1. 若一个四边形的边长为4cm,是不是正方形?2. 如果一个四边形的边长为6cm,内角都是90度,那它一定是正方形吗?3. 一个四边形的对角线长度为5cm,是不是正方形?5. 结论正方形是一种具有特殊性质的四边形,有着特定的定义和性质。

了解正方形的定义、性质以及判断方法可以帮助我们更好地理解和应用正方形相关的问题。

正方形的性质与判断

正方形的性质与判断

正方形的性质与判断正方形是初中数学中非常重要的一个几何形状,它具有独特的性质和判断方法。

在本文中,我将为大家详细介绍正方形的性质,并提供一些实用的判断方法,以帮助中学生和他们的父母更好地理解和应用正方形。

正方形是一种特殊的矩形,它的四条边长度相等且四个角都是直角。

正方形的性质可以从多个角度进行分析。

首先,正方形的对角线相等且相互垂直。

对角线是连接正方形相对顶点的线段,它们的长度相等,可以用勾股定理进行证明。

对角线的垂直性则可以通过证明两个三角形的两条边分别相等,且一条边垂直于另一条边来得到。

其次,正方形的对边平行且相等。

对边是指连接正方形相对边的线段,它们的长度相等,可以通过正方形的定义进行证明。

对边的平行性可以通过证明两个三角形的两个对边分别相等,且夹角相等来得到。

此外,正方形的内角均为直角。

内角是指正方形内部的角度,它们都是直角,即90度。

这个性质可以通过正方形的定义和直角的定义进行证明。

在判断一个图形是否为正方形时,我们可以利用这些性质进行分析。

首先,我们可以测量图形的四条边是否相等,如果相等,则有可能是正方形。

接下来,我们可以测量图形的对角线是否相等,如果相等,则可以判断这个图形是正方形。

最后,我们可以测量图形的内角是否为直角,如果是直角,则可以确定这个图形是正方形。

除了直接测量,我们还可以利用正方形的对称性来判断一个图形是否为正方形。

正方形具有四个对称轴,即对角线和中垂线。

如果一个图形在这些对称轴上对称,那么它很可能是正方形。

我们可以通过观察图形的对称性来判断它是否为正方形。

在实际生活中,正方形的应用非常广泛。

例如,在建筑设计中,正方形常用于规划房间的布局,使得空间更加合理和美观。

在绘画和设计中,正方形常用于构图和排版,给作品带来平衡和稳定的感觉。

在数学问题中,正方形常用于简化计算和推导,使得问题的解决更加简单和直观。

总之,正方形是一种重要的几何形状,它具有独特的性质和判断方法。

通过了解正方形的性质和判断方法,中学生和他们的父母可以更好地理解和应用正方形,提高数学学习的效果。

最完美的四边形汇总

最完美的四边形汇总

最完美的四边形——正方形之判别方法大汇总(035)北师大版数学八年级(上)第四章《四边形的性质探索》是初中数学中“空间与图形”板块知识的基础核心内容,是几何图形中必须掌握的重点知识。

其中四边形中的特殊四边形:平行四边形、菱形、矩形以及正方形性质的理解和判别更是至关重要。

在经历了两次初二教学的反思后,我总结出了一套关于特殊四边形的教学方法,可以让学生对其性质及判别方法有更清楚的理解。

在这一轮教学中,课堂上我一直很注重发挥学生的主动性,在学到正方形的判别时让学生自己发现方法、归纳总结。

没想到的是学生由需要掌握的四种判别方法扩展成了八种方法,甚至课后还有学生提出其他方法来找我验证对错。

于是我静下心来思考了一番,发现了十几种正方形的判别方法,在这里汇总一下,帮助已经掌握了特殊四边形判别的学生做个归纳总结,开拓一下思维,更重要的是帮助没有完全掌握的学生梳理清楚思路。

正方形是最特殊的平行四边形,要想掌握好它的性质与判别,首先要掌握好前面几种特殊平行四边形的性质及判别,所以在课堂上我总是借用分层次、分台阶的方式引导学生去理解几种平行四边形之间的联系与区别。

