有关现值汉密尔顿函数的注解

合集下载

经济数学 CH7 动态最优化:最大值原理

经济数学 CH7 动态最优化:最大值原理
汉密尔顿函数: H(c,k,t,μ)=e-ρtlog(c)+μ(kα-c-δk)
2016/10/31
10
最优化的一阶条件为: (1)H c e- t (1/ c)- =0和(2)H k ( k 1 ) 横截性条件为: lim[ () t ( k )] t 0
t
2016/10/31
如果令ρ=0.06,δ=0且α=0.3,那么这个系统就是以前研 究过的非线性系统。
11
四、多变量的动态最优化

现在考虑一个具有n个控制变量和m个状态变量的 更一般的动态问题。选择控制变量最大化:

T
0
u[k1 (t ),..., km (t ); c1 (t ),..., cn (t ); t ]dt , 受约束于
0 0
是一个不变的贴现率,e t 是贴现因子。
在现值汉密尔顿函 数中,影子价格μ t H e u (k , c) g (k , c, t ) 表示以0时的效用单 位来衡量t时资本存 量的价值。 2016/10/31
构造现值汉密尔顿函数
8




2、当期汉密尔顿函数 为了方便,有时也会从当期值价格(current-value price) 来重构这个问题。 当期值价格:以t时的效用单位来衡量t时的资本存量的价 格。 把现值汉密尔顿函数改写为: H=e-ρt[u(k,c)+q(t)g(k,c,t)] 其中,q(t)=μ· eρt,为当期影子价格。定义H*=Heρt为当期 汉密尔顿函数:H*=u(k,c)+q(t)g(k,c,t)
2016/10/31 13
五、离散模型的最大值原理
问题: max V (0) v(kt , ct )

索罗模型

索罗模型
根据丹尼森的研究,1909-1957年间美国的实际产出的年增长率为2.9%, 工时数的增长率为1.3%,资本存量的增长率为2.4%。这些数据的显著特 征是长期稳定性。即使我们以大萧条的谷底(1933年)为起点,那么到 1957年,这段时间的平均增长率也仅有5%。如果以任何一种合理方式 (即使用峰期到峰期的增长率)剔除商业周期的影响,在任何一个我们 有数据的足够长的随后时期中,美国的产出增长都围绕3%波动,且波动 幅度不超过0.5个百分点。
那么,储蓄率是否越高越好呢?
N(t) c(t) K(t)
+
K ( K(
t t
) )
=
A(t)
K(t)β−1
N(
)t 1−β
=
ρ
+σκ β
.
(7)
根据平衡增长路径定义,K (t) / K (t)是常数,所以方程(7)意味着
N (t)c(t) / K (t)也是常数,令 D = 1 Nc, 求全微分,得:
K
0
=
K K
(t) (t)
设人均消费的增长率 c(t) / c(t) = κ
1)资本价格增长率 ( −σκ )
由方程(3)得到:
c−σ = θ ⇒ − σ ln c = lnθ θ(t) /θ = −σκ
⇒ θ = −σ c
θ
c
可见,沿着平衡增长路径资本价格增长率为常数。
19
2)资本的边际产出( ρ + σκ )
从方程(4)我们得到:
θ = ρ − βA(t)N (t)1−β K (t)β −1 θ
将 θ(t) /θ = −σκ 代入上式,资本的边际产出为:
β A(t)N (t)1−β K (t)β −1 = ρ + σκ

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
T
例2 解以下最优控制问题:

最大化 0 1 dt y yu 满足
y (0) 5 y ( T ) 11 T 自由
T


u ( t ) [ 1,1]
它具有一个受约束的控制变量,该控制集合可视为 两个不等式约束:
1 u (t ) 和 u (t ) 1
汉密尔顿函数: H 拉格朗日函数:
u
对于所有 t [ 0 , T ]
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
(t ) 常数
( T ) 0 [ 横截条件 ]
四、不等式积分约束 T 最优控制问题: 最大化 0 F ( t , y , u ) dt y f (t, y , u ) 满足
y H H
u
F (t, y , u ) f (t, y , u ) G (t, y , u )
[ y 的运动方程
[ 的运动方程
]


[ 的运动方程
]
[ 的运动方程
]
( T ) 0 [ 横截条件 ]
上页的最大值原理可简化为:
Max H
]
]
( T ) 0 , ( T ) k 0 , ( T )[ ( T ) k ] 0 [ 的横截条件

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

对于给定的 ,或者 关于( y , u ) 对所有t [ 0 , T ] 是凹 的,或者 H 0 关于 y 对于所有t [ 0 , T ] 是凹的。
如果是无限水平问题,充分性定理仍然适用,但是要 加上一个补充性条件:
T
lim ( t )[ y ( t ) y ( t )] 0
G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
( T ) 0 [ y 的横截条件
( t ) 常数 0

]
k
G ( t , y , u ) dt
0
T
0
k
G ( t , y , u ) dt 0 0
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为: 最优控制问题: 最大化 F ( t , y , u ) dt 0 y f (t, y , u ) 满足
(10 . 43 ) (10 . 44 ) (10 . 45 ) (10 . 47 )

动态最优化第10讲 具有约束的最优控制问题

动态最优化第10讲 具有约束的最优控制问题

最大值原理条件:
0 对于所有的t 0,T
u
c g 0, 0, 0
dy dt
d
dt y
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(5)现值哈密尔顿函数和拉格朗日函数
引入新的乘子: m et (隐含 met)
n et (隐含 net)
汉密尔顿函数和拉格朗日函数:
Gt,
y, u dt
0
Γ
T
T
0
Gt,
y,
u
dt
k
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
问题重新表述为:
(2个状态变量的无约束问题,新变量具有截断终结线)
Max
T
0
F
t,
y,
u
dt
S.T. dy f t, y,u
dt
dΓ Gt, y,u
dt
y0 y0 yT 自由 (y0 ,T给定)
dt
又由于:汉密尔顿函数H独立于Γ ,
所以有:d H 0 t 常数
dt Γ 最大值原理条件重新表述为:
Max H u
dy H
dt
对于所有的t 0,T
d H t 常数
dt y
T 0
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
等周问题简便解法:
构造拉格朗日函数(增广汉密尔顿函数):
u1
0
u1
3
0
0 0 0
u2
u2
0 i
0,i
0,i
0 i
0
i
0,i
0,i

第八章_对最优控制的进一步讨论

第八章_对最优控制的进一步讨论


T
0
* [ f ( t , y , u ) f ( t , y * , u * ) f y ( t , y * , u * )( y y * ) f u ( t , y * , u * )( u u * )] dt 0
*
V V 0
b)若 f 关于 y 和 u 线性,那么 (t ) 无须不等式约束。
0
f u ( t , y , u )( u u )] dt
* * *
( 8 .3 1)
以上推导得到:
[ f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) (8 .3 1) 0 * * * f u ( t , y , u )( u u )] dt * * * * * * * * f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) f u ( t , y , u )( u u ) (8 .3 0)
f ( t , y , u ) f ( t , y , u ) f y ( t , y , u )( y y ) f u ( t , y , u )( u u ) 0 (8 .3 0)
* * * * * * * *
V V 0
*
曼加萨林充分性定理不但适用于垂直终结线问题, 也适用于固定端点或截断垂直终结线问题。
*
(8.29)
以上推导得到: Fu ( t , y , u ) f u ( t , y , u ) * * * * f ( t , y * , u * ) Fy (t , y , u ) y

