音频功率放大电路实验实验报告

合集下载

音频功率放大电路实验报告

音频功率放大电路实验报告

音频功率放大电路实验报告音频功率放大电路实验报告引言:音频功率放大电路是一种常见的电子电路,用于将低功率的音频信号放大到足够的功率以驱动扬声器。

本实验旨在通过搭建和测试音频功率放大电路,探究其工作原理和性能。

一、实验目的本实验的目的是:1. 了解音频功率放大电路的基本原理和组成部分;2. 学习使用实验仪器和设备,如函数发生器、示波器等;3. 掌握音频功率放大电路的搭建和测试方法;4. 分析和评估音频功率放大电路的性能。

二、实验器材和元件本实验所需的器材和元件有:1. 函数发生器:用于产生音频信号;2. 示波器:用于观测电路的输入和输出波形;3. 电阻、电容、晶体管等元件:用于搭建音频功率放大电路。

三、实验步骤1. 搭建音频功率放大电路:根据实验指导书提供的电路图,按照电路图中的元件数值和连接方式,将电路搭建起来。

确保连接正确并无误。

2. 测试电路的输入和输出:使用函数发生器产生一个特定频率和幅度的正弦波信号作为输入信号,将其连接到音频功率放大电路的输入端。

使用示波器观测电路的输入和输出波形,并记录下来。

3. 测试电路的增益:通过改变函数发生器输出信号的幅度,逐步增加输入信号的幅度,观察输出信号的变化,并记录下输入和输出信号的幅度值。

根据记录的数据,计算电路的增益。

4. 测试电路的频率响应:保持输入信号的幅度不变,改变函数发生器输出信号的频率,观察输出信号的变化,并记录下输入和输出信号的频率值。

根据记录的数据,绘制电路的频率响应曲线。

5. 测试电路的失真:通过改变函数发生器输出信号的幅度和频率,观察输出信号是否出现失真现象,如畸变、截波等。

记录下失真出现的条件和情况,并进行分析。

四、实验结果和分析根据实验步骤中记录的数据,可以得到音频功率放大电路的增益、频率响应和失真情况。

根据实验结果进行分析,评估电路的性能。

五、实验总结通过本实验,我们了解了音频功率放大电路的基本原理和组成部分,学习了使用函数发生器、示波器等实验仪器和设备。

音频功率放大电路实验报告

音频功率放大电路实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________一、实验目的和要求1、理解音频功率放大电路的工作原理。

2、学习手工焊接和电路布局组装方法。

3、提高电子电路的综合调试能力。

4、通过myDAQ 来分析理论数据和实际数据之间的关系。

二、实验内容和原理(必填)音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。

按其构成可分为前置放大级、音调控制级和功率放大级三部分。

作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。

它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。

为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。

为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。

扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。

专业: 姓名: 学号: 日期: 地点: 桌号装订线点名册上的序号前置 放大级 音调控制 放大级 功率 放大级前置放大电路:前置放大级输入阻抗较高,输出阻抗较低。

前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。

由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。

理想闭环电压放大倍数为:231R R A vf +=输入电阻:1R R if = 输出电阻:0of =R 功率放大级:对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。

集成功率放大器通常有OTL 和OCL 两种电路结构形式。

音频功率放大电路设计实验报告

音频功率放大电路设计实验报告

音频功率放大电路设计实验报告一、设计任务设计一小功率音频放大电路并进行仿真。

二、设计要求已知条件:电源V或V;输入音频电压峰值为5mV;8/0.5W扬声±Ω9±12器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干基本性能指标:P o200mW(输出信号基本不失真);负载阻抗R L=8;截≥Ω止频率f L=300Hz,f H=3400Hz扩展性能指标:P o1W(功率管自选)≥三、设计方案音频功率放大电路基本组成框图如下:音频功放组成框图由于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放大声音信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L(扬声器)提供一定的输出功率。

应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。

基于运放TL084构建话音放大器与宽带滤波器,频率范围f L=300Hz,f H=3400Hz 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的Ω语音信号;用性能相当的三极管替代9012和9013;用8电阻替代扬声器。

