椭圆轨迹直摆凸轮组合机构的设计.

合集下载

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。

在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。

一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。

根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。

根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。

二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。

几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。

图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。

对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。

根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。

对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。

首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。

三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。

凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。

弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。

而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。

四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。

凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。

配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。

凸轮机构及设计范文

凸轮机构及设计范文

凸轮机构及设计范文凸轮机构是一种将连续的直线运动转换为间歇的往复运动的机械连杆机构。

它由凸轮、凸轮轴和随动件组成,通过凸轮的旋转运动将连续的直线运动转换为随动件的间歇运动。

凸轮机构广泛应用于各种机械装置中,如发动机、泵、液压机械、纺织机械、包装机械等。

它具有结构简单、运动规律明确、重量轻、可靠性高等特点,因此在不同的领域都有着重要的应用。

凸轮的设计是凸轮机构设计的核心之一、凸轮的形状可以根据所需的运动规律来确定。

常见的凸轮形状有椭圆形、正弦形和随机形状等。

凸轮的形状不仅直接影响到随动件的运动规律,还会对凸轮机构的工作性能产生重要影响。

在凸轮的设计过程中,需要考虑到凸轮的尺寸、形状、旋转角度等因素,以及凸轮与随动件之间的运动副差和装配间隙等。

凸轮轴的设计也是凸轮机构设计的重要内容之一、凸轮轴的设计需要满足机械运动的要求,同时还要考虑到凸轮的负载、旋转速度等因素。

凸轮轴的设计时需要考虑轴材料的选择、轴的刚度和强度等问题。

随动件的设计也是凸轮机构设计的关键之一、随动件的运动规律直接受凸轮的形状和凸轮轴的旋转角度等影响。

在随动件的设计过程中,需要考虑到随动件与凸轮之间的运动配合、运动副间隙等问题。

凸轮机构的设计涉及到机械运动、力学和材料等多个学科知识。

为了设计出性能优良、可靠性高的凸轮机构,需要深入研究凸轮机构的运动规律和工作原理,掌握凸轮机构设计的基本原理和方法。

总结起来,凸轮机构是一种将连续的直线运动转换为间歇的往复运动的机械连杆机构。

凸轮机构的设计涉及到凸轮、凸轮轴和随动件的设计,需要考虑到凸轮的形状、尺寸和旋转角度等因素,凸轮轴的材料选择和轴的刚度,以及随动件与凸轮之间的运动配合和运动副间隙等问题。

凸轮机构设计需要深入研究凸轮机构的运动规律和工作原理,掌握凸轮机构设计的基本原理和方法。

机械专业毕业设计题目整理大全

机械专业毕业设计题目整理大全
58-18t桥式起重机设计
59超声波清洗机
60钢锥锥轮式的无级变速器的传动与设计
61螺旋式压榨机的ห้องสมุดไป่ตู้计
62全自动立式过滤机的设计
63转盘换轨电动平车系统的设计电动转盘的设计
64弧面凸轮数控转台的设计——3D建模与装配
65平面二次包络环面蜗杆传动数控转台的设计—3D建模与装配
66基于Solidworks的麻花钻的二次开发
67风力发电偏航减速器试验台设计
68弧面凸轮数控转台的设计—机械部分
69挖掘机工作装置液压系统的设计
70超环面行星蜗杆传动数控转台的设计¬¬¬—3D建模与装配
71销盘式高温高速摩擦磨损试验机的设计
72平面二次包络环面蜗杆传动数控转台的设计
73-45吨旋挖钻机底盘支重轮与引导轮的设计
74-45T旋挖钻机变幅机构液压缸设计
29电磁铁推拉力测试系统——控制部分设计
30减振镗杆的有限元分析
31基于单片机的家用安保系统Ver9
32基于单片机和DS18B20的空调温控系统设计(硬件)
33 基于USB总线数据采集系统设计与实现
34 输电线路除冰机器人除冰机构设计
35行波型超声波电机设计
36机床主轴的振动的有限元模态分析
37基于ProE渐开线齿轮的建模和传动仿真
251 瓶盖注射模设
252瓶盖注塑模设计
253普通开关按钮模具设计
254脐橙分级设备电控系统设计
255汽车盖板冲裁模设计
256轻型立式薯类去皮机结构设计
257软管接头模具设计
258三通管的塑料模设计
259扫描式阵列结构激光杀灭器设计
260食品垃圾处理器
261食品垃圾处理器(二)