利率变动的储蓄效应分析

利率变动的储蓄效应分析
-4-
(2003),认为有四个原因,一储蓄首先是收入的函数,其次才是利 率的函数。人们在取得收入后首先必须满足消费。在收入较少时,主 要满足自身的基本消费,利率再高,也不能增加储蓄。只有当收入较 高的条件下,利率的变动才会对储蓄产生一定的影响。二储蓄利率可 能存在同方向变动关系和反方向变动关系。两种变动关系共同作用交 织在一起,导致利率变动对储蓄的影响不显著。三人们对未来收入与 支出的预期不明确。在未来充满不确定的情况下,利率很低,甚至实 际利率为负,人们也必须进行预防性储蓄。四投资机会的缺乏是我国 储蓄存款缺乏利率弹性的又一重要原因。
凯恩斯(Keynes)没有直接论及利率与储蓄之间的关系。在凯恩 斯的理论中,将人们持有货币的动机分为三类:交易动机、谨慎动机 和投机动机。凯恩斯认为交易动机和谨慎动机,“主要取决于经济体 系发展水平以及货币所得之大小。”4凯恩斯认为利率的重要性主要体 现在对货币投机需求的作用上。在投机需求上,凯恩斯将资产分为货 币和债券两类,人们会根据两类资产的预期收益进行选择。关于凯恩 斯的理论,Baumol,Tobin,Warren 等经济学家分别对这三种动机的 货币需求理论进行了发展。Baumol 提出了交易需求的利率弹性的平 方根公式。Tobin 从资产选择理论出发,讨论了利率与交易货币需求 的关系。Warren 提出了谨慎需求的利率弹性的立方根公式。Tobin 在 凯恩斯货币需求理论的基础上建立了他的投机性货币需求模型。在他 们的理论中,虽然没有直接提及储蓄,但是持有货币一定程度上是一 种储蓄行为。他们的研究对于现代金融体系下的居民货币资产安排, 具有很大的理论意义。
2. 利率储蓄弹性:财富安全线模型
我们来描述这样的现象:对于一个存款 10 万元的居民来说,提 高 1%的存款利率,意味着一年增加 1000 元的收入。如果年收入为 5 万元,相较于年收入利息增长很小,居民不会因为利率的提高而增加 当前消费减少储蓄,利率与储蓄呈现正相关变化。但如果对于一个存 款 500 万元的居民来说,提高 1%的利率,意味着一年能增加 5 万元 的利息收入。对比同样为 5 万元的年工资收入。这种比较可观的收入 增长会让居民认为自己在当前可以进行更加宽裕的消费,从而减少储 蓄。

卢卡斯文论经济增长的机制

卢卡斯文论经济增长的机制

罗伯特·卢卡斯论经济增长的机制*1988I.作者简介罗伯特·卢卡斯(Robert E. Lucas, Jr.)1937年,卢卡斯生于华盛顿的雅奇马。

1955年,卢卡斯从西雅图的罗斯福公立学校高中毕业。

1959年,卢卡斯在芝加哥大学本科毕业,获得历史学学士学位。

于1964年获得芝加哥大学的经济学博士学位。

1963年,于卡内基工学院(现卡内基——梅隆大学)任教,在此期间,卢卡斯的经济动力学的全部观点逐渐成形。

卢卡斯于1970年完成、1972年发表代表作《预期和货币中性》,货币中性是他获得诺贝尔奖的演讲主题之一。

1974年卢卡斯回芝加哥教书。

1980年成为芝加哥的约翰·杜威有优异贡献教授。

1995年卢卡斯以其对“理性预期假说的应用和发展”所作的贡献而获得了诺贝尔经济学奖。

卢卡斯首要的理论贡献是开创并领导一个新的宏观经济学派——理性预期学派(又称新古典宏观经济学派),倡导和发展了理性预期与宏观经济学研究的运用理论,深化了人们对经济政策的理解。

此外,他在经济周期理论、宏观经济模型构造、计量方法、动态经济分析以及国际资本流动分析等方面都做出了卓越的贡献。

主要著作有:《理性预期与经济计量实践》(Rational Expectations and Econometric Practice,与T.J.萨金特合著,University Minnesota Press,1981年)《经济周期理论研究》(Studies in Business-Cycle Theory, MIT Press,1981年)《经济周期模型》(Models of Business Cycles, Wiley-Blackwell, 1991年)《经济动态学中的递归法》(Recursive Methods in Economic Dynamics, Harvard University Press, 1989年)II.论著摘要罗伯特·卢卡斯创作了《论经济发展的机制》一文并于1988年发表于《货币经济学杂志》上,这被认为是他的人力资本内生增长理论的经典文章。

财务函数讲解

财务函数讲解

6、折现率函数——利率函数 RATE、内含报酬率函数 IRR、修正
内含报酬率函数 MIRR 7、折旧计算函数——直线折旧 SLN、固定余额折旧 DB、双倍余额
递减折旧 DDB
第一节 复利终值与复利现值
一、复利终值1、复利终源自公式复利终值是指一笔资金按一定的利率复利计息时,未来某一时刻的本利和。复利终值公式为:
折旧函数——双倍余额递减法函数DDB
双倍余额递减法是用直线法的双倍百分比,逐期乘以该期期初固定资产账面余额,作为该 期的折旧额,直到折旧额小于按直线计算的折旧额为止。 一、计算公式 年折旧额 = 期初固定资产账面余额 * 双倍直线折旧率 双倍直线折旧率 = 2÷预计使用年限 * 100% 二、双倍余额递减法函数DDB( ) DDB(cost,salvage,life,period,factor) 功能: 返回固定资产在某期间( period )的折旧数额。折旧数额是根据资产的原始成本 ( cost )、预计使用年限( life )、预计净残值( salvage )及递减速率( factor ),按倍率递减法 计算而得出的。DDB函数所有参数均需为正。 参数: Cost——指固定资产的原始成本 salvage——指固定资产使用期限结束时的预计净残值。 life——指固定资产预计使用年数。 period——指所要计算折旧的期限。必须与life参数采用相同的计量单位。 factor——参数为选择性参数,缺省值为2,即为“双倍余额递减法”,但用户可改变此参 数。
2、复利现值函数PV()
PV(rate,nper,pmt,fv,type)
功能:已知利率,期数,每期付款的条件下,返 回年金现值数额。
fv——终值,或在最后一次支付后希望得到的现金余额。
三、净现值NPV()

卢卡斯文论经济增长的机制

卢卡斯文论经济增长的机制

罗伯特·卢卡斯论经济增长的机制*1988I.作者简介罗伯特·卢卡斯(Robert E. Lucas, Jr.)1937年,卢卡斯生于华盛顿的雅奇马。

1955年,卢卡斯从西雅图的罗斯福公立学校高中毕业。

1959年,卢卡斯在芝加哥大学本科毕业,获得历史学学士学位。

于1964年获得芝加哥大学的经济学博士学位。

1963年,于卡内基工学院(现卡内基——梅隆大学)任教,在此期间,卢卡斯的经济动力学的全部观点逐渐成形。

卢卡斯于1970年完成、1972年发表代表作《预期和货币中性》,货币中性是他获得诺贝尔奖的演讲主题之一。

1974年卢卡斯回芝加哥教书。

1980年成为芝加哥的约翰·杜威有优异贡献教授。

1995年卢卡斯以其对“理性预期假说的应用和发展”所作的贡献而获得了诺贝尔经济学奖。

卢卡斯首要的理论贡献是开创并领导一个新的宏观经济学派——理性预期学派(又称新古典宏观经济学派),倡导和发展了理性预期与宏观经济学研究的运用理论,深化了人们对经济政策的理解。