由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。

如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。

四、电路仿真与分析1、原理图说明:a、前半部分为带通滤波器,得到实验要求的频率范围为f L=300Hz,f H=3400Hz的信号。

b、后半部分为集成运放与晶体管组成的功放,电压增益为1+(R3+R13)/R2实验原理图2、实验现象a、波特测试仪的测试结果f L=300Hz f H=3400Hz b、输出波形情况及探针测量结果可知,在输出不失真的情况下信号的功率大于了1W,达到了实验要求五、心得体会1、实验中尽量使输出信号在不失真的情况下使得输出功率越大越好,这就要求相关电阻阻值需合理。

音频功率放大电路的设计 实验报告

音频功率放大电路的设计 实验报告

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:音频功率放大电路的设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解复杂电子电路的设计方法。

2了解集成功率放大器的基本特点。

3了解放大电路的频率特性及音调控制原理。

4.学习复杂电子电路的分模块调试方法。

5. 学习扩音机电路的特性参数的测试方法。

二、实验内容和原理1. 整机电路设计整机电路主要分为:前置电路、音调电路、功放电路、音量调节、退耦电路、电路负载、电源保护电路几部分。

其中主要部分为前置放大电路、音量调节电路、功率放大电路。

2.前置放大电路前置放大级的主要功能是:进行功率放大,同时消除自激震荡。

为了减小噪声,前置级通常选用低噪声的运放。

由A1组成的前置放大级是一个同相比例放大器,具有较高的输入电阻。

前置放大级的放大倍数:输入电阻Rif=R1,输出电阻Rof=03.音调控制级电路音调控制级的主要功能是:分别对高音和低音的信号进行调节,来满足不同声音的要求。

音调控制级通过不同的负反馈网络和输入网络,使得放大器的Af随信号频率的不同而改变,从而达到音调控制的目的。

音调控制级由音调控制网络和运算放大器A2组成,为电压并联型负反馈电路。

调节RP1和RP2可以改变放大器的Af,达到音调控制的效果。

(1)低音部分在低频区,C6、R7支路可视为开路,反馈网络主要由上半部分电路起作用,R5的影响可忽略;低音时上半部分电路实质上是一个一阶有源低通滤波器。

①RP1活动端移至A点转折频率为:②RP1活动端移至B点时转折频率为:(2)高音部分高音时,下半部分电路实质上是一个一阶有源高通滤波器。

①RP2活动端移至C点转折频率为:②RP2活动端移至D点转折频率为:4.功率放大级功率放大级的主要功能:主要进行功率放大。

语音放大实验报告

语音放大实验报告

一、实验目的与要求1.1 实验目的本次实验旨在了解和掌握语音放大电路的基本原理和设计方法,通过搭建和调试语音放大电路,验证电路的放大性能,并分析电路中各个元件的作用。

1.2 实验要求1.2.1 焊接要求在焊接过程中,要求操作规范,焊接牢固,避免虚焊和短路。

1.2.2 效果调试要求通过调试,使语音放大电路达到预期的放大效果,即输入信号能够被有效放大,且输出信号不失真。

二、实验内容2.1 实验原理与元件特性本次实验采用基于运算放大器的语音放大电路。

运算放大器具有高输入阻抗、低输出阻抗、高增益等特点,非常适合用于语音放大。

2.1.1 电路图实验电路图如下所示:```+Vcc|R1|U1 (运算放大器)|R2|R3|C1 (耦合电容)|输入信号|C2 (耦合电容)|输出信号|GND```2.1.2 功率放大器8002原理及功能介绍8002是一款低功耗、高增益、高带宽的运算放大器,广泛应用于音频放大、信号处理等领域。

2.1.3 KA2284芯片原理及功能介绍KA2284是一款高性能的音频功率放大器,具有高输出功率、低失真、低噪声等特点,适用于便携式音频设备。

2.1.4 电解电容的原理与应用电解电容具有大容量、低电压等特点,常用于滤波、耦合、去耦等电路中。

2.1.5 发光二极管的原理与介绍发光二极管(LED)是一种半导体发光器件,具有体积小、亮度高、寿命长等优点。

三、实验步骤3.1 搭建电路按照电路图连接各个元件,注意焊接质量。

3.2 调试电路1. 将输入信号接入电路,调整输入电压,观察输出信号。

2. 调整运算放大器的增益,使输出信号达到预期效果。

3. 检查电路中各个元件的连接是否正确,排除虚焊、短路等问题。

四、实验结果与分析4.1 实验结果通过搭建和调试,成功搭建了一款语音放大电路,输入信号能够被有效放大,且输出信号不失真。

4.2 实验分析1. 运算放大器在电路中起到放大信号的作用,通过调整增益,可以使输出信号达到预期效果。

音频放大实验报告总结(3篇)