凸轮机构及其的设计

凸轮机构及其的设计

凸轮机构及其的设计凸轮机构是一种广泛应用于机械工程中的重要机构,用于变换一种运动形式为另一种运动形式。

它通常由凸轮、摇杆和连接杆等组成。

凸轮机构的设计涉及到运动规律、工作轨迹、轴向力分析等多个方面,下面将详细介绍凸轮机构的设计。

第一步是确定机构的运动要求和工作方式。

在设计凸轮机构之前,需要明确所需的运动形式,比如旋转、直线、往复等。

同时,还需要确定工作的速度、加速度、角度等参数。

这些运动要求和工作方式将直接影响凸轮机构的设计。

第二步是选择凸轮的形状和尺寸。

凸轮是凸轮机构中最为重要的部件,其形状和尺寸将决定机构的运动规律和工作轨迹。

常见的凸轮形状有圆形、椭圆形、心形等,可以根据具体要求选择合适的形状。

凸轮的尺寸则需要根据凸轮机构的工作范围和受力情况进行计算和确定。

第三步是设计摇杆。

摇杆是凸轮机构中的另一个重要部件,用于连接凸轮和连接杆。

摇杆的长度和位置将直接决定机构的运动范围和力度。

设计摇杆时需要注意受力情况,确保摇杆在工作时不会产生过大的应力和变形。

第四步是选择合适的连接杆。

连接杆连接凸轮机构的其他部件,传递力度和运动形式。

不同的连接杆形式包括曲柄连杆机构、平行四边形机构等,可以根据具体要求选择合适的连接杆。

第五步是进行轴向力分析。

凸轮机构在工作时会产生轴向力,因此需要进行轴向力分析,确保机构的稳定性和可靠性。

轴向力分析包括摩擦力、静力平衡、稳定性等方面。

第六步是进行运动仿真和优化设计。

通过运动仿真可以验证凸轮机构的运动规律和工作轨迹是否满足设计要求,并进行必要的优化设计。

运动仿真常常使用专业的动力学仿真软件,可以模拟机构的运动和受力情况。

总结起来,凸轮机构的设计需要考虑运动要求、工作方式、凸轮形状和尺寸、摇杆设计、连接杆选择、轴向力分析等多个因素。

通过合理的设计和优化,可以实现凸轮机构的稳定运动和有效工作。

机械专业毕业设计题目大全_(3600课题)

机械专业毕业设计题目大全_(3600课题)
203浆渣自分离立式磨浆机的设计
204绞肉机毕业设计
205绞肉机的设计2
206脚踏式玉米脱粒机
207铰链落料冲孔复合模具设计
208接线座塑料模具设计
209酒瓶内盖塑料模具设计
210开卷机设计
211可倾式夹层锅设计
212空气滤清器壳正反拉伸复合模设计
213空气压机设计
214控制柜旋钮注射模具设计
215控制盒面盖塑模设计
48转盘换轨电动平车系统一电动平车设计
49摩擦式机械无级变速器结构设计
50超环面彳丁星蜗杆传动数控转台的设计-—机械部分
51机械菱锥式无级变速器结构设计
52小功率机械无级变速器
53超声波测距离在汽车上的应用
54万能材料试验机
55电池壳的冲压模具设计
56学生简易保险箱密码系统设计
57离心泵的设计及其密封
335竹材旋切机液压系统设计
336竹木旋切机刀架设计
337•注射器盖毕业设计
338转向器侧盖钻孔夹具设计
339转向器箱体钻孔夹具设计
340自动换刀机械手设计
341自动流水线输送系统设计
342自行车脚蹬内板多工位级进模设计
343减速器三维图(运动仿真)
344车床上下料机械手
345步进式加热炉冋步顶升液压控制系统
机械专业毕业设计题目大全(3600课题)
1基于ProE的紧固件二次开发
2基于单片机的汽车防盗报警系统设计
3可转位车刀受力的ANSYS分析
418吨桥式起重机的设计一机械部分
5双吸离心油泵的结构及其机械密封设计
6风能发电机转子支架钻模的设计及工艺
7钢球锥轮式无级变速器设计
8随动架及桅顶设计
9淬火油槽监控系统设计

丰田商标轨迹线直摆组合凸轮机构设计-答辩PPT

丰田商标轨迹线直摆组合凸轮机构设计-答辩PPT

根据预期曲线上的点{xi,yi}n0与 顶杆位移{hi}n0、摆杆转角{qi} n 之间的几何关系,求出他们的变 0 化规律{hi}n0,{qi}n0由直动凸 轮顶杆位移变化规律和摆动凸轮转 角的变化规律可求得直动凸轮和摆 动凸轮轮廓上有限个点,再利用样 条曲线把这些点连接起来便得到凸 轮的轮廓形状。显然,当n的值越 大,求得的凸轮轮廓便越理想。 具体的求解方法和详细的计算公式 请参看设计说明书。
丰田商标轨迹线直摆组合凸轮 机构设计
专业:机械设计制造及其自动化 班级: 学号: 导师: 学生:
• 目录
• 1:机构的理论设计 • 2:机构的实体设计
致谢
1:凸轮机构的理论设计
建立直摆组合凸轮机构的设计公式,根 据初始条件和设计公式计算出直动凸轮和 摆动凸轮上离散点的极径和极角度。使用 样条曲线连接计算得到的离散点,获得直 动凸轮和摆动凸轮的轮廓线。根据要求, 设计其他的零件并绘制出工程图。
图1-1
2:凸轮机构的实体设计
依次排布如下:ຫໍສະໝຸດ Autodesk inventor 简介
本设计使用Autodesk Inventor 2009作为仿真软件。Autodesk Inventor软 件是美国AutoDesk公司于1999年底推出的三维可视化实体模拟软件,目前 已推出最新版本Inventor 2010,实验室使用的是Inventor 6。它包含三维建 模、信息管理、协同工作和技术支持等各种特征。使用Autodesk Inventor可 以创建三维模型和二维制造工程图、可以创建自适应的特征、零件和子部件, 还可以管理上千个零件和大型部件,它的“连接到网络”工具可以使工作组 人员协同工作,方便数据共享和同事之间设计理念的沟通。Inventor在用户 界面简单,三维运算速度和着色功能方面有突破的进展。它是建立在ACIS三 维实体模拟核心之上,设计人员能够简单迅速地获得零件和装配体的真实感, 这样就缩短了用户设计意图的产生与系统反应时间的距离,从而最小限度的 影响设计人员的创意和发挥。 Inventor为设计者提供了一个自由的环境,使得二维设计能够顺畅地转入 三维设计环境,同时能够在三维环境中重用现有的DWG 文件,并且能够与 其他应用软件的用户共享三维设计的数据。Inventor 为设计和制造提供了优 良的创新和简便的途径 在inventor的装配环境中能对装配体进行静力学、运动学、动力学的仿真, 并且可以输出部件中任何一零件上的任意一点的速度、加速度和运动轨迹与 时间的关系曲线。其中速度和加速度包括,牵连速度、绝对速度、相对速度、 牵连加速度、绝对加速度、相对加速度。