此外,他在经济周期理论、宏观经济模型构造、计量方法、动态经济分析以及国际资本流动分析等方面都做出了卓越的贡献。

主要著作有:《理性预期与经济计量实践》(Rational Expectations and Econometric Practice,与T.J.萨金特合著,University Minnesota Press,1981年)《经济周期理论研究》(Studies in Business-Cycle Theory, MIT Press,1981年)《经济周期模型》(Models of Business Cycles, Wiley-Blackwell, 1991年)《经济动态学中的递归法》(Recursive Methods in Economic Dynamics, Harvard University Press, 1989年)II.论著摘要罗伯特·卢卡斯创作了《论经济发展的机制》一文并于1988年发表于《货币经济学杂志》上,这被认为是他的人力资本内生增长理论的经典文章。

财务管理公式大全及其各字母的含义

财务管理公式大全及其各字母的含义

For personal use only in study and research; not for commercial useFor personal use only in study and research; not for commercial use财务管理公式大全及其各字母的含义2009-05-23 15:44:05| 分类:| 标签:|字号大中小订阅1、单利:I=P*i*n2、单利终值:F=P(1+i*n)3、单利现值:P=F/(1+i*n)4、复利终值:F=P(1+i)^n 或:P(F/P,i,n)5、复利现值:P=F/(1+i)^n 或:F(P/F,i,n)6、普通年金终值:F=A{(1+i)^n-1]/i 或:A(F/A,i,n)7、年偿债基金:A=F*i/[(1+i)^n-1] 或:F(A/F,i,n)8、普通年金现值:P=A{[1-(1+i)^-n]/i} 或:A(P/A,i,n)9、年资本回收额:A=P{i/[1-(1+i)^-n]} 或:P(A/P,i,n)10、即付年金的终值:F=A{(1+i)^(n+1)-1]/i 或:A[(F/A,i,n+1)-1]11、即付年金的现值:P=A{[1-(1+i)^-(n+1)]/i+1} 或:A[(P/A,i,n-1)+1]12、递延年金现值:第一种方法:P=A{[1-(1+i)^-n]/i-[1-(1+i)^-s]/i}或:A[(P/A,i,n)-(P/A,i,s)]第二种方法:P=A{[1-(1+i)^-(n-s)]/i*[(1+i)^-s]}或:A[(P/A,i,n-s)*(P/F,i,s)]13、永续年金现值:P=A/i14、折现率:i=[(F/p)^1/n]-1 (一次收付款项)i=A/P (永续年金)普通年金折现率先计算年金现值系数或年金终值系数再查有关的系数表求i,不能直接求得的通过内插法计算。