学好平行四边形是基础,掌握好菱形和矩形是关键,这样过渡到正方形就很容易了。

一、平行四边形:掌握好平行四边形的定义、性质及判别是打好基础的第一步。

1.定义教学中要引导学生明确小学时已给出的平行四边形定义就是通过它名称中的“平行”引出的,即两组对边分别平行得四边形叫做平行四边形。

可以得出从四边形升级到平行四边形只需要“两组对边分别平行”即可。

2.性质研究平行四边形的四个性质,不仅要让学生在课堂上自主发现、进行证明外,还要帮助学生理解加记忆。

我会让学生去观察平行四边形的图形,然后自己总结性质。

由于它是由四条线段首尾依次相连而组成的,所以能够观察到的就只有四条边和边与边组成的角,学生很快就会发现性质①两组对边分别平行;性质②两组对边分别相等;性质③两组对角分别相等。

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

正方形的性质与判定

正方形的性质与判定

正方形的性质与判定正方形是一种特殊的四边形,具有独特的性质。

在本文中,我将介绍正方形的定义、性质和判定方法。

首先,我们来定义正方形。

正方形是一种具有四条相等边和四个直角的四边形。

其中,相等边长称为边长,直角处的两个边称为邻边,相邻的两个直角称为相邻角,对角线的重合点称为中心。

下面,我们将详细介绍正方形的性质。

正方形具有以下性质:1. 边长相等:正方形的四条边长相等,可以用a表示。

这意味着正方形的周长为4a。

2. 内角为直角:正方形的四个内角都是直角(90度)。

这是因为正方形的两条相邻边构成一条直角线段。

3. 对角线相等:正方形的两条对角线相等,可以用d表示。

这是由于正方形的两个对角线是两条等边三角形的斜边。

4. 对角线互相垂直:正方形的两条对角线相互垂直。

这是由于正方形的对角线是两个相交的垂直直角三角形的斜边。

5. 中心对称:正方形的中心是对称中心,即以中心为对称中心将正方形折叠,两边能完全重合。

6. 内切圆:正方形有一个内接圆,即一个与正方形的四条边相切的圆。

7. 外接圆:正方形有一个外接圆,即一个与正方形的四个顶点相切的圆。

接下来,我们来讨论如何判定一个四边形是否为正方形。

判定一个四边形是否为正方形通常有以下几种方法:1. 判断边长是否相等:一个四边形的四条边长都相等时,可以判定为正方形。

2. 判断内角是否为直角:一个四边形的四个内角都是直角时,可以判定为正方形。

3. 判断对角线是否相等:一个四边形的对角线相等时,可以判定为正方形。

4. 判断对角线是否垂直:一个四边形的对角线互相垂直时,可以判定为正方形。

5. 判断是否为菱形:如果一个四边形既是菱形又是矩形,那么它就是正方形。

这些方法可以单独或者组合使用来判断一个四边形是否为正方形。

总之,正方形是一种具有独特性质的四边形,包括边长相等、内角为直角、对角线相等等。

我们可以通过判断边长、内角、对角线的相等性以及对角线的垂直性来判定一个四边形是否为正方形。

《正方形的性质与判定》教学设计

《正方形的性质与判定》教学设计

第六章特别平行四边形3.正方形的性质与判断(二)一、学生知识状况解析学生的知识基础:学生从前已经借助折纸、画图、丈量、证明等活动研究过平行四边形、菱形、矩形的性质和判断,还在第一课时学习了正方形的性质,本节课主若是对正方形的判断进行推理证明,而前方的研究过程和方法为本节课的推理证明供给了铺垫,为学生供给了相应的定理证明思路。

八年级时学生还学习了“三角形中位线定理”,这些都为本节课研究“中点四边形”做了铺垫,学生已经具备了研究该命题的基本技术。

学生活动经验基础:在相关知识的学习过程中,学生经历了“研究—发现—猜想—证明” 的过程,并初步领会了获取猜想后还应予以证明的意义,感觉到了合情推理与演绎推理的相互依赖和相互增补的辨证关系,并且学生拥有了必定的推理证明的能力。