机械专业毕业设计论文题目整理大全

机械专业毕业设计论文题目整理大全
29电磁铁推拉力测试系统——控制部分设计
30减振镗杆的有限元分析
31基于单片机的家用安保系统Ver9
32基于单片机和DS18B20的空调温控系统设计(硬件)
33基于USB总线数据采集系统设计与实现
34输电线路除冰机器人除冰机构设计
35行波型超声波电机设计
36机床主轴的振动的有限元模态分析
37基于ProE渐开线齿轮的建模和传动仿真
93M10多功能带式输送机
94M-25型立式磨粉机设计
95PDA模具设计
96PlC在磨床自动化改造中的应用
97 TDTG5024斗式提升机机头及中间节设计
98 TDTG5024斗式提升机机座及总体部分设计
99 USB接口插件弯曲模具设计
100 WHX120减速机机盖机体合箱后箱体加工工艺及粗铣前后端面夹具设计
123冲大小垫圈复合模
124冲单孔垫圈模具设计
125冲孔、压弯、切断连续模
126冲孔落料拉深复合模
127冲压模具1
128冲压模具2
129传动盖冲压工艺制定及冲孔模具设计
130粗镗活塞销孔组合机床夹具设计
131粗镗活塞销孔组合机床设计
133大白菜收获机1
134大白菜收获机2
134大白菜收获机3
135大米分级下料装置及其整体结构设计
75小型稻谷干燥机——风运动提升部分的设计
76发动机连杆加工工艺与镗孔夹具设计
77(560×450×279)塑料水槽及其注模具设计
781BLQ型立式旱地驱动耙设计
79牵引轮设计
805+1档轿车手动变速箱设计
81130I型电刷级进模设计
82150T-2(HD)侧板冲孔落料复合模
83BB肥生产设备(9-BBⅡ型)总体设计及机架设计