15、名义利率与实际利率的换算:i=(1+r/m)^m-1式中:r为名义利率;m为年复利次数16、期望投资报酬率=资金时间价值(或无风险报酬率)+风险报酬率17、期望值:(P43)18、方差:(P44)19、标准方差:(P44)20、标准离差率:(P45)21、外界资金的需求量=变动资产占基期销售额百分比x销售的变动额-变动负债占基期销售额百分比x销售的变动额-销售净利率x收益留存比率x预测期销售额22、外界资金的需求量的资金习性分析法:(P55)23、债券发行价格=票面金额x(P/F,i1,n)+票面金额x i2(P/A,i1,n)式中:i1为市场利率;i2为票面利率;n为债券期限如果是不计复利,到期一次还本付息的债券:债券发行价格=票面金额x(1+ i2 x n )x (P/F,i1,n)24、放弃现金折扣的成本=CD/(1-CD)x 360/N x 100%式中:CD为现金折扣的百分比;N为失去现金折扣延期付款天数,等于信用期与折扣期之差25、债券成本:Kb=I(1-T)/B0(1-f)=B*i*(1-T)/B0(1-f)式中:Kb为债券成本;I为债券每年支付的利息;T为所得税税率;B为债券面值;i为债券票面利率;B0为债券筹资额,按发行价格确定;f为债券筹资费率26、银行借款成本:Ki=I(1-T)/L(1-f)=i*L*(1-T)/L(1-f)或:Ki=i(1-T)(当f忽略不计时)式中:Ki为银行借款成本;I为银行借款年利息;L为银行借款筹资总额;T为所得税税率;i为银行借款利息率;f为银行借款筹资费率27、优先股成本:Kp=D/P0(1-T)式中:Kp为优先股成本;D为优先股每年的股利;P0为发行优先股总额28、普通股成本:Ks=[D1/V0(1-f)]+g式中:Ks为普通股成本;D1为第1年股的股利;V0为普通股发行价;g为年增长率29、留存收益成本:Ke=D1/V0+g30、加权平均资金成本:Kw=ΣWj*Kj式中:Kw为加权平均资金成本;Wj为第j种资金占总资金的比重;Kj为第j种资金的成本31、筹资总额分界点:BPi=TFi/Wi式中:BPi为筹资总额分界点;TFi为第i种筹资方式的成本分界点;Wi为目标资金结构中第i种筹资方式所占比例32、边际贡献:M=(p-b)x=m*x式中:M为边际贡献;p为销售单价;b为单位变动成本;m为单位边际贡献;x为产销量33、息税前利润:EBIT=(p-b)x-a=M-a34、经营杠杆:DOL=M/EBIT=M/(M-a)35、财务杠杆:DFL=EBIT/(EBIT-I)36、复合杠杆:DCL=DOL*DFL=M/[EBIT-I-d/(1-T)]37:每股利润无差异点分析公式:[(EBIT-I1)(1-T)-D1]/N1=[(EBIT-I2)(1-T)-D2]/N2当EBIT大于每股利润无差异点时,利用负债集资较为有利;当EBIT小于每股利润无差异点时,利用发行普通股集资较为有利38、经营期现金流量的计算:经营期某年净现金流量=该年利润+该年折旧+该年摊销+该年利息+该年回收额39、非折现评价指标:投资利润率=年平均利润额/投资总额x100%不包括建设期的投资回收期=原始投资额/投产若干年每年相等的现金净流量包括建设期的投资回收期=不包括建设期的投资回收期+建设期40、折现评价指标:净现值(NPV)=-原始投资额+投产后每年相等的净现金流量x年金现值系数净现值率(NPVR)=投资项目净现值/原始投资现值x100%获利指数(PI)=1+净现值率内部收益率=IRR(P/A,IRR,n)=I/NCF 式中:I为原始投资额41、短期证券收益率:K=(S1-S0+P)/S0*100%式中:K为短期证券收益率;S1为证券出售价格;S0为证券购买价格;P为证券投资报酬(股利或利息)42、长期债券收益率:V=I*(P/A,i,n)+F*(P/F,i,n)式中:V为债券的购买价格43、股票投资收益率:V=Σ(j=1~n)Di/(1+i)^j+F/(1+i)^n44、长期持有股票,股利稳定不变的股票估价模型:V=d/K式中:V为股票内在价值;d为每年固定股利;K为投资人要求的收益率45、长期持有股票,股利固定增长的股票估价模型:V=d0(1+g)/(K-g)=d1/(K-g)式中:d0为上年股利;d1为第一年股利46、证券投资组合的风险收益:Rp=βp*(Km - Rf)式中:Rp为证券组合的风险收益率;βp为证券组合的β系数;Km为所有股票的平均收益率,即市场收益率;Rf为无风险收益率47、机会成本=现金持有量x有价证券利率(或报酬率)48、现金管理相关总成本+持有机会成本+固定性转换成本49、最佳现金持有量:Q=(2TF/K)^1/2式中:Q为最佳现金持有量;T为一个周期内现金总需求量;F为每次转换有价证券的固定成本;K为有价证券利息率(固定成本)50、最低现金管理相关总成本:(TC)=(2TFK)^1/251、应收账款机会成本=维持赊销业务所需要的资金x资金成本率52、应收账款平均余额=年赊销额/360x平均收账天数53、维持赊销业务所需要的资金=应收账款平均余额x变动成本/销售收入54、应收账款收现保证率=(当期必要现金支出总额-当期其它稳定可靠的现金流入总额)/当期应收账款总计金额55、存货相关总成本=相关进货费用+相关存储成本=存货全年计划进货总量/每次进货批量x每次进货费用+每次进货批量/2 x 单位存货年存储成本56、经济进货批量:Q=(2AB/C)^1/2式中:Q为经济进货批量;A为某种存货年度计划进货总量;B为平均每次进货费用;C为单位存货年度单位储存成本57、经济进货批量的存货相关总成本:(TC)=(2ABC)^1/258、经济进货批量平均占用资金:W=PQ/2=P(AB/2C)^1/259、年度最佳进货批次:N=A/Q=(AC/2B)^1/260、允许缺货时的经济进货批量:Q=[(2AB/C)(C+R)/R]^1/2式中:S为缺货量;R为单位缺货成本61、缺货量:S=QC/(C+R)62、存货本量利的平衡关系:利润=毛利-固定存储费-销售税金及附加-每日变动存储费x储存天数63、每日变动存储费=购进批量x购进单价x日变动储存费率或:每日变动存储费=购进批量x购进单价x每日利率+每日保管费用64、保本储存天数=(毛利-固定存储费-销售税金及附加)/每日变动存储费65、目标利润=投资额x投资利润率66、保利储存天数=(毛利-固定存储费-销售税金及附加-目标利润)/每日变动存储费67、批进批出该商品实际获利额=每日变动储存费x(保本天数-实际储存天数)68、实际储存天数=保本储存天数-该批存货获利额/每日变动存储费69、批进零售经销某批存货预计可获利或亏损额=该批存货的每日变动存储费x[平均保本储存天数-(实际零售完天数+1)/2]=购进批量x购进单价x变动储存费率x[平均保本储存天数-(购进批量/日均销量+1)/2]=购进批量x单位存货的变动存储费x[平均保本储存天数-(购进批量/日均销量+1)/2]70、利润中心边际贡献总额=该利润中心销售收入总额-该利润中心可控成本总额(或:变动成本总额)71、利润中心负责人可控成本总额=该利润中心边际贡献总额-该利润中心负责人可控固定成本72、利润中心可控利润总额=该利润中心负责人可控利润总额-该利润中心负责人不可控固定成本73、公司利润总额=各利润中心可控利润总额之和-公司不可分摊的各种管理费用、财务费用等74、定基动态比率=分析期数值/固定基期数值75、环比动态比率=分析期数值/前期数值76、流动比率=流动资产/流动负债77、速动比率=速动资产/流动负债78、现金流动负债比率=年经营现金净流量/年末流动负债*100%79、资产负债率=负债总额/资产总额80、产权比率=负债总额/所有者权益81、已获利息倍数=息税前利润/利息支出82、长期资产适合率=(所有者权益+长期负债)/(固定资产+长期投资)83、劳动效率=主营业务收入或净产值/平均职工人数84、周转率(周转次数)=周转额/资产平均余额85、周转期(周转天数)=计算期天数/周转次数=资产平均余额x计算期天数/周转额86、应收账款周转率(次)=主营业务收入净额/平均应收账款余额其中:主营业务收入净额=主营业务收入-销售折扣与折让平均应收账款余额=(应收账款年初数+应收账款年末数)/2应收账款周转天数=(平均应收账款x360)/主营业务收入净额87、存货周转率(次数)=主营业务成本/平均存货其中:平均存货=(存货年初数+存货年末数)/2存货周转天数=(平均存货x360)/主营业务成本88、流动资产周转率(次数)=主营业务收入净额/平均流动资产总额其中:流动资产周转期(天数)=(平均流动资产周转总额x360)/主营业务收入总额89、固定资产周转率=主营业务收入净额/固定资产平均净值90、总资产周转率=主营业务收入净额/平均资产总额91、主营业务利润率=利润/主营业务收入净额92、成本费用利润率=利润/成本费用93、总资产报酬率=(利润总额+利息支出)/平均资产总额94、净资产收益率=净利润/平均净资产x100%95、资本保值增值率=扣除客观因素后的年末所有者权益/年初所有者权益96、社会积累率=上交国家财政总额/企业社会贡献总额上交的财政收入包括企业依法向财政交缴的各项税款。

价格歧视下的不可再生资源的开采问题研究_于立

价格歧视下的不可再生资源的开采问题研究_于立

第32卷第8期财经研究V o l.32N o.8 2006年8月Journal of Finance and Eco no mics A ug.2006 价格歧视下的不可再生资源的开采问题研究于 立,于 左,王建林(东北财经大学产业组织与企业组织研究中心,辽宁大连116025) 摘 要:自Ho te lling开始,不可再生资源开采问题引起了经济学家们的注意,在此过程中,产业组织理论被应用于不可再生资源的研究。

文章分析了价格歧视对不可再生资源开采的影响,结果发现,当资源的垄断开采者面向多个市场时,价格歧视因素可能使资源开采偏离最优路径。

关键词:不可再生资源;垄断;价格歧视;最优开采 中图分类号:F416.2 文献标识码:A文章编号:1001-9952(2006)08-0053-09一、引 言 不可再生资源(non-renewable resources)也称可耗竭资源,包括各种能源如石油、天然气、煤炭,以及非能源矿物质诸如铜、铁矿等,它们是经过数百万年的地质演变而形成的,储量固定不变,在某一时点上的任何使用都会减少后续时点可使用的数量。

对于这些可耗竭资源的一个核心问题是:何种开采方式才是最优的。

H otelling(1931)在其开创性论文中首次研究了这个问题,从而奠定了可耗竭资源经济学的基础。

H otelling认为资源的拥有者会把其资源看成是不断产生回报的资产,当资源价格上升幅度大于银行利率时,拥有者倾向于保留资源;当预计资源价格上升幅度低于银行利率时,拥有者倾向于尽快开采资源,而把卖资源所得的钱存入银行之中,自由竞争条件下的市场调节会使资源的价格以银行利率的速度增长,这就是著名的Hotelling定律。

尽管Hotelling模型看起来十分精美,但由于忽略了太多的因素,其结论与经验事实是不符合的,例如一百多年来能源价格并没有出现持续的增长。

为了更好地解释现实,后来的研究者不断引入各种因素,使用了不同的模型设定继续这个问题的研究。

动态最优化第8讲 最优控制理论的进一步讨论

动态最优化第8讲 最优控制理论的进一步讨论
非线性对于所有是联合凹的数关于函数都可微且两个函第八讲最优控制理论的进一步讨论值依赖于值最大化汉密尔顿函数被一个和共态变量变量在任意时刻给定状态的汉密尔顿函数设沿着最优控制路径是充分的最大化泛函则最大值原理条件对于关于变量上的所有和时间区间对于给定的如果第八讲最优控制理论的进一步讨论给定自由dtdy的联合凹性函数关于第八讲最优控制理论的进一步讨论不再起约束个条件是线性的关于关于关于所以求得
Π