音频放大实验报告总结(3篇)

第1篇一、实验背景随着科技的不断发展,音频设备在我们的日常生活中扮演着越来越重要的角色。

为了更好地理解和掌握音频放大器的工作原理和性能,我们进行了音频放大实验。

本次实验旨在通过实际操作,加深对音频放大器基本原理、电路设计以及调试方法的理解。

二、实验目的1. 掌握音频放大器的基本工作原理。

2. 学习音频放大器电路的设计与调试方法。

3. 了解音频放大器的性能指标及其测量方法。

4. 提高动手能力和团队协作精神。

三、实验原理音频放大器是一种将音频信号进行放大的电子设备。

其基本原理是将输入信号经过放大电路放大后,输出到扬声器或其他负载,使声音得到增强。

音频放大器主要包括以下几个部分:1. 输入电路:将音频信号从外部设备引入放大器。

2. 放大电路:对音频信号进行放大,包括晶体管放大电路、运算放大器放大电路等。

3. 输出电路:将放大后的音频信号输出到扬声器或其他负载。

4. 电源电路:为放大器提供稳定的电源。

四、实验内容1. 音频放大器电路设计:根据实验要求,设计一个音频放大器电路,包括电路图、元件清单、原理图等。

2. 元件选型:根据电路设计,选择合适的电子元件,如晶体管、运放、电阻、电容等。

3. 电路焊接:按照电路图,将选好的元件焊接成完整的电路。

4. 电路调试:对焊接好的电路进行调试,调整电路参数,使放大器性能达到预期效果。

5. 性能测试:对调试好的音频放大器进行性能测试,包括增益、失真度、频率响应等指标。

五、实验结果与分析1. 电路设计:根据实验要求,我们设计了一个基于晶体管放大电路的音频放大器。

电路包括输入电路、晶体管放大电路、输出电路和电源电路。

2. 元件选型:根据电路设计,我们选择了合适的电子元件,如晶体管、运放、电阻、电容等。

3. 电路焊接:按照电路图,我们将选好的元件焊接成完整的电路。

4. 电路调试:通过对电路参数的调整,使放大器性能达到预期效果。

实验结果显示,放大器的增益约为30dB,失真度小于1%,频率响应范围在20Hz-20kHz之间。

音频放大器实验报告

音频放大器实验报告

音频放大器实验报告音频放大器实验报告引言音频放大器是一种用于放大音频信号的电子设备,广泛应用于音响系统、电视机、收音机等各种音频设备中。

本实验旨在通过搭建并测试一个简单的音频放大器电路,探究其工作原理和性能特点。

实验目的1. 了解音频放大器的基本原理和工作方式;2. 掌握音频放大器电路的搭建方法;3. 测试并分析音频放大器的性能指标。

实验器材和材料1. 音频放大器芯片(例如LM386);2. 电容、电阻、电感等元件;3. 音频信号发生器;4. 示波器;5. 电源供应器;6. 音箱。

实验步骤1. 搭建音频放大器电路根据音频放大器芯片的数据手册,选择合适的电容、电阻和电感等元件,按照电路图连接电路。

确保连接正确并稳定。

2. 连接音频信号发生器和示波器将音频信号发生器的输出端与音频放大器的输入端相连,将示波器的输入端与音频放大器的输出端相连。

确保连接牢固且信号传输畅通。

3. 调节音频信号发生器和示波器调节音频信号发生器的频率和幅度,观察示波器上输出信号的波形和幅度变化。

记录下不同频率和幅度下的输出结果。

4. 测试音频放大器的性能指标通过调节音频信号发生器的频率,测量音频放大器的增益特性曲线。

记录下不同频率下的增益值,并绘制增益特性曲线图。

使用示波器观察音频放大器输出信号的失真情况,并进行分析和评估。

测量音频放大器的频率响应特性,记录下不同频率下的输出幅度,并绘制频率响应曲线图。

测试音频放大器的功率输出,通过连接音箱并调节音频信号发生器的幅度,测量音频放大器能够输出的最大功率。

实验结果与分析根据实验数据,我们可以得出以下结论:1. 音频放大器的增益特性随频率变化而变化。

在低频段,增益较高,而在高频段,增益逐渐下降。

这是由于音频放大器电路的频率响应特性所决定的。

2. 音频放大器的输出信号存在一定的失真。

失真的程度与输入信号的幅度和频率有关。

在输入信号较大或频率较高时,失真程度较高。

这是由于音频放大器的非线性特性所导致的。

音频功率放大电路实验报告

音频功率放大电路实验报告

电路与模拟电子技术实验 音频功率放大电路 一、实验目的和要求、理解音频功率放大电路的工作原理。

、学习手工焊接和电路布局组装方法。

、提高电子电路的综合调试能力。

级、音调控制级和功率放大级三部分。

作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。

它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。