设计凸轮机构的步骤

设计凸轮机构的步骤

设计凸轮机构的步骤1.引言1.1 概述概述部分的内容如下:引言部分是文章的开端,旨在向读者介绍关于设计凸轮机构步骤的基本概念和重要性。

设计凸轮机构是指在机械传动中用于转化运动的一种重要装置,广泛应用于各种机械设备中,如发动机、制造机械、自动化机械等。

凸轮机构的设计直接关系到机械传动的性能和效率,因此在机械设计中具有重要的地位。

本文将介绍设计凸轮机构的具体步骤,帮助读者了解如何更好地应用凸轮机构设计各类机械装置。

首先,我们将介绍凸轮机构的基本原理和功能,为后续内容的理解奠定基础。

然后,我们将详细讲解设计凸轮机构的步骤,包括凸轮曲线的选择、凸轮的参数计算、凸轮机构的布局设计等内容。

在每个步骤中,我们都将提供详细的方法和注意事项,帮助读者更好地理解和掌握凸轮机构的设计过程。

通过本文的学习,读者将能够系统地掌握设计凸轮机构的方法和技巧,提高机械设备的传动效率和性能。

同时,文章还将展望未来凸轮机构设计领域的发展趋势,激发读者的思考和创新意识。

在下文中,我们将详细介绍凸轮机构的设计步骤,希望读者能够通过本文的学习,对凸轮机构的设计有更深入和全面的了解。

1.2 文章结构文章结构部分的内容可以包括以下内容:在设计凸轮机构之前,了解凸轮机构的基本概念及其作用是非常重要的。

凸轮机构可以将圆周运动转化为直线或间歇运动,广泛应用于各个领域的机械设计中。

本文将介绍设计凸轮机构的步骤,以帮助读者了解如何有效地进行设计过程。

文章主要分为三个部分:引言、正文和结论。

引言部分将首先概述凸轮机构的作用和重要性。

凸轮机构作为一种重要的机械传动装置,在现代机械设计中起着不可替代的作用。

随后,将介绍本文的结构和内容安排,以帮助读者快速了解文章的组织结构和各个部分的内容。

正文部分将详细介绍设计凸轮机构的步骤。

首先,步骤一将介绍凸轮机构的设计前准备工作,包括确定凸轮的基本参数、选择凸轮的类型和形状等。

然后,步骤二将详细讲解凸轮机构的设计过程,包括凸轮的轮廓设计、凸轮与从动件的配合设计等。

机械原理课程设计凸轮机构设计说明书

机械原理课程设计凸轮机构设计说明书

全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。

本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。

一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。

凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。

凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。

二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。

手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。

此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。

三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。

凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。

凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。

通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。

机械专业毕业设计题目整理大全

机械专业毕业设计题目整理大全
290拖拉机后桥半轴套车削加工夹具设计
291椭圆盖注射模设计
292椭圆轨迹直摆凸轮组合机构的设计
293弯管接头塑料模设计
294玩具模具设计
295蜗杆箱及其夹具(2个)
296蜗杆箱设计
297蜗轮箱及其夹具(2个)
298蜗轮箱设计
299五寸软盘盖注射模具设计
300香水盖子及模具设计
301销盘式高温高速摩擦磨损试验机的设计
19基于单片机的数控车床XY工作台与控制系统设计
20螺旋离心泵的设计
21生产线皮带运输机控制系统设计
22绞肉机的设计
23钢环分离锥轮无级变速器
24水平螺旋输送机设计
25马铃薯去皮机设计
26番茄打浆机
27YM3150E型滚齿机的控制系统的PLC改造
28基于UG二次开发技术的麻花钻、扩孔钻、铰刀设计系统研究
192基于机器视觉的精准施药喷头移动机构设计
193基于机器视觉的精准施药平台喷药机构设计
194级进模模具设计
195加油口支座冲孔落料模具的设计
196夹子冲压件设计
197家用垃圾处理器设计
198家用食品粉碎机的设计
199减速器ug
200减速器proe
201简易仪表车床(机床)设计
202浆渣自分离立式磨浆机
58-18t桥式起重机设计
59超声波清洗机
60钢锥锥轮式的无级变速器的传动与设计
61螺旋式压榨机的设计
62全自动立式过滤机的设计
63转盘换轨电动平车系统的设计电动转盘的设计
64弧面凸轮数控转台的设计——3D建模与装配
65平面二次包络环面蜗杆传动数控转台的设计—3D建模与装配
66基于Solidworks的麻花钻的二次开发

凸轮机构的设计和计算

凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是一种常见的运动机构,由凸轮和从动件组成,通过凸轮的形状和运动来驱动从动件进行指定的运动。

凸轮机构广泛应用于各种机械设备和工业生产中,如发动机、机械传动系统、自动化生产线等。

本文将介绍凸轮机构的设计和计算方法,具体内容如下:一、凸轮机构的设计:1.确定从动件的运动要求:根据机械装置的功能和要求,确定从动件的运动方式,如直线运动、往复运动、旋转运动等。