T
0

t,
K,u
t
f
t,
K,u
t
dK dt
dt

T
0
H
t,
y,
u,

dt

T
0
t

dK dt

dt

T
0
H t,
y,u, dt

tK tT 0

T
0
K t
d
dt
dt

T
0
H
t,
4)横截条件的经济含义
垂直终结线(固定终结时间,自由终结状态)
横截条件: T 0
表示:影子价格应该在终结部价值)
第八讲 最优控制理论的进一步讨论
(一)最大值原理的经济学解释
4)横截条件的经济含义
截断垂直终结线 规定终结资本的最低水平:KT Kmin
现值汉密尔顿函数:Hc Gt, y,u mf t, y,u
条件3:d H (的运动方程)
dt y
因为: met d dm et met
dt dt
H G et f , Hc G m f
y y

(完整版)经济数学CH7动态最优化:最大值原理

(完整版)经济数学CH7动态最优化:最大值原理

为了求解这个最优化问题,建立现值汉密尔顿函数: H(c,k,t,μ)=e-ρtlog(c)+μ(kα-c-δk)
2020/8/20
10
最优化的一阶条件为:
(1)Hc e-t (1/ c)-=0和(2)Hk ( k1 ) 横截性条件为:lim[(t)k(t)] 0
t
取式(1)的对数然后对时间求导,得到:
如果令ρ=0.06,δ=0且α=0.3,那么这个系统就是以前研
2020/8/20 究过的非线性系统。
11
四、多变量的动态最优化
❖ 现在考虑一个具有n个控制变量和m个状态变量的 更一般的动态问题。选择控制变量最大化:
T 0
u[k1
(t
),
...,
km
(t
);
c1
(t
),
...,
cn
(t
);
t
]dt,
2020/8/20
6
充分条件
如果函数f(k,c,t)和g(k,c,t)是凹函数,那么 满足上述四个条件的(k*,c*)和λ*>0,是最 优化问题的极大值。
如果是凸函数,则是极小值。 经济学中的生产函数和效用函数都是严格凹函
数,因此满足充分条件。
2020/8/20
7
三、现值和当期汉密尔顿函数
❖ 1、现值汉密尔顿函数
2020/8/20
当一国的资本发展变成了一 种赌博活动的副产品时,这项 活动可能是错误的。
—— 凯恩斯
1
导论
❖ 古典数学家使用的动态问题的解法是变分法。
❖ 这种方法从两条途径得以一般化: ❖ 第一条是美国数学家贝尔曼在20世纪50年代所
发展的动态规划方法。主要适用于离散时间和 随机模型。 ❖ 第二条是俄罗斯数学家庞特里亚金在50年代所 发展的最优控制的极大值原理。

dr1

dr1

13
1.3 均衡
设成年人资产等于人均资本,(1.2)式成为
& ˆ ˆ ˆ ˆ k = f (k ) − c − (n + x + δ )k (1.23)
密集形式的消费增长的欧拉方程可写作: & ˆ & ˆ ˆ c / c = c / c − x = (1 / θ )[( f ′(k ) − δ ) − ρ − θx] (1.24) (1.23)和(1.24)决定了消费和资本的时间路径。 从单位有效劳动资本角度来看的横截性条件为:
y = f (k ) = AK
(2.6)
23
利润极大化要求
r = A −δ ( 2 .7 )
2.1.3 均衡 仍然假定人均资产等于人均资本,利用上述关系,(2.2) (2.4)和(2.5)可写作:
lim{k (t )e − ( A−δ − n ) t } = 0
t →∞
γ c = (1 / θ 限,预算约束成为:
−[ r (T ) − n ]T dt = a (0) + ∫0 w(t )e −[ r (T ) − n ]T dt ∫0 c(t )e ~ = a ( 0 ) w( 0 ) (1.13) T T
10
解(1.10)的微分方程可得
c(t ) = c(0)e (1/θ )[ r ( t ) − ρ ]t
(2.1)
& a = w + ra − c − na (2.2) 资产约束: t lim{a (t ) exp[− ∫0 [r (v) − n]dv]} ≥ 0 ( 2.3) 负债约束 t →∞ & γ c = c / c = (1 / θ )(r − ρ ) (2.4) 欧拉方程 t (2.5) 横截性条件: lim{a(t ) exp[− ∫0 [r (v) − n]dv} = 0 t →∞ 2.1.2 企业行为 企业有如下线性函数:

一个关于跨界污染控制的清洁技术创新微分博弈模型

一个关于跨界污染控制的清洁技术创新微分博弈模型

第30卷 第2期运 筹 与 管 理Vol.30,No.22021年2月OPERATIONSRESEARCHANDMANAGEMENTSCIENCEFeb.2021收稿日期:2019 04 16基金项目:国家自然科学基金资助项目(71974091);湖南省社科成果评审委员会重大项目(XSP20ZDA007);湖南省哲学社会科学基金项目(18YBA368)作者简介:易永锡(1965 ),男,湖南湘潭人,博士,教授,研究方向为环境经济政策;程粟粟(1992 ),男,安徽蚌埠人,硕士研究生,研究方向为环境经济政策;傅春燕(1965 ),女,湖南湘潭人,副教授,研究方向为环境经济政策。

一个关于跨界污染控制的清洁技术创新微分博弈模型易永锡, 程粟粟, 傅春燕(南华大学经济管理与法学学院,湖南衡阳421001)摘 要:把清洁技术水平视为内生变量,构建了一个跨界污染的两国关于清洁技术创新微分博弈模型。

在该模型中,参与国可以通过清洁技术投资或者等待对方创新投资的溢出来提高清洁技术水平,且两国均有两个可以选择的战略,即合作战略和非合作战略。

研究的结果显示,技术外溢强度对参与国的技术投资和技术水平均有负向影响,相比不合作,跨界污染控制合作使各国以更低的代价获得更清洁的技术和更高的社会福利。

关键词:清洁技术;跨界污染;创新;微分博弈中图分类号:F272.3 文章标识码:A 文章编号:1007 3221(2021)02 0025 06 doi:10.12005/orms.2021.0037ADifferentialGameModelonCleanTechnologyInnovationforTransboundaryPollutionControlYIYong xi,CHENGSu su,FUChun yan(SchoolofEconomicManagementandLaw,UniversityofSouthChina,Hengyang421001,China)Abstract:Takingcleantechnologylevelsasanendogenousvariable,thispaperinvestigatesadifferentiagamebetweentwosymmetriccountriesforcleantechnologyinnovationwithtechnologyoverflow.Inthismodel,participatingcountriescanimprovethequalityofcleantechnologyintwoways———investingincleantechnologythem selvesorwaitingforthespilloverofinnovationinvestmentfromeachother.Strategicspacethetwocountriescanchooseincludesnon cooperativeandcooperativestrategies.Theresultsdemonstratethattheintensityoftechnologyspilloverhasanegativeimpactonparticipatingcountries’technologyinvestmentandtechnologylevel.Comparedwithnon cooperation,thecooperationoftransboundarypollutioncontrolenablescountriestoobtaincleanertechnologiesandhighersocialwelfareatalowercost.Keywords:cleantechnology;transboundarypollution;innovation;differentiagame0 引言由于污染物的跨界扩散,使得跨界污染控制成为了一个国际性的难题,引起了各国政府和有关国际机构的高度重视,也引起了学界的广泛关注[1]。