同时在从前的数学学习中学生已经经历了很多合作学习的过程,拥有了必定的合作学习的经验,具备了必定的合作与沟通的能力。

二、教课任务解析教材基于学生对特别平行四边形和三角形中位线定理的认识的基础之上,提出了本课的详尽学习任务:掌握正方形判判定理、理解中点四边形形状取决于原四边形的对角线的地点和数目关系,但这不过是这堂课外显的近期目标。

本课内容隶属于“图形与几何”中的“图形的性质”,因此务必服务于演绎推理教课的远期目标:“让学生经历‘研究—发现—猜想—证明’的过程,领会证明的必需性,掌握用综合法证明的格式,初步感觉公义化思想,发展空间看法”,同时也应力争在学习中逐渐达成学生的相关感情态度目标。

为此,本节课的教课目标是:知识与技术:1.掌握正方形的判判定理,并能综合运用特别四边形的性质和判断解决问题。

2.发现决定中点四边形形状的要素,娴熟运用特别四边形的判断及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。

3.使学生进一步领会证明的必需性以及计算与证明在解决问题中的作用。

过程与方法:1.经历“研究—发现—猜想—证明”的过程,掌握正方形的判判定理,发现决定中点四边形形状的要素,并能综合运用特别四边形的性质和判断解决问题。

初中中考数学的29个性质、定理、公式和解题方式

初中中考数学的29个性质、定理、公式和解题方式

初中中考的29个性质、定理、公式和解题方式1.科学记数法对科学记数法的考查一般有三种形式:1.大数的科学记数法;2.小数的科学记数法;3.结合有效数字的科学记数法.无论是哪种考查形式,其关键点是要确定将原数表示成为a×10n时的a、n值.列表如下:2.3.实数的运算题中,常涉及到以下的运算,在解答此类题时,应先计算每一小项的值,再进行实数的四则混合运算.加减;②有括号时先计算括号里面的;③同级运算按照从左到右的顺序进行计算.4.幂的运算5.6.7.根式估值时,一般先对根式平方,找出与平方后所得数字相邻的两个开得尽方的整数,然后再对这两个整数进行开方,就可以确定这个根式在哪两个整数之间.例如,估算7在哪两个整数之间时,先对7平方即为7,找出与7相邻的两个开得尽方的整数4和9,因为4<7<9,所以,4<7<9,即2<7<3.8.一元二次方程的解法及适用情形9.分式方程的解题步骤10.11.12.k<0b>0 b<0 b>0 b<0图象经图象经图象经图象经13.k>0第一、三象限而减小而增大S△AOP=|k|2S矩形OAPB=|k|S△APP′=2|k|(P′为P关于原点的对称点)14.a>0 a<0增15.16.17.18.①)②)③)④)⑤) 19.特殊角三角函数值记忆法3(2)图形记忆法如图①、图②所示图①)20.解直角三角形实际应用的常考类型及解题方法在视线与水平线所成的锐角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比),用字母i 表示;坡面与水平线的夹角α叫做坡角.i =tanα=h l一般指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角)通常表达成北(南)偏东(西)×度,如图,A 点位于O 点的北偏东30°方向,B 点位于O 点的南偏东60°方向,C 点位于O 点的北偏西45°方向(或西北方向) 1.解直角三角形时,当所求元素不在直角三角形中时,21.平行四边形性质22.矩形性质23.菱形性质24.性质25.圆周角定理及其推论定理圆O的直径垂径定理及其推论定理26.圆切线的性质与判定性质27.图形扇形求弧长扇形求面积28.阴影部分面积的计算29.(1)由正方块组成几何体的三视图的判断步骤(2)几何体主视图俯视图正方体圆柱圆锥球体。

判定正方形的方法

判定正方形的方法

判定正方形的方法
一、基于几何性质的判定方法:
正方形是一种特殊的四边形,具有以下几何性质:
1.四边相等:正方形的四条边长度完全相等,可以通过测量四边的长度来判断。