为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。

为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。

扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。

装订线前置放大电路:前置放大级输入阻抗较高,输出阻抗较低。

前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。

由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。

理想闭环电压放大倍数为:231R R A vf +=输入电阻:1R R if = 输出电阻:0of =R 功率放大级:对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。

集成功率放大器通常有OTL 和OCL 两种电路结构形式。

OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。

(实验室提供本功能模块)本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。

TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。

其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。

音频功率放大电路设计实验报告

音频功率放大电路设计实验报告

音频功率放大电路设计实验报告
本实验旨在设计并完成一个频率增益为50dB的电路,可在实际应用中将输入音频信号功率放大50dB。

本次实验的计算结果显示:输入信号电压为1Vrms,输出信号电压为53.98V rms。

为了设计这样的电路,本实验采用了放大器电路。

为了有效实现50dB的增益,我们使用了具有放大器的运算放大器电路,以满足50dB的频率增益要求。

为了完成这个电路,我们挑选了一些元件,包括:一个12V的直流电源,一个电容,一个四极管,一个反馈回路,一个放大器,一个电阻,和一个场效应管(FET)。

根据真实电路设计,我们使用12V的直流电源为该电路提供动力,然后将一个电容连接到输入端以稳定输出信号的电平,以及一个四极管连接到放大器的输出端,用于实现放大器的回路控制。

之后,我们将一个反馈回路和一个放大器连接到放大器的输入端,它们可为放大器提供反馈信号,保持一定的放大幅度。

此外,为了实现电路的必要性能,我们也连接了一个电阻到放大器的输入端,以阻止多余输入信号,以及一个场效应管(FET),以减少输入电容的影响,以及改善输出电压的增益性能。

在实验完成后,我们对本实验设计的电路进行了测量和分析。

实验结果表明,在输入电压为1Vrms时,输出信号电压达到53.98Vrms,达到了设计的频率增益要求。

总的来说,本次实验得出结论,我们设计的电路可以有效地进行音频信号功率放大,其频率增益达到了设计要求。

LM187功率放大器实验报告

LM187功率放大器实验报告

LM1875音频功率放大电路实验报告1.实验器材:lm1875芯片,喇叭一个,电源及其他元件报表。

2.LM1875主要参数:电压范围:16~60V静态电流:50MmA输出功率:25W谐波失真:<0.02%,当f=1kHz,RL=8Ω,P0=20W时额定增益:26dB,当f=1kHz时工作电压:±25V转换速率:18V/μS3.电路原理:LM1875功放板由LM1875放大电路以及电源供电电路组成。

输入口处2.2u电解电容为隔直电容,防止后级的LM1875直流电位对前级电路的影响。

放大电路部分主要由LM1875、1K和20K 电阻、瓷片及电解电容等组成,电路的放大倍数由20K与1K电阻之比值决定。

0.22uF瓷片电容的作用是防止放大器产生低频自激。

本放大器可带负载阻抗为4→16Ω。

为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*15V,。

LM1875音频功率放大器的引脚如右图所示。

LM1875采用TO-220封装结构,形如一只中功率管,体积小巧,简单,且输出功率较大。

该集成电路内部设有过载过热及感性负载反向电势安全工作保护。

实验原理图4.实验步骤与调试:(1)工具准备:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝和松香水若干。