2.选择凸轮的类型:根据从动件的运动要求和机械结构的特点,选择合适的凸轮类型,如往复凸轮、圆柱凸轮等。

3.设计凸轮曲线:根据从动件的运动要求和凸轮的类型,设计凸轮曲线,使得从动件的运动符合需求。

4.确定凸轮轴的位置和方向:根据凸轮曲线和从动件的位置关系,确定凸轮轴所在的位置和方向。

5.合理布局机构:根据机械装置的空间限制和结构特点,合理布局凸轮机构的各个组成部分。

二、凸轮机构的计算:1.凸轮曲线参数计算:根据从动件的运动要求和机械结构的特点,计算凸轮曲线的参数,如内凸高度、内凸角度、外凸高度、外凸角度等。

2.凸轮轴的定位计算:根据凸轮曲线和从动件的位置关系,计算凸轮轴所在的位置和方向,以确保从动件能够完整地运动。

3.从动件的运动轨迹计算:根据凸轮曲线和凸轮轴的位置,计算从动件在运动轨迹上的坐标点,以确保从动件的运动符合需求。

4.从动件的运动速度和加速度计算:根据从动件的运动轨迹和凸轮轴的角速度、角加速度,计算从动件的运动速度和加速度,以确保运动过程的稳定性和安全性。

三、凸轮机构的优化:1.优化凸轮曲线形状:通过调整凸轮曲线的形状,使得从动件的运动更加平稳、稳定和高效。

2.优化凸轮轴的位置和方向:通过调整凸轮轴的位置和方向,使得整个凸轮机构的布局更加紧凑、简洁,并且符合实际使用要求。

3.优化从动件的设计:通过改进从动件的结构和材料,减小惯性负载和摩擦损失,提高机械装置的性能和使用寿命。

4.优化机构的传动方式:通过改变凸轮机构的传动方式,如采用齿轮传动或者链条传动,来提高传动效率和可靠性。

凸轮机构及其设计详解

凸轮机构及其设计详解

凸轮机构及其设计详解凸轮机构是一种由凸轮和跟随器组成的机构,常用于转动平面运动转化为直线运动或非平面运动转化为复杂轨迹的装置。

它具有结构简单、运动灵活、可靠性高等优点,在机械设计中应用广泛。

本文将详细介绍凸轮机构的构成要素和设计原则。

凸轮机构的构成要素包括凸轮、跟随器和驱动机构。

其中,凸轮是一种具有特定几何形状的转动零件,它通过驱动机构实现旋转运动。

跟随器则是在凸轮的作用下进行直线或非平面运动的部件。

驱动机构可以采用电动机、发动机等,用于带动凸轮的旋转。

在凸轮机构的设计中,需要考虑凸轮的形状和跟随器的运动规律。

凸轮的形状由其基本曲线和凸轮槽组成。

基本曲线是指凸轮曲线的纵向轮廓,常用的基本曲线有圆弧、正弦曲线、椭圆等。

凸轮槽是用于容纳跟随器的开槽形状,可以是直线、圆弧等。

根据实际需要,凸轮的形状可以设计成各种曲线形式,以实现所需的运动轨迹。

跟随器的运动规律与凸轮的形状密切相关。

根据凸轮的形状,跟随器可以实现直线、往复、摆动、旋转等多种运动形式。

例如,当凸轮形状为直线时,跟随器可以实现直线运动;当凸轮形状为圆弧时,跟随器可以实现往复运动等。

在设计中,需要确定凸轮的曲线参数以及跟随器的运动规律,以使机构能够实现需要的运动方式。

凸轮机构的设计原则主要有以下几点:首先,凸轮的形状应满足运动需求,同时尽可能简单,以提高加工的精度和降低成本。

其次,跟随器的设计应合理选择材料和结构形式,以提高运动的平稳性和可靠性。

再次,凸轮机构的驱动机构应选择适当的驱动方式和传动装置,以确保凸轮能够平稳、稳定地旋转。

最后,凸轮机构的设计要考虑装配和维修的便捷性,以提高机构的可维护性和可靠性。

在实际应用中,凸轮机构的设计还需要考虑动态特性、磨损和寿命等因素。

动态特性主要涉及凸轮机构的运动速度、加速度和惯性等,需要通过合理的结构设计和传动装置选择来保证机构的运动性能。

磨损和寿命则与材料的选择、润滑和冷却等因素密切相关,需要进行充分的磨损寿命试验和分析,以确保机构的可靠性和经济性。

凸轮机构及设计范文

凸轮机构及设计范文

凸轮机构及设计范文凸轮机构是一种常见的机械传动装置,主要用于将旋转运动转化为直线或曲线运动。

它由凸轮、从动件和连接件三个部分组成,其中凸轮是关键部件,凸轮的形状决定了从动件的运动轨迹。

凸轮的设计是凸轮机构设计中至关重要的一步。

凸轮的形状可以根据从动件的运动要求进行设计。

常见的凸轮形状有椭圆形、圆心偏心形、圆弧形等。

在选择凸轮的形状时,需要考虑从动件的运动速度、加速度、运动轨迹等因素,并结合实际应用的要求进行设计。

凸轮的设计过程中,首先需要确定凸轮的运动周期和凸轮轴的转速。

根据凸轮的运动周期和转速,可以计算出凸轮的基准圆直径。

然后,根据基准圆直径和从动件的运动要求,确定凸轮的形状。

在凸轮的设计过程中,还需要考虑凸轮的材料选择和凸轮的制造工艺。

凸轮通常使用高强度、高耐磨的材料制造,如合金钢、铸铁等。

凸轮的制造工艺主要有铣削、数控加工等。

凸轮机构的设计中,还需要考虑连接件的设计。

连接件主要是指凸轮和从动件之间的连接部件,常见的连接件有滚子、滑块、曲柄等。

连接件的设计要考虑从动件的运动要求和凸轮的形状,合理选择连接件的形式和材料,以确保凸轮机构的正常运行。

凸轮机构的设计在工程实践中有着广泛的应用。

比如,在发动机中,凸轮机构被用于控制气门的开关时间和开闭速度,以实现燃气进出的控制;在纺织机械中,凸轮机构被用于控制织机的运动,使得织机能够按照指定的运动规律工作;在机床中,凸轮机构被用于控制加工工具的运动,以实现工件的加工。

总之,凸轮机构的设计是机械工程中一个重要而复杂的任务。

凸轮的形状和连接件的设计是凸轮机构设计过程中的关键步骤。

通过合理选择凸轮的形状和连接件的设计,可以实现凸轮机构的高效运行和满足不同应用的需求。

凸轮机构的设计需要综合考虑运动要求、材料选择、制造工艺等因素,以确保设计的凸轮机构能够稳定可靠地工作。

凸轮机构设计(图文)

凸轮机构设计(图文)