2.四角相等:正方形的四个角度完全相等,每个角度为90度。

3.对角线相等:正方形的两条对角线完全相等,在已知四边长的情况下,可以通过勾股定理判断对角线是否相等。

综上所述,如果满足以上几何性质,就可以判定为正方形。

二、基于数学公式的判定方法:
正方形是一种特殊的矩形,具有以下数学公式:
1.周长:正方形的周长公式为4a,其中a为边长。

2.面积:正方形的面积公式为a²,其中a为边长。

在已知周长或面积的情况下,可以通过计算公式得到边长,并判断四边是否相等来判断是否为正方形。

三、基于编程算法的判定方法:
除了几何性质和数学公式的判定方法外,还可以通过编程算法来判定正方形。

1.输入四个点的坐标:首先,需要输入四个点的坐标,分别表示正方形的四个顶点。

2.计算边长:利用欧几里得距离公式计算四条边的长度,然后判断四边是否相等。

3.计算角度:利用向量的概念计算相邻两条边的夹角,然后判断四个角度是否相等且为90度。

4.判断对角线长度:利用勾股定理,计算对角线的长度,然后判断是否相等。

通过上述算法,可以判断输入的四个点是否构成正方形。

综上所述,判断正方形的方法可以从几何性质、数学公式和编程算法等方面进行判定。

根据不同需求和条件,选择适合的方法进行判断。

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)

苏科版八年级数学下册课件:9.4矩形、菱形、正方形(5)正方形2(共35张PPT)
直角三角形.
7.如图,E是正方形ABCD的边BC延长线上的有
一点,且CE=AC.求∠E的度数.
A
D
B
C
E
8.已知:如图,四边形ABCD是正方形,以对角线
AC为一边作菱形AEFC.求∠FAB的度数.
DC
F
A
BE
9.已知:如图, E、F是正方形ABCD的对角 线AC 上的两点,且AE=CF.
求证:四边形BEDF是菱形.
(2)若正方形A’B’C’D’绕点O任意旋转某个角度后 ,OE=OF吗?
A O (A')
D
F
D'
B
E
C
A O (A')
B
E
B'
D
F D'
C
B'
C'
C'
练习 :如图,将n个边长都为1cm的正方形按如图
所示摆放,点A1、A2、…、An分别是正方形的中心, 则n个这样的正方形重叠部分的面积和为( )
A.
(1)A、B、C的对应点分别是什么?
(2)△ABC可通过怎样的变换得到△ADC?
A
(3)从对称性看,四边形
ABCD是什么图形? B
O
D
正方形实际是等腰直角三角形
绕其底边上的中点旋转180°
而形成的中心对称图形.
C
四边形ABCD有哪些特点?
四边形ABCD是中心对称图形,又是轴对称图形;
是平行四边形
A
A
D
F
OE
B
C
平行四边形
矩正菱 形方形

挑战第二关 具备什么条件的平行四边形是正方形?
正方形的判别方法:

2023福州中考数学考点分析

2023福州中考数学考点分析

2023福州中考数学考点分析学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,同时知识也不是也不是随意的摘取。

要通过自己的努力,要把我自己生命的钥匙。

今天小编在这给大家整理了一些福州中考数学考点分析,我们一起来看看吧!福州中考数学考点分析1一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!_(x-a)+f''(a)/2!_(x-a)2+...f(n)(a)/n!_(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.福州中考数学考点分析21.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