(2)准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位装散热片时螺丝很难打进去。

LM1875与散热片接触的部分必须涂少量的散热脂,以利散热。

(3)调试:电路板焊好电子元件后,要仔细检查电路板有无焊错的地方,特别要注意有极性的电子零件,如电解电容,,一旦焊反即有烧毁元器件之险,请特别注意。

放大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档。

功放板上电注意观察万用电表的读数,在正常情况下,读数应在30mV以内,否则应立即断电检查电路板。

若电表的读数在正常的范围内,则表明该功放板功能基本正常,最后接上音箱,输入音乐信号,上电试机。

音频功率放大器实验报告

音频功率放大器实验报告

音频功率放大器实验报告音频功率放大器实验报告引言:音频功率放大器是一种能够将输入信号放大到足够大的功率输出的电子设备。

它在音响系统、电视机、汽车音响等各种应用中都起到了至关重要的作用。

本实验旨在研究音频功率放大器的工作原理、性能参数以及应用。

一、实验目的本实验的主要目的是通过实际操作,了解音频功率放大器的基本原理和工作过程,掌握其性能参数的测量方法,并对其应用进行初步探索。

二、实验装置与方法实验所需装置包括音频功率放大器、信号发生器、示波器、电阻箱等。

首先,将信号发生器的输出与音频功率放大器的输入相连,通过调节信号发生器的频率和幅度,观察放大器输出的波形和幅度变化。

然后,通过示波器测量放大器的输入输出电压、电流,计算功率放大倍数等性能参数。

三、实验结果与分析在实验过程中,我们观察到音频功率放大器能够将输入信号放大到较大的幅度,并且保持波形的准确性。

通过调节信号发生器的频率,我们发现放大器对不同频率的信号有不同的放大效果。

在低频时,放大器的输出更加稳定,而在高频时,输出波形可能发生畸变。

通过示波器的测量,我们得到了音频功率放大器的输入输出电压、电流数据,并计算出了功率放大倍数。

实验结果显示,放大器的功率放大倍数与输入信号的幅度成正比,而与频率无关。

这说明音频功率放大器对信号的放大是线性的,没有频率响应的变化。

四、实验应用与展望音频功率放大器在现代生活中有着广泛的应用。

它不仅可以用于音响系统、电视机等娱乐设备,还可以应用于医疗设备、通信系统等领域。

在未来的研究中,我们可以进一步探索音频功率放大器的工作原理,优化其性能参数,提高其功率放大倍数和频率响应范围。

此外,随着科技的不断发展,音频功率放大器也在不断更新换代。

新型的功率放大器采用了数字信号处理技术,具有更高的效率和更低的失真。

未来的研究可以关注这些新技术的应用和发展,以满足人们对音频放大器的更高要求。

结论:通过本次实验,我们对音频功率放大器的工作原理、性能参数以及应用有了初步的了解。

OCL音频功率放大器设计实验报告

OCL音频功率放大器设计实验报告

O C L音频功率放大器设计调试报告班级 11级电子(2)班学号 201172020247姓名芮守婷2013 年 6月 5日一、实验目的1、通过亲自实践,用分立元件搭接焊接成一个低频功放,在使其正常工作的基础上通过调试以达到优化的目的;2、通过此次试验验证模拟电子技术的有关理论,进一步巩固自身的基本知识和基础理论。

3、通过实验过程培养综合运用所学知识解决实际问题的工作能力;4、同时提高提高团队意识,加强协作精神。

二、指标要求1、输出功率:≧20W2、负载:8欧3、电压增益:40dB4、带宽:10HZ~40KHZ三、功放的分类及简单介绍功率放大器(简称功放)的作用是给音频放大器的负载RL(扬声器)提供一定的输出功率。

当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。

音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。

音频频率范围约为20 Hz~20 kHz,因此放大器必须在此频率范围内具有良好的频率响应。

本设计中要求设计一个实用的音频功率放大器。

功率放大电路的电路形式很多,有双电源供电的OCL互补对称功放电路,单电源供电的OTL功放电路,BTL桥式推挽电路和变压器耦合功放电路,等等。

我选用的是双电源供电的OCL互补推挽对称功放电路。

此推挽功率放大器的工作状态为甲乙类。

推挽功率放大器的工作状态之所以设为甲乙类而不是乙类,其目的是为了减少“交越失真”。

若设置为乙类状态,由于两管的静态工作点取在晶体管输入特性曲线的截止点上,因而没有基极偏流。

这时由于管子输入特性曲线有一段死区,而且死区附近非线性又比较严重,因而在有信号输入、引起两管交替工作时,在交替点的前后便会出现一段两管电流均为零或非线性严重的波形;对应地,在负载上便产生了交越失真。

将工作状态设置为甲乙类便可大大减少交越失真。

这时,由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。

音频功率放大电路实验报告(优选.)