凸轮机构设计(图文)一、凸轮机构概述凸轮机构是一种常见的机械传动装置,主要由凸轮、从动件和机架组成。

它通过凸轮的轮廓曲线,使从动件实现预期的运动规律。

凸轮机构具有结构简单、运动可靠、传动精度高等优点,广泛应用于各种自动化设备和机械中。

二、凸轮机构设计要点1. 确定从动件的运动规律在设计凸轮机构之前,要明确从动件的运动规律,包括位移、速度和加速度等。

这将为后续的凸轮轮廓设计提供依据。

2. 选择合适的凸轮类型根据从动件的运动规律和实际应用需求,选择合适的凸轮类型,如平面凸轮、圆柱凸轮、摆动凸轮等。

3. 设计凸轮轮廓曲线凸轮轮廓曲线是凸轮机构设计的核心部分。

设计时,要确保凸轮与从动件之间的运动协调,避免干涉和冲击。

三、凸轮机构设计步骤1. 分析运动需求在设计之初,我们需要深入了解设备的工作原理和从动件的运动需求。

这包括从动件的运动轨迹、速度、加速度以及所需的力和行程。

这些信息将帮助我们确定凸轮的基本尺寸和形状。

2. 初步确定凸轮尺寸基于运动需求分析,我们可以初步确定凸轮的直径、基圆半径和宽度等关键尺寸。

这些尺寸将直接影响凸轮的强度、刚度和运动性能。

3. 设计凸轮轮廓确保从动件的运动平稳,避免突变和冲击。

考虑凸轮与从动件之间的间隙,防止运动干涉。

优化轮廓曲线,减少加工难度和提高耐磨性。

四、凸轮机构材料选择考虑耐磨性:凸轮在连续工作中会与从动件接触,因此应选择耐磨材料,如钢、铸铁或耐磨塑料。

考虑重量和成本:在满足性能要求的前提下,可以选择重量轻、成本较低的材料。

考虑环境因素:如果凸轮机构将工作在特殊环境中,如高温或腐蚀性环境,需要选择相应的耐高温或耐腐蚀材料。

五、凸轮机构的加工与装配精确加工:凸轮的轮廓必须严格按照设计图纸加工,以确保运动的精确性。

间隙调整:在装配时,需要适当调整凸轮与从动件之间的间隙,以确保运动的顺畅。

校验运动:装配完成后,应对凸轮机构进行运动校验,确保从动件的运动符合预期。

六、凸轮机构动态分析与优化在设计过程中,动态分析是不可或缺的一环。

实现预定轨迹的凸轮连杆组合机构设计

实现预定轨迹的凸轮连杆组合机构设计
AB 一 ( r / R ) 2— 3 m 、 0m BM 一 ( + r / R ) 2— 5 4
长度 为 半 径 作 一 系列 圆弧 , 预期 轨迹 分 别 交 与
第 4期
魏 引 焕 : 现 预 定 轨 迹 的 凸 轮 连 杆 组 合 机 构 设 计 实
・ 1 7 ・
() 曲柄 上 B点运 动 圆周进 行若 干等 分 , 1将 得 到 B 、 B … 各 点 ; B 、。 2 ( )以 B 、 B。 各 点 为 圆 心 , 构 件 B 2 B 、 … 以 M
置 , A 点为 圆心作 与预 期 轨迹 相 切 的两 个 圆 , 以 其
半 径 分 别 为 r R , 得 r 2 及 量 = 4mm 、 R=8 m, 4m 则
则 构 件 B 长 度 应 该 满 足 r M — A 、 B + M =B B R= M A , 则 曲 柄 AB 在 与 连 杆 上 B 两 次 共 线 时 , B 否 M 以 B 点 为 圆 心 以 B 为 半 径 所 作 的 圆 弧 与 预 期 轨 迹 M
曲线无 交 点 , 这样 会 使 凸轮 轮 廓 不连 续 , 法 得 到 无 所需 要 的凸轮 轮廓 . 图 6所 示 , 曲柄位 于 A 如 当 B 附近时 M 在 的 圆弧 与预期 轨 迹 近端无 交 点 , 所 当
设 计 与 制 造 ,0 9 4 ( ) 1 517 2 0 ,7 7 :0 0 .
陕 西科 技 大 学 学报
于 M M。M。 各 点 ; 、 、 …
第3 卷 O
可能 出现无 法 实现 预 定 轨迹 或 凸轮 形 状很 复杂 及 尺 寸过大 等情 况. 为了减 少选 定坐 标系 与预 定轨迹
曲 线 相 对 位 置 的盲 目性 , 妨 可 以 查 阅 连 杆 曲线 图 不 谱 , 出与 预 定 轨 迹 曲线 相 接 近 的连 圆 弧 与 预 期 轨 迹 B

椭圆轨迹直摆凸轮组合机构的设计

椭圆轨迹直摆凸轮组合机构的设计

1 绪论本课题要求设计一直摆凸轮组合机构,使给定在摆杆上的某个点实现预期椭圆轨迹,并在此基础上进一步设计出整个机构所需的所有零件的实体模型,然后将其装配组合,并进行运动仿真。

机构示意图如图1-1:图1-1 直摆组合凸轮机构示意图众所周知,人类创造发明机构和机器的历史十分悠久,并且随着人们对不同机器和机构的需求的日益增多,对它们的研究也在不断的深入,特别是在近代,科学技术的飞速发展使得机构和机器的种类和它们所能完成的功能得到了极大的丰富。

也正因为如此,机构和机器理论已经发展成为一门重要的技术基础学科。

在这一学科中,进一步完善传统典型机构的分析与综合方法,例如实现预期轨迹的机构的类型和设计方法的创新,仍是值得研究的课题。

在这一方面,对本课题的研究就有着重要的意义。

现代化的生产,许多都要求设备能实现某种预期轨迹来更好的生产,比如在食品加工机械中的馒头自动化生产线上,其馒头堆放机构就是一个利用组合机构来完成预期的馒头堆放轨迹的。

在实现预期轨迹的组合机构中,直摆凸轮组合机构是一种非常实用的机构,通过不同轮廓的直动凸轮和摆动通论驱动连杆配合运动,既能实现连续性预期轨迹,如星形线、内摆线、旋轮线、渐开线、正态曲线等;又能实现离散化预期轨迹,如人头像、金鱼、黑桃、三菱商标等。