正方形的性质与判定教案

正方形的性质与判定教案

正方形的性质与判定教案教案:正方形的性质与判定一、教学目标1.理解正方形的定义和性质。

2.能够判断一个图形是否为正方形。

3.能够运用正方形的性质解决相关问题。

二、教学内容1.正方形的定义和性质。

2.正方形的判定方法。

3.正方形的应用。

三、教学过程Step 1:引入话题(5分钟)教师向学生介绍正方形这一图形,并引出正方形的定义和一些常见的性质。

Step 2:正方形的定义(15分钟)1.教师通过投影或者板书向学生展示正方形的定义:四条边相等且四个角都是直角的四边形。

2.引导学生观察正方形,并与定义进行比较,确保学生理解正方形的定义。

3.教师提供一些真实生活中的正方形图像,让学生找出图中的正方形,并对其进行命名。

再让学生用自己的话解释正方形的定义。

Step 3:正方形的性质(15分钟)1.教师通过投影或者板书讲解正方形的一些常见性质,如:四条边相等,四个角都是直角,对角线相等且垂直等。

2.学生根据教师的讲解,进行思考和讨论,总结正方形的性质,并记录在笔记中。

3.教师给出一些练习题,让学生运用正方形的性质进行解答。

Step 4:正方形的判定(20分钟)1.教师给出一些图形,让学生判断是否为正方形,并解释判断的依据。

2.学生进行小组合作活动,互相检查答案,并找出判断正方形的关键点。

3.学生将判定的依据总结出来,向全班汇报。

Step 5:正方形的应用(20分钟)1.教师讲解正方形在实际生活中的应用,如:建筑设计、画框制作等。

2.学生通过小组合作,思考并总结其它正方形的应用,并向全班汇报。

3.教师提供一些问题,让学生运用正方形的性质和应用解决问题。

Step 6:课堂小结(5分钟)教师对本节课的重点内容进行小结,并对学生的学习情况进行评价。

四、教学评价方法与学习活动设计1.教学评价方法:-师生互动的提问评价:教师通过提问学生,检查学生对正方形定义和性质的理解程度。

-小组合作评价:学生通过小组合作,互相检查问题、判断正方形、总结正方形性质等活动,从而培养学生的团队协作能力和思维的综合能力。

2021年-有答案-四川省成都市高新区三年级(上)期末数学试卷

2021年-有答案-四川省成都市高新区三年级(上)期末数学试卷

2021学年四川省成都市高新区三年级(上)期末数学试卷一、我会填.(每空1分,共22分)1. 用分数表示图中涂色部分。

2. 40厘米=________分米 3吨=________千克 7分=________秒。

3. 在横线里填上合适的单位。

一只铅笔长16________; 一头牛重500________; 爸爸每天工作8________;刘翔跑110米栏只要9________多。

4. 一个数除以4,余数最大可能是________.5. 在横线里填上>、<或=56________ 46 15________ 13 8000米________9千米 4时________240分。

6. 4个好朋友见面,每两个人握一次手,一共握________次手。

7. 350×8积的末尾有________个零,505×8积的中间有________个零。

8. 用4根木条做成一个活动的长方形框,用手拉它的一组相对的角,这个长方形会变成一个________形。

9. 公共汽车站每隔20分钟发一辆汽车,从早上6时开始发一辆车,第二辆是在________时________分出发的。

二、我会判断对错.对的打“√”错的打“×”(6分)正方形的四条边相等,四个角都是直角。

________.(判断对错)一张电话磁卡的厚度是1厘米。

________(判断对错)一个三年级的小朋友午餐吃了8千克食物。

________.(判断对错)1千克铁比1000克棉花重。

________(判断对错)17÷3=4...5________.(判断对错)吃饭时,人一定会用右手拿筷子。

________.(判断对错) 三、我选的准.(12分)用两个边长1厘米的正方形拼成一个长方形,这个长方形的周长是( ) A.4厘米 B.6厘米C.8厘米下面( )图形不容易发生变形。

A. B.C.□96是一个三位数,□96×5的积最接近2000,□里数字是( ) A.3 B.4C.5把长方形分为甲、乙两部分(如图),比较甲、乙两个图形的周长( )A.甲比乙长B.乙比甲长C.甲、乙一样长54人参加联欢会,每张桌子坐8人,至少要准备( )张桌子。

矩形菱形正方形性质与判断

矩形菱形正方形性质与判断

第7题O DBC A 第9题 NM B DAC一、矩形的定义与性质1. 矩形的两邻边分别为4㎝和3㎝,则其对角线为 ㎝,矩形面积为 cm 2。

2. 矩形具有一般平行四边形不具有的性质是( )A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等 3. 如图,四边形ABCD 为矩形,∠ABD =60°,BD =10。