基于EPR政策的耐用品设计寿命的决策研究——从计划报废的视角

基于EPR政策的耐用品设计寿命的决策研究——从计划报废的视角

第29卷 第12期运 筹 与 管 理Vol.29,No.122020年12月OPERATIONSRESEARCHANDMANAGEMENTSCIENCEDec.2020收稿日期:2018 03 17基金项目:国家自然科学基金资助项目(71673041);教育部人文社会科学项目(15YJA790093,16YJC790112)作者简介:王磊宁(1987 ),男,陕西咸阳人,东北大学硕士,研究方向:产业政策;通讯作者:郑云虹(1966 ),女,博士,副教授,研究方向:资源与环境政策。

基于EPR政策的耐用品设计寿命的决策研究———从计划报废的视角王磊宁, 郑云虹, 赵瑞(东北大学工商管理学院,辽宁沈阳110167)摘 要:本文探究如何安排延伸生产者责任(EPR)政策从而避免耐用品像快消品一样在短期产生大量废弃物的问题。

文章在已有研究基础上,从计划报废的视角,构建了一个基于连续时间的动态耐用品模型,利用最优控制方法探究了集中式决策的最优结果和分散式决策的市场均衡,并基于二者的比较分析,揭示不同市场结构下EPR政策工具对生产者延长产品设计寿命的激励效果。

最后基于理论模型的分析过程,通过数值模拟和案例分析对研究结论进行验证。

研究表明,在市场完全竞争情形下,实施单一的庇古税或者仅通过押金返还制度既可以将产出调节至最优水平,也能为生产者提供足够的激励延长其产品的设计寿命;在市场不完全竞争情形下,至少需要借助税收和补贴两种EPR政策工具的配合,才能实现产出和设计寿命的最优结果。

关键词:耐用品;EPR政策工具;计划报废;产品设计寿命中图分类号:F205 文章标识码:A 文章编号:1007 3221(2020)12 0051 08 doi:10.12005/orms.2020.0313ResearchonDesignLifeDecisionofDurableGoodsBasedonEPR———FromthePerspectiveofPlannedObsolescenceWANGLei ning,ZHENGYun hong,ZHAORui(SchoolofBusinessandAdministration,NortheasternUniversity,Shenyang110167,China)Abstract:Thispaperdiscusseshowtopreventdurablegoodsfromproducingalargeamountofwasteintheshorttermlikefast movingconsumergoods(FMCG)throughextendedproducerresponsibility(EPR).Onthebasisofexistingresearch,fromtheperspectiveofplannedobsolescence,thisarticlebuildsadynamicmodelofdurablegoods,basedoncontinuoustimeusingtheoptimalcontrolmethodtoexploretheoptimalresultofcentralizeddecisionmakinganddecentralizeddecision makingofmarketequilibrium.Meanwhile,thispaperrevealstheincentiveeffectofEPRconstraintsunderdifferentmarketstructuresforproducerstoextendthelifeoftheproductdesign.Finally,basedontheanalysisprocessofthetheoreticalmodel,theconclusionsoftheresearchareverifiedbynumericalsimulationandcasestudy.Theresultsshowthatundertheperfectcompetitionmarketstructure,theimplementationofasinglePigouviantaxoronlydepositreturnsystemcanrealizetheoptimaloutputandalsoprovideenoughincentiveforproducerstoextendtheservicelifeoftheproductdesign;Inanimperfectcompetitivemarketstructure,atleasttwoEPRconstraints,taxandsubsidy,areneededtoachievetheoptimaloutcomeofoutputanddesignlife.Keywords:durablegoods;EPRpolicytools;plannedobsolescence;productdesignlife0 引言技术创新在给人类带来便利的同时,对生态环境的承载力构成挑战[1],也为固体废弃物的治理带来了诸多不便。