所涉及到的工业生产:如专用线切割机床、专用电火花加工机床、专用焊接焊切机械手、专用几何测量仪器、行程控制机构及各类轻工机械等。

可以实现图案加工、电火花刻线等等。

因此,研究本课题不仅有其理论意义,也有着其现实意义。

该机构是由直动从动件凸轮机构与摆动从动件凸轮机构组成的联动凸轮机构(图-1),该机构具有3个活动构件(n=3),3个低副(Pl=3),2个高副(Ph=2),由平面机构自由度计算公式[1] 故其机构自由度η为:该机构原动件数目为1,与其机构自由度相等,故该机构成立。

通过建立直、摆组合凸轮机构的设计公式,从而得出该机构各构件位置、大小及形状尺寸、凸轮实际廓线、理论廓线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论
本课题要求设计一直摆凸轮组合机构,使给定在摆杆上的某个点实现预期椭圆轨迹,并在此基础上进一步设计出整个机构所需的所有零件的实体模型,然后将其装配组合,并进行运动仿真。

机构示意图如图1-1:
图1-1 直摆组合凸轮机构示意图
众所周知,人类创造发明机构和机器的历史十分悠久,并且随着人们对不同机器和机构的需求的日益增多,对它们的研究也在不断的深入,特别是在近代,科学技术的飞速发展使得机构和机器的种类和它们所能完成的功能得到了极大的丰富。

也正因为如此,机构和机器理论已经发展成为一门重要的技术基础学科。

在这一学科中,进一步完善传统典型机构的分析与综合方法,例如实现预期轨迹的机构的类型和设计方法的创新,仍是值得研究的课题。

在这一方面,对本课题的研究就有着重要的意义。

现代化的生产,许多都要求设备能实现某种预期轨迹来更好的生产,比如在食品加工机械中的馒头自动化生产线上,其馒头堆放机构就是一个利用组合机构来完成预期的馒头堆放轨迹的。

在实现预期轨迹的组合机构中,直摆凸轮组合机构是一种非常实用的机构,通过不同轮廓的直动凸轮和摆动通论驱动连杆配合运动,既能实现连续性预期轨迹,如星形线、内摆线、旋轮线、渐开线、正态曲线等;又能实现离散化预期轨迹,如人头像、金鱼、黑桃、三菱商标等。

所涉及到的工业生产:如专用线切割机床、专用电火花加工机床、专用焊接焊切机械手、专用几何测量仪器、行程控制机构及各类轻工机械等。

可以实现图案加工、电火花刻线等等。

因此,研究本课题不仅有其理论意义,也有着其现实意义。

该机构是由直动从动件凸轮机构与摆动从动件凸轮机构组成的联动凸轮机构(图-1),该机构具有3个活动构件(n=3),3个低副(P l =3),2个高副(P h =2),由平面机构自由度计算公式h l P P n --=23η[1] 故其机构自由度η为:123233=-⨯-⨯=η该机构原动件数目为1,与其机构自由度相等,故该机构成立。

通过建立直、摆组合凸轮机构的设计公式,从而得出该机构各构件位置、大小及形状尺寸、凸轮实际廓线、理论廓线。

在此基础上,再合理设计出机构所需的每个零部件的结构,之后将它们装配组合,并进行运动彷真,验证设计的正确性。

此机构的设计可以分为如下几个部分:直动从动件凸轮和摆动从动件凸轮的设计,直动杆和摆动杆的设计,直动导轨的设计,轴系零部件的设计和机架的设计。

其中最为关键也最为困难的是直动从动件凸轮和摆动从动件凸轮的设计,而采用何种方法进行设计又是首先需要考虑的问题。

因此在设计过程中应该先确定所要采用的凸轮设计方法。

在以上部分设计完成后,机构的运动仿真,包括机构各个部件的装配和装配后的动态仿真。

在这一阶段需仔细计划各个部件的安装位置和安装顺序,将每一个部件都正确安装到位。

其中值得注意的是直动凸轮与摆动凸轮的安装滞后角,这一角度需严格控制,稍微的误差可能就直接影响预期的曲线。

本课题所用到的硬件主要是计算机。

用到的软件有:AutoCAD 2004,Proe Wildfire3.0,Word2000,Powerpoint2000。

2 椭圆轨迹直摆组合凸轮机构理论设计
由于该组合机构综合了单一的直动凸轮和摆动凸轮两种机构,其运动的复杂性,靠单纯的传统的方法求凸轮廓线,非常复杂,本课题采用一种准确、快捷,简便的离散化方法 [2]。

2.1 直、摆组合凸轮机构设计基本思想
图2-1 直、摆组合凸轮机构参数的几何关系
设n
i i y x 0},{ 为预期曲线上n + 1 个坐标点,它们与下列数值一一对应[3],如图2—1
n
i h 0}{ ——顶杆位移; n i q 0}{——摆杆转角;
n
Zi Zi r 0},{α ——直动从动件凸轮向径与极角; n Bi Bi r 0},{α——摆动从动件凸轮向径与极角;
e ——直动凸轮偏心距; a,b ——预期曲线起始点坐标;
R , R 1 , R 2 ——摆杆长度,摆杆上端长度,顶杆长度。