求AB 、AD 和面积。

4. 如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别为AC 、BD 中点。

求证:(1)MB =MD ;(2)MN ⊥BD 。

5. 如图,在矩形纸片ABCD 中,AB =8㎝,AD =10㎝。

折叠AD 边,使D 点落在BC 边上的F 点处,AE 为折痕。

求CE 的长。

6.矩形的两条对角线的夹角为60°,•一条对角线与短边的和为15,•对角线长是________,两边长分别等于________.7.已知矩形ABCD 中,O 是AC 、BD 的交点,OC=BC ,则∠CAB=_______. 8.如图,矩形ABCD 中,E 是BC 中点,∠BAE=30°,AE=4,则AC=______.9.如图,矩形ABCD中,AB=2BC,在CD上取上一点M,使AM=AB,则∠MBC=_______.10.如果E是矩形ABCD中AB的中点,那么△AED的面积:矩形ABCD的面积值为().A.12B.13C.14D.1511.已知:如图,矩形ABCD中,EF⊥CE,EF=CE,DE=2,矩形的周长为16,求AE的长.12.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80°D.100°13.直角三角形中,两条直角边边长分别为12和5,则斜边中线的长是()A.26 B.13 C.30 D.6.514.如图1,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,则S△BEF为()A.8 B.12 C.16 D.24(1)(2)(3)15.把一张长方形的纸片按如图2所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的读度为()A.85°B.90°C.95°D.100°16.如图3,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( ) A .3对 B .4对 C .5对 D .6对17.矩形ABCD 中,对角线AC=10cm ,AB :BC=3:4,则它的周长是_______.18.矩形ABCD 的两条对角线相交于点O ,如果矩形的周长是34cm ,又△AOB•的周长比△ABC 的周长少7cm ,则AB=________cm ,BC=________cm .19.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=110°,则∠OAB=______. 20.已知:如图,在矩形ABCD 中,AE ⊥BD 于E ,对角线AC 、BD 相交于点O ,•且BE :ED=1:3,AB=6cm ,求AC 的长.21. 已知在四边形ABCD 中,AB C D ,请添加一个条件,使四边形ABCD 是矩形,加上的条件是.22. 如图19-2-3所示,在矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于点F ,若DE =2,矩形的周长为16,且CE =EF. 求AE 的长.23. 如图19-2-4所示,在矩形ABCD 中,F 为BC 边上一点,AF 的延长线交DC 的延长线于点G ,DE ⊥AG 于点E ,且DE =DC. 根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.24.如图所示,矩形ABCD的两条对角线的交点为O,若△ABO与△BCO的周长的差为2,而矩形ABCD的周长为20,则它的两边的长是________.25.(创新题)如图所示,矩形ABCD中,AB=6 cm,AD=8 cm,AB、CD分别被分成三等份,AD、BC被分成四等份,则图中四边形MNPQ的面积是多少?26.矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是().A.57.5°B.32.5°C.57.5°、33.5°D.57.5°、32.5°二、菱形的定义与性质1.菱形的两条对角线长分别为16cm,12cm,那么这个菱形的高是_______.2.已知菱形两邻角的比是1:2,周长是40cm,则较短对角线长是________.3.菱形的面积为50cm2,一个内角为30°,则其边长为______.4.菱形一边与两条对角线所构成两角之比为2:7,则它的各角为______.5.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是().A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分6.在菱形ABCD中,AE⊥BC于E,菱形ABCD面积等于24cm2,AE=6cm,则AB长为().A.12cm B.8cm C.4cm D.2cm7.已知:如图,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF.(1)求证:△ABE≌△ADF.(2)过点C作CG∥EA,交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC•的度数.8. 如图,在菱形ABCD中,(1)如果OA=3,OD=4,那么AC=_________,BD=_________,菱形周长=_________。

小学数学-有答案-浙江省绍兴市四年级(上)数学单元测试卷(09)

小学数学-有答案-浙江省绍兴市四年级(上)数学单元测试卷(09)