有关现值汉密尔顿函数的注解

有关现值汉密尔顿函数的注解

Part 3. The Essentials of Dynamic OptimisationIn macroeconomics the majority of problems involve optimisation over time. Typically a representative agent chooses optimal magnitudes of choice variables from an initial time until infinitely far into the future. There are a number of methods to solve these problems. In discrete time the problem can often be solved using a Lagrangean function. However in other cases it becomes necessary to use the more sophisticated techniques of Optimal Control Theory or Dynamic Programming . This handout provides an introduction to optimal control theory.Special Aspects of Optimisation over Time• Stock - Flow variable relationship.All dynamic problems have a stock-flow structure. Mathematically the flow variables are referred to as control variables and the stock variables as state variables. Not surprisingly the control variables are used to affect (or steer) the state variables. For example in any one period the amount of investment and the amount of money growth are flow variables that affect the stock of output and the level of prices which are state variables.• The objective function is additively seperable. This assumption makes the problem analytically tractable. In essence it allows us to separate the dynamic problem into a sequence of separate (in the objective function) one period optimisation problems. Don't be confused, the optimisation problems are not separate because of the stock-flow relationships, but the elements of the objective function are. To be more precise the objective function is expressed as a sum of functions (i.e. integral or sigma form) each of which depends only on the variables in that period. For example utility in a given period is independent of utility in the previous period.1. Lagrangean TechniqueWe can apply the Lagrangean technique in the usual way.Notationt y = State variable(s) =t μControl variable(s)The control and state variables are related according to some dynamic equation,()t y f y y t t t t ,,1μ=-+ (1)Choosing t μ allows us to alter the change in t y . If the above is a production function we choose =t μ investment to alter t t y y -+1 the change in output over the period. Why does time enter on its own? This would represent the trend growth rate of output.We might also have constraints that apply in each single period such as,()0,,≤t y G t t μ(2)The objective function in discrete time is of the form,()∑=Tt ttt y F 0,,μ(3)The first order conditions with respect to t y are,1. Optimal Control TheorySuppose that our objective is maximise the discounted utility from the use of an exhaustible resource over a given time interval. In order to optimise we would have to choose the optimal rate of extraction. That is we would solve the following problem,()()dt e E S U Max t TEρ-⎰0subject to,()t E dtdS-= )0(S S =()free T S =Where ()t S denotes the stock of a raw material and ()t E the rate of extraction. By choosing the optimal rate of extraction we can choose the optimal stock of oil at each period of time and so maximise utility. The rate of extraction is called the control variable and the stock of the raw material the state variable. By finding the optimal path for the control variable we can find the optimal path for the state variable. This is how optimal control theory works.The relationship between the stock and the extraction rate is defined by a differential equation (otherwise it would not be a dynamic problem). This differential equation is called the equation of motion . The last two are conditions are boundary conditions. The first tells us the current stock, the last tells us we are free to choose the stock at the end of the period. If utility is always increased by using the raw material this must be zero. Notice that the time period is fixed. This is called a fixed terminal time problem.The Maximum PrincipleIn general our prototype problem is to solve,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂ ()00y y =To find the first order conditions that define the extreme values we apply a set of condition known as the maximum principle.Step 1. Form the Hamiltonian function defined as,()()()()u y t f t u y t F u y t H ,,,,,,,λλ+=Step 2. Find,),,,(λu y t H Max uOr if as is usual you are looking for an interior solution, apply the weaker condition,0),,,(=∂∂uu y t H λAlong with,()•=∂∂y u y t H λλ,,,()•=∂∂λλy u y t H ,,,()0=T λStep 3. Analyse these conditions.Heuristic Proof of the Maximum PrincipleIn this section we can derive the maximum principle , a set of first order conditions that characterise extreme values of the problem under consideration.The basic problem is defined by,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂()00y y =To derive the maximum principle we use attempt to solve the problem using the 'Calculus of Variations'. Essentially the approach is as follows. The dynamic problem is to find the optimal time path for ()t y , although that we can use ()t u to steer ()t y . It ought to be obvious that,()()0=∂∂t u t VWill not do. This simply finds the best choice in any one period without regard to any future periods. Think of the trade off between consumption and saving. We need to choose the paths of the control (state) variable that gives us the highest value of the integral subject to the constraints. So we need to optimise in every time period, given the linkages across periods and the constraints. The Calculus of Variations is a way to transform this into a static optimisation problem.To do this let ()*t u denote the optimal path of the control variable and consider each possible path as variations about the optimal path.()()()t P t u t u ε+=*(3)In this case ε is a small number (the maths sense) and ()t P is a perturbing curve. It simply means all paths can be written as variations about the optimal path. Since we can write the control path this way we can also (must) write the path of the state variable and boundary points in the same way.()()()t q t y t y ε+=*(4)T T T ∆+=*ε (5)T T T y y y ∆+=*ε(6)The trick is that all of the possible choice variables that define the integral path are now functions of .ε As ε varies we can vary the whole path including the endpoints so this trick essentially allows us to solve the dynamic problem as a function of ε as a static problem. That is to find the optimum (extreme value) path we choose the value of ε that satisfies,0=∂∂εV(7) given (3) to (6).Since every variable has been written as a function of ε, (7) is the only necessary condition for an optimum that we need. When this condition is applied it yields the various conditions that are referred to as the maximum principle .In order to show this we first rewrite the problem in a way that allows us to include the Hamiltonian function,()()()dt y u y t f t u y t F V Max T u ⎪⎪⎭⎫ ⎝⎛-+=•⎰,,,, 0λWe can do this because the term inside the brackets is always zero provided the equation of motion is satisfied. Alternatively as,()()dt y t u y t H V Max Tu•-=⎰λ0,,(1)Integrating (by parts)1 the second term in the integral we obtain,()()()()()T T u y T y dt t y t u y t H V Max λλλ-+⎭⎬⎫⎩⎨⎧+=⎰•000,,(2)Now we apply the necessary condition (7) given (3) to (6).Recall that to differentiate an Integral by a Parameter we use Leibniz's rule, (page 9). After simplification this yields,()()()()[]()0,,,0=∆-∆+⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂=∂∂=•⎰T T t T y T T u y t H dt t p u H t q y H V λλλεε (3)The 3 components of this integral provide the conditions defining the optimum. In particular,()()()⎰=⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂•ελT dt t p u Ht q y H 00requires that,•-=∂∂λyHand 0=∂∂u HWhich is a key part of the maximum principle.The Transversality Condition1Just letdt y ydt y T TT⎰⎰••-=0λλλTo derive the transversality condition we have to analyse the two terms,()[]()0,,,=∆-∆=T T t y T T u y t H λλFor out prototype problem (fixed terminal time) we must have .0=∆T Therefore the transversality condition is simply that,()0=T λThe first two conditions always apply for 'interior' solutions but the transversality condition has to be defined by the problem at hand. For more on this see Chiang pages 181-184.The Current Value HamiltonianIt is very common in economics to encounter problems in which the objective function includes the following function t e ρ-. It is usually easier to solve these problems using the current value Hamiltonian. For example an optimal consumption problem may have an objective function looking something like,()()dt et C U tρ-∞⎰0Where ρ represents the rate of time discount. In general the Hamiltonian for such problems will be of the form,()()()()u y t f t e u y t F u y t H t ,,,,,,,λλρ+=-The current value Hamiltonian is defined by,()()()u y t f t m u y t F H CV ,,,,+=(1)Where ()()t e t t m ρλ-=. The advantage of the current value Hamiltonian is that the system defined by the first order equations is usually easier to solve. In addition to (1) an alternative is to write,()()()t t CV e u y t f t m e u y t F H ρρ--+=,,,,(2)The Maximum ConditionsWith regard to (2) the first two conditions are unchanged. That is,μμ∂∂=∂∂CV H H and λλ∂∂=∂∂CVH H (3)The third condition is also essentially the same since,•=∂∂=∂∂λyH y H CVHowever it is usual to write this in terms of •m . Since,t t me e m ρρρλ--••-=We can write the third condition as,m yH m CV ρ+∂∂-=•(4)The endpoint can similarly be stated in terms of m since t e m ρλ= the condition ()0=T λmeans that,()()0==T e T T m ρλOr,()0=-T e T m ρ(5)Ramsey model of optimal savingIn the macroeconomics class you have the following problem,Choose consumption to maximise,()()dt t c u e B U t t ⎰∞=-=0βWhere ()g θηρβ---=1 subject to the following constraint,()()()()()()t k g t c t k f t k +--=•ηIn this example ()t c u =, ()t k y =. The Hamiltonian is,()()()()()()()[]g n t c t k f t t C u Be H t +--+=-λβThe basic conditions give us,()()()()0=-'=∂∂-t t c u Be t c Ht λβ (1)()()()()()[]()t g n t k f t t k H λλ&=+-'-=∂∂ (2)Plus,()()()()()()t k g t c t k f t k +--=•η(3)Now we must solve these. Differentiate the right-hand side of (1) with respect to time.This gives you ()t λ& which can then be eliminated from (2). The combined condition can then be rewritten as,()()()()()()[]g t r t c u t c u t cθρ--'''-=&This is the Euler equation. If you assume the instantaneous utility function is CRRA as in class and you calculate the derivatives you should get the same expression.