依据预期曲线上的点n i i y x 0},{ 与顶杆位移n i h 0}{ 、摆杆转角n
i q 0}{之间的几何关系,求出它们的变化规律 n i h 0}{ ,n
i q 0}{,再分别设计直动从动件凸轮廓形与摆动从动件凸
轮廓形。

2.2直、摆组合凸轮机构设计步骤 2.2.1在预期曲线L 上求取坐标点
预期曲线可以是由一条或若干条平面曲线组成的封闭曲线,首先写出它的参数方程表达式,并且要求参数方程表示的曲线位于第Ⅰ、第Ⅳ象限,初定其起始点为坐标原点。

曲线方程为:
()()⎩
⎨⎧==.;
t y t x ψϕ (2-1)
积分求弧长,得
dt
t L =⎰
(2-2)
其中,t 0,t n 分别表示曲线的起始参数与终了参数。

再按照设计要求将曲线分成若干段 ,其中任意一段定一位置i k ,则有{}n
i k 0,且
L k
n
i i
=∑=0
, 令k 0 = 0。

下面采用匀速运动规律将预期曲线分段,k i 求解公式为:n
L k i =
式中,i=0,1,2……n 。

如果将预期曲线L 对应的凸轮转角都分成n 等份,使之与{}n
i k 0 :相对应,那么当凸
轮轴匀速转动时,通过组合凸轮机构,将使从动点以预期的匀速运动规律沿预期曲线运动。

2.2.2机构初始位置参数确定
参看图2-2,直、摆组合凸轮机构的结构参数为:直动凸轮基圆半径0Z r ,摆动凸轮基圆半径0B r ,偏心距e 以及摆杆长度R 及R 1 ,顶杆长度R 2等。

由这些机构参数可得到如下机构初始位置参数(初始位置00=h ):
① 摆杆与顶杆在初始位置的夹角[4]
2220100001arccos 2B l R r q l R θ⎡⎤
+-=-⎢⎥⋅⋅⎣⎦
(2-3)
式中,01
arctan
e R θ=,22
10e R l +=
② 从动点起始位置坐标
0sin q R a ⋅= (2-4)
)cos 1(0q R b -⋅= (2-5)
图2-2 直、摆组合凸轮机构初始位置参数
考虑机构的初始位置,应该将上节求到的坐标点n
i i y x 0},{平移到从(a,b)为初始点的
位置上来,于是有: {}{}n
i i n
i i b y a x y x 00,,++−−→−平移.
平移后的坐标点仍记作n
i i y x 0},{。

2.2.3 确定顶杆位移与摆杆转角的变化规律
分析图2-1,可以得到以下关系式:
联接轴承座与座板用的螺栓:GB5780 M12×45 数量为4;
其配合的螺母:GB41-86 M12 数量为4;
凸轮的轴向定位用的轴端C型外挡圈:GB894.1-86 15 数量为1;
摆杆的轴向定位用的轴端挡圈:GB895.1-86 7 数量为1;
凸轮与轴的周向定位用的A型普通平键:截面尺寸5×5 数量为1;
安装在轴上的轴承:GB276-89 6205;
与其配合的轴承座:GB7813-87 SN103。

4 机构实体的运动仿真
为了验证本课题所设计的直白组合凸轮机构能否使摆杆的末端点实现预期的椭圆轨迹,现对该机构的实体进行运动仿真。

所有零件的实体模型构建完成后,在Proe下将它们装配[7]组合,效果如图4-1:
其分解视图如图4-2:
图4-2 分解视图
参考文献
[1]郑文纬,吴克坚.机械原理(第七版).高等教育出版社
[2]周全申,郭建生.直、摆组合凸轮机构设计. 1992年,第9卷,第1期
[3]邹慧君,董师予.凸轮机构的现代设计. 1991年,上海交通大学出版社
[4]赵韩.凸轮机构运动几何学的通用解析公式. 1995年第31卷第3期
[5] 杨明忠,朱家诚.机械设计.武汉理工大学出版社
[6] 蔡春源.新篇机械设计手册.辽宁科学技术出版社
[7] 邵立新,夏素民,孙江宏.Pro/ENGINEER Wildfire3.0标准教程.清华大学出版社
致谢
经过一个多月的忙碌和工作,本次毕业设计已经接近尾声,作为一个本科生的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有导师的督促指导,以及一起做设计的同学们的支持,想要完成这个设计是难以想象的。

在这里首先要感谢我的导师姚明印。

她平日里工作繁多,但在我做毕业设计的每个阶段,从给我们下放课题,设计前期的引导,中期检查,后期详细设计,装配草图等整个过程中都给予了我悉心的指导。

我的设计一直都做得不太顺利,但是姚老师仍然细心地纠正我设计中的错误,不厌其烦的给我悉心教导。

她的治学严谨和科学研究的精神是我永远学习的榜样,并将积极影响我今后的学习和工作。

其次要感谢和我一起作毕业设计的董仁财同学,他在本次设计中勤奋工作,克服了许多困难来完成此次毕业设计。

如果没有他的努力工作,此次设计的完成将变得非常困难。

然后还要感谢大学四年来所有的老师,为我们打下机械专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励。

此次毕业设计才会顺利完成。

最后感谢江西农业大学四年来对我的大力栽培。

相关文档
最新文档