浙江省绍兴市四年级(上)数学单元测试卷(09)一、填空题(18分)1. 两组对边分别________的四边形叫做平行四边形。

平行四边形的对边________且________,对角________,长方形和正方形是特殊的________.2. 如果两条直线相交成________角时,这两条直线叫作互相垂直,其中一条直线叫作另一条直线的________.3. 以平行四边形的一条边为底,能作出________条高,这些高的长度都________.4. 平行四边形的四个内角和是________度,梯形的四个内角和是________度。

5. 找出下列各图中的底和高。

找出下列各图中的底和高。

(1)以________为底,________是高。

(2)以AB为底,________是高。

6. 一个平行四边形的花坛,相邻两条边分别是3米和4米,它的周长是________米。

7. 两条平行线之间的距离是6厘米,在这两条平行线之间作一条垂直线段,这条垂直线段的长是________厘米。

8. 梯形中若有一个角是直角,这个梯形就叫________梯形,梯形中若两条腰相等,这个梯形就叫________梯形。

二、判断题(5分)一条直线的垂线有无数条。

________.(判断对错)平行四边形有两条高。

________.(判断对错)平行四边形不容易变形。

________.(判断对错)同一平面内的两条直线,不垂直就平行。

________.(判断对错)平行四边形的底和高一定是互相垂直的。

________.(判断对错)三、选择题(5分)互相垂直的两条直线可以相交成4个()A.锐角B.直角C.钝角长方形中有()组对边分别平行。

A.1B.2C.4从上底的一点到下底引一条垂线,这点和垂足之间的线段叫做梯形的()A.腰B.垂线C.高在如图中∠B=45∘,∠A=()A.55∘B.135∘C.360∘如图是两根平行水管的示意图,中间只要用一根水管就可以接通,选用()水管最节省材料。

小学数学重点之正方形与长方形的性质与判断

小学数学重点之正方形与长方形的性质与判断

小学数学重点之正方形与长方形的性质与判断正方形与长方形是小学数学中的重要知识点,它们的性质与判断对于学生理解几何图形有着重要的作用。

本文将从正方形和长方形的定义、性质以及判断方法等方面进行论述。

一、正方形的定义与性质正方形是一种特殊的四边形,它的特点是四条边相等且四个内角都是直角。

根据这个定义,我们可以得出正方形的一些性质。

1. 边长相等:正方形的四条边都相等,可以用l来表示边长。

2. 内角直角:正方形的四个内角都是直角,即90度,可以用∠A = ∠B = ∠C = ∠D = 90°来表示。

3. 对角线相等:正方形的两条对角线相等,可以用AC = BD来表示。

4. 对角线垂直平分:正方形的两条对角线相互垂直且平分对方形的内角,可以用AC ⊥ BD来表示。

二、长方形的定义与性质长方形是一种特殊的四边形,它的特点是相对的两边相等且相邻的两个内角都是直角。

下面是长方形的一些性质。

1. 边长相等:长方形的对边相等,可以用长边AB,短边BC来表示。

2. 内角直角:长方形的相邻内角都是直角,即90度,可以用∠A = ∠B = ∠C = ∠D = 90°来表示。

3. 对角线相等:长方形的两条对角线相等,可以用AC = BD来表示。

4. 对角线相交:长方形的两条对角线相交于一点,可以用AC ∩ BD ≠ ∅来表示。

三、正方形与长方形的判断方法在实际问题中,我们常常需要判断一个给定的图形是正方形还是长方形。

下面是一些判断方法。

1. 边长判断:如果一个四边形的四条边相等,那么它就是正方形;如果有两对相等的边,且相邻内角都是直角,那么它就是长方形。

2. 角度判断:如果一个四边形的四个内角都是直角,那么它就是正方形;如果有两对相等的内角,且相对的两边相等,那么它就是长方形。

3. 对角线判断:如果一个四边形的对角线相等且垂直平分对角线,那么它就是正方形;如果对角线相等且相交,那么它就是长方形。

四、小学数学常见题型及解析1. 判断题:下列哪个图形是正方形?A. 一组边长相等的图形B. 边长相等且内角都是直角的图形C. 对角线相等且垂直平分的图形D. 对角线相交的图形答案:D解析:只有对角线相交的图形是长方形,其他选项描述的是正方形的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
佃.2.3正方形
1 •掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2•理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩
形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力. 教学重点、难