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Part 3. The Essentials of Dynamic OptimisationIn macroeconomics the majority of problems involve optimisation over time. Typically a representative agent chooses optimal magnitudes of choice variables from an initial time until infinitely far into the future. There are a number of methods to solve these problems. In discrete time the problem can often be solved using a Lagrangean function. However in other cases it becomes necessary to use the more sophisticated techniques of Optimal Control Theory or Dynamic Programming . This handout provides an introduction to optimal control theory.Special Aspects of Optimisation over Time• Stock - Flow variable relationship.All dynamic problems have a stock-flow structure. Mathematically the flow variables are referred to as control variables and the stock variables as state variables. Not surprisingly the control variables are used to affect (or steer) the state variables. For example in any one period the amount of investment and the amount of money growth are flow variables that affect the stock of output and the level of prices which are state variables.• The objective function is additively seperable. This assumption makes the problem analytically tractable. In essence it allows us to separate the dynamic problem into a sequence of separate (in the objective function) one period optimisation problems. Don't be confused, the optimisation problems are not separate because of the stock-flow relationships, but the elements of the objective function are. To be more precise the objective function is expressed as a sum of functions (i.e. integral or sigma form) each of which depends only on the variables in that period. For example utility in a given period is independent of utility in the previous period.1. Lagrangean TechniqueWe can apply the Lagrangean technique in the usual way.Notationt y = State variable(s) =t μControl variable(s)The control and state variables are related according to some dynamic equation,()t y f y y t t t t ,,1μ=-+ (1)Choosing t μ allows us to alter the change in t y . If the above is a production function we choose =t μ investment to alter t t y y -+1 the change in output over the period. Why does time enter on its own? This would represent the trend growth rate of output.We might also have constraints that apply in each single period such as,()0,,≤t y G t t μ(2)The objective function in discrete time is of the form,()∑=Tt ttt y F 0,,μ(3)The first order conditions with respect to t y are,1. Optimal Control TheorySuppose that our objective is maximise the discounted utility from the use of an exhaustible resource over a given time interval. In order to optimise we would have to choose the optimal rate of extraction. That is we would solve the following problem,()()dt e E S U Max t TEρ-⎰0subject to,()t E dtdS-= )0(S S =()free T S =Where ()t S denotes the stock of a raw material and ()t E the rate of extraction. By choosing the optimal rate of extraction we can choose the optimal stock of oil at each period of time and so maximise utility. The rate of extraction is called the control variable and the stock of the raw material the state variable. By finding the optimal path for the control variable we can find the optimal path for the state variable. This is how optimal control theory works.The relationship between the stock and the extraction rate is defined by a differential equation (otherwise it would not be a dynamic problem). This differential equation is called the equation of motion . The last two are conditions are boundary conditions. The first tells us the current stock, the last tells us we are free to choose the stock at the end of the period. If utility is always increased by using the raw material this must be zero. Notice that the time period is fixed. This is called a fixed terminal time problem.The Maximum PrincipleIn general our prototype problem is to solve,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂ ()00y y =To find the first order conditions that define the extreme values we apply a set of condition known as the maximum principle.Step 1. Form the Hamiltonian function defined as,()()()()u y t f t u y t F u y t H ,,,,,,,λλ+=Step 2. Find,),,,(λu y t H Max uOr if as is usual you are looking for an interior solution, apply the weaker condition,0),,,(=∂∂uu y t H λAlong with,()•=∂∂y u y t H λλ,,,()•=∂∂λλy u y t H ,,,()0=T λStep 3. Analyse these conditions.Heuristic Proof of the Maximum PrincipleIn this section we can derive the maximum principle , a set of first order conditions that characterise extreme values of the problem under consideration.The basic problem is defined by,()dt u y t F V Max Tu⎰=0,,()u y t f ty,,=∂∂()00y y =To derive the maximum principle we use attempt to solve the problem using the 'Calculus of Variations'. Essentially the approach is as follows. The dynamic problem is to find the optimal time path for ()t y , although that we can use ()t u to steer ()t y . It ought to be obvious that,()()0=∂∂t u t VWill not do. This simply finds the best choice in any one period without regard to any future periods. Think of the trade off between consumption and saving. We need to choose the paths of the control (state) variable that gives us the highest value of the integral subject to the constraints. So we need to optimise in every time period, given the linkages across periods and the constraints. The Calculus of Variations is a way to transform this into a static optimisation problem.To do this let ()*t u denote the optimal path of the control variable and consider each possible path as variations about the optimal path.()()()t P t u t u ε+=*(3)In this case ε is a small number (the maths sense) and ()t P is a perturbing curve. It simply means all paths can be written as variations about the optimal path. Since we can write the control path this way we can also (must) write the path of the state variable and boundary points in the same way.()()()t q t y t y ε+=*(4)T T T ∆+=*ε (5)T T T y y y ∆+=*ε(6)The trick is that all of the possible choice variables that define the integral path are now functions of .ε As ε varies we can vary the whole path including the endpoints so this trick essentially allows us to solve the dynamic problem as a function of ε as a static problem. That is to find the optimum (extreme value) path we choose the value of ε that satisfies,0=∂∂εV(7) given (3) to (6).Since every variable has been written as a function of ε, (7) is the only necessary condition for an optimum that we need. When this condition is applied it yields the various conditions that are referred to as the maximum principle .In order to show this we first rewrite the problem in a way that allows us to include the Hamiltonian function,()()()dt y u y t f t u y t F V Max T u ⎪⎪⎭⎫ ⎝⎛-+=•⎰,,,, 0λWe can do this because the term inside the brackets is always zero provided the equation of motion is satisfied. Alternatively as,()()dt y t u y t H V Max Tu•-=⎰λ0,,(1)Integrating (by parts)1 the second term in the integral we obtain,()()()()()T T u y T y dt t y t u y t H V Max λλλ-+⎭⎬⎫⎩⎨⎧+=⎰•000,,(2)Now we apply the necessary condition (7) given (3) to (6).Recall that to differentiate an Integral by a Parameter we use Leibniz's rule, (page 9). After simplification this yields,()()()()[]()0,,,0=∆-∆+⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂=∂∂=•⎰T T t T y T T u y t H dt t p u H t q y H V λλλεε (3)The 3 components of this integral provide the conditions defining the optimum. In particular,()()()⎰=⎭⎬⎫⎩⎨⎧∂∂+⎥⎦⎤⎢⎣⎡+∂∂•ελT dt t p u Ht q y H 00requires that,•-=∂∂λyHand 0=∂∂u HWhich is a key part of the maximum principle.The Transversality Condition1Just letdt y ydt y T TT⎰⎰••-=0λλλTo derive the transversality condition we have to analyse the two terms,()[]()0,,,=∆-∆=T T t y T T u y t H λλFor out prototype problem (fixed terminal time) we must have .0=∆T Therefore the transversality condition is simply that,()0=T λThe first two conditions always apply for 'interior' solutions but the transversality condition has to be defined by the problem at hand. For more on this see Chiang pages 181-184.The Current Value HamiltonianIt is very common in economics to encounter problems in which the objective function includes the following function t e ρ-. It is usually easier to solve these problems using the current value Hamiltonian. For example an optimal consumption problem may have an objective function looking something like,()()dt et C U tρ-∞⎰0Where ρ represents the rate of time discount. In general the Hamiltonian for such problems will be of the form,()()()()u y t f t e u y t F u y t H t ,,,,,,,λλρ+=-The current value Hamiltonian is defined by,()()()u y t f t m u y t F H CV ,,,,+=(1)Where ()()t e t t m ρλ-=. The advantage of the current value Hamiltonian is that the system defined by the first order equations is usually easier to solve. In addition to (1) an alternative is to write,()()()t t CV e u y t f t m e u y t F H ρρ--+=,,,,(2)The Maximum ConditionsWith regard to (2) the first two conditions are unchanged. That is,μμ∂∂=∂∂CV H H and λλ∂∂=∂∂CVH H (3)The third condition is also essentially the same since,•=∂∂=∂∂λyH y H CVHowever it is usual to write this in terms of •m . Since,t t me e m ρρρλ--••-=We can write the third condition as,m yH m CV ρ+∂∂-=•(4)The endpoint can similarly be stated in terms of m since t e m ρλ= the condition ()0=T λmeans that,()()0==T e T T m ρλOr,()0=-T e T m ρ(5)Ramsey model of optimal savingIn the macroeconomics class you have the following problem,Choose consumption to maximise,()()dt t c u e B U t t ⎰∞=-=0βWhere ()g θηρβ---=1 subject to the following constraint,()()()()()()t k g t c t k f t k +--=•ηIn this example ()t c u =, ()t k y =. The Hamiltonian is,()()()()()()()[]g n t c t k f t t C u Be H t +--+=-λβThe basic conditions give us,()()()()0=-'=∂∂-t t c u Be t c Ht λβ (1)()()()()()[]()t g n t k f t t k H λλ&=+-'-=∂∂ (2)Plus,()()()()()()t k g t c t k f t k +--=•η(3)Now we must solve these. Differentiate the right-hand side of (1) with respect to time.This gives you ()t λ& which can then be eliminated from (2). The combined condition can then be rewritten as,()()()()()()[]g t r t c u t c u t cθρ--'''-=&This is the Euler equation. If you assume the instantaneous utility function is CRRA as in class and you calculate the derivatives you should get the same expression.。

相关文档
最新文档