音频功率放大电路实验报告(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________一、实验目的和要求1、理解音频功率放大电路的工作原理。

2、学习手工焊接和电路布局组装方法。

3、提高电子电路的综合调试能力。

4、通过myDAQ 来分析理论数据和实际数据之间的关系。

二、实验内容和原理(必填)音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。

按其构成可分为前置放大级、音调控制级和功率放大级三部分。

作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。

它们的输出信号差异很大,因此,音频功放电路中设置前置专业:姓名: 学号:装订线点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级 v v放大级以适应不同信号源的输入。

为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。

为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。

扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。

前置放大电路:前置放大级输入阻抗较高,输出阻抗较低。

前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。

由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。

理想闭环电压放大倍数为:231R R A vf +=输入电阻:1R R if =输出电阻:0of =R功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。

音频放大电路实验报告(共9篇)

音频放大电路实验报告(共9篇)

音频放大电路实验报告(共9篇)音频功率放大器实验报告一、实验目的1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能;2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法;3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。

4)培养设计开发过程中分析处理问题的能力、团队合作的能力。

二、实验要求1)设计要求设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。

要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标:(1)频带宽度50Hz~20kHz,输出波形基本不失真;(2)电路输出功率大于8W;(3)输入阻抗:≥10kΩ;(4)放大倍数:≥40dB;(5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围;(6)所设计的电路具有一定的抗干扰能力;(7)具有合适频响宽度、保真度要好、动态特性好。

发挥部分:(1)增加电路输出短路保护功能;(2)尽量提高放大器效率;(3)尽量降低放大器电源电压;(4)采用交流220V,50Hz电源供电。

2)实物要求正确理解有关要求,完成系统设计,具体要求如下:(1)画出电路原理图;(2)确定元器件及元件参数;(3)进行电路模拟仿真;(4)SCH文件生成与打印输出;(5)PCB文件生成与打印输出;(6)PCB版图制作与焊接;(7)电路调试及参数测量。

三、实验内容与原理音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。

按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。

v图1 音频功率放大器的组成框图1)前置放大级音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。

音频放大器设计实训报告

音频放大器设计实训报告

一、引言随着科技的不断发展,音频设备在人们日常生活中扮演着越来越重要的角色。

音频放大器作为音频设备的核心部件,其性能直接影响着音频播放的质量。

为了更好地理解和掌握音频放大器的设计原理和制作方法,我们进行了音频放大器设计实训。

本报告将对实训过程进行详细阐述,包括实训目的、实验原理、实验器材、实验步骤、实验结果与分析以及实验总结。

二、实训目的1. 理解音频放大器的基本原理和设计方法。

2. 掌握模拟电路的基本知识和技能。

3. 提高动手能力和团队合作精神。

4. 分析和解决音频放大器设计过程中遇到的问题。

三、实验原理音频放大器是一种将输入信号放大到足够大的输出功率,以驱动扬声器或其他负载的电路。

本实训采用甲乙类互补对称功率放大器作为实验电路,其原理如下:1. 输入信号经过输入耦合电容C1,进入差分放大电路,放大后的信号分为正负两部分。

2. 正负两部分信号分别经过推动级电路,推动晶体管Q1和Q2。

3. 经过推动级电路的信号进入功率放大级电路,通过晶体管Q3和Q4放大。

4. 放大后的信号经过输出耦合电容C2,驱动扬声器或其他负载。

四、实验器材1. 30W烙铁1个2. 焊锡(若干)3. 软线(若干)4. 电源线30cm(d0.7mm)5. 两孔插头1只6. 25W的220V(50HZ)—24V变压器1个7. 3W整流桥1只8. 2只2200uF的电解电容9. 2只470uF的电解电容10. 3只100nF的电容11. 1个双音频插头12. 1个8Ω10W的喇叭13. 1只10uF的电解电容14. 1只100uF的电解电容15. 3个50K的电位器16. 2个500Ω的电位器17. 3个4.7K的电阻18. 1个220Ω的电阻19. 2个15pF的电容20. 3个3904晶体管21. 2个3906晶体管22. 2个T1P41晶体管23. 2块散热片24. 2个1N4148开关二极管25. 10Ω、220Ω、470Ω、33Ω的电阻各1个五、实验步骤1. 根据电路原理图,搭建甲乙类互补对称功率放大器电路。