1 •教学重点:正方形定义及正方形与平行四边形、矩形、菱形的联系.
2•教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用. 教
学过程:
第一时段:课前
预习提纲:
1 、阅读教材,思考本节课的重点知识有哪些?
2 、完成课后的基础性练习;
3 、在课本上标出自己不理解或不明白的地
方。

第二时段:课中
一、有趣的导入
1做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系. 问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形(菱形)
(2)有一个角是直角的平行四边形(矩形)正方形
2.[问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
、矩|形
\ I 正方形
所以,正方形具有矩形的性质,同时又具有菱形的性质. 、知识的输入
例 1 (教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直 角三角形. 已知:四边形 ABCD 是正方形,对角线 AC 、BD 相交于点0 (如图).
求证:△ ABO 、△ BCO 、△ CDO 、△ DAO 是全等的等腰直角三角形. 证明:•••
四边形ABCD 是正方形,
AC=BD , AC 丄 BD ,
AO=CO=BO=DO (正方形的两条对角线相等,并且互相垂直平分) . ••• △ ABO 、△ BCO 、△ CDO 、△ DAO 都是等腰直角三角形,
并且 △ ABO BCO ^A CDODAO .
例2 (补充)已知:如图,正方形 ABCD 中,对角线的交点为 O , E 是OB 上
的一点,DG 丄AE 于G , DG 交OA 于F .求证:OE=OF .
分析:要证明 OE=OF ,只需证明△ AEO DFO ,由于正方形的对角线垂直
平分且相等,可以得到/ AOE= / DOF=90 , AO=DO ,再由同角或等角的余角相等可以得到 / EAO= / FDO ,根据ASA 可以得到这两个三角形全等,故结论可得.
三、智慧的点拨
例3 (补充)已知:如图,四边形 ABCD 是正方形,分别过点 A 、C 两点作
l i // I 2,作BM 丄X 于M , DN 丄h 于N ,直线 MB 、DN 分别交I ?于Q 、P 点.
求证:四边形 PQMN 是正方形.
分析:由已知可以证出四边形 PQMN 是矩形,再证△ ABM DAN ,证
四、练习的有效 1. __________________ 正方形的四条边 ________ —__,四个角 — ,两条对角线
2. 下列说法是否正确,并说明理由.
① 对角线相等的菱形是正方形; ()
② 对角线互相垂直的矩形是正方形; ()
③ 对角线垂直且相等的四边形是正方形; ()
④ 四条边都相等的四边形是正方形; ()
⑤ 四个角相等的四边形是正方形 .() 1. 已知:如图,四边形 ABCD 为正方形,E 、F 分别
为CD 、CB 延长线上的点,且 DE = BF .求证:/ AFE = Z AEF .
4.如图,E 为正方形 ABCD 内一点,且△ EBC 是等边三角形,求/ EAD 与/
ECD 的度数.
五、输出的彰显
出AM=DN ,用同样的方法证 AN=DP .即可证出 MN=NP .从而得出结论.
C
B /1
D
通过本节课对本节的学习,你学到
,你感悟到 ,你感到最快乐的
第三时段:课后
布置作业
必做题:1.已知:如图,点 延长线上一点,且 DE=BF .
求证:EA 丄AF .
2. 已知:如图,△ ABC 中,/ C=90° CD 平分/ ACB , DE 丄 BC 于 E, DF 丄 AC 于F .求证:四边形 CFDE 是正方形.
选做题:1.已知:如图,正方形 ABCD 中,E 为BC 上一点,AF 平分/ DAE 交 CD 于 F ,求证:AE=BE+DF .
教学反思:
E 是正方形 ABCD 的边CD 上一点,点
F 是CB 的 B。

相关文档
最新文档