音频放大电路实验报告

音频放大电路实验报告

音频放大电路实验报告音频放大电路实验报告概述:音频放大电路是一种常见的电子电路,用于增强音频信号的强度,使其能够驱动扬声器或耳机等输出设备。

本实验旨在通过搭建一个简单的音频放大电路,探究其原理和性能。

实验材料:1. 音频信号发生器2. 电容、电阻、晶体管等元器件3. 示波器4. 扬声器实验步骤:1. 搭建音频放大电路:根据电路图,连接电容、电阻和晶体管等元器件,搭建音频放大电路。

确保连接正确、无误。

2. 调节音频信号发生器:将音频信号发生器连接至电路输入端,调节发生器的频率和幅度,以产生不同的音频信号。

3. 连接示波器:将示波器连接至电路的输出端,用于观察和记录音频信号的放大效果。

4. 测量音频信号的放大倍数:通过示波器,测量输入和输出信号的幅度,并计算音频信号的放大倍数。

5. 连接扬声器:将扬声器连接至电路的输出端,以听到放大后的音频信号,并观察其音质和音量。

实验结果:通过实验,我们观察到音频信号经过放大电路后,其幅度得到了显著增强。

示波器显示的波形图表明,输出信号的振幅大于输入信号的振幅,即音频信号经过放大电路后得到了放大。

通过计算输入和输出信号的幅度,我们得到了音频信号的放大倍数。

同时,连接扬声器后,我们听到了放大后的音频信号,其音质和音量比原始信号更好。

讨论与分析:音频放大电路通过增加电流或电压的幅度,将弱音频信号放大至足够驱动输出设备的水平。

在本实验中,我们采用了晶体管作为放大元件。

晶体管具有较高的放大倍数和工作稳定性,适用于音频放大电路。

然而,实际的音频放大电路设计要考虑多种因素,如频率响应、失真和噪声等。

频率响应指的是电路对不同频率信号的放大程度,应保持平坦且在所需频率范围内保持一致。

失真是指输出信号与输入信号之间的畸变,应尽量减小。

噪声是指电路本身产生的杂音,应尽量降低。

在实际应用中,音频放大电路常用于音响设备、无线电和电视等领域。

不同的应用场景对音频放大电路的要求有所不同,需要根据具体需求进行电路设计和优化。

功率放大实验报告

功率放大实验报告

一、实验题目集成运放音频功率放大电路分析 二、设计要求音频功率放大电路的设计不仅要求对音频信号进行功率放大以有足够的功率驱动扬声器发声,同时要求音质效果良好。

要实现功率放大,不仅要求对电流进行放大,而且要求有足够的电压放大倍数。

利用集成运放对电压信号进行放大,不仅可减小元器件的数量,而且会使电路更加稳定。

三、设计原理根据设计要求,在输入电压幅度为(5~10)mV 、等效负载电阻RL 为8Ω时,放大通道应满足额定输出功率Po ≥2W 。

设输出电压有效值为Ursm ,输出功率为Po ,则所以,总体电路要求的电压放大倍数为预期的输出电压有效值除以输出电压有效值再加上一定的设计余量,电压放大倍数约为400~1000倍。

单级电路不易实现如此大的放大倍数同时保持电路性能,所以需要采用多级放大电路。

考虑到多级放大电路虽然可以提高电路的增益,但级数太多也会使通频带变窄,所以,下面采用三级放大设计。

四、基本思路 一级、二级电路组合以实现电压放大(各提供约20倍的放大倍数),同时加入改善音质的设计(滤波器);第三级功放放大电流,同时对电压倍数进行调节。

为了保证电路安全可靠,通常使电路最大输出功率POM 比额定输出功率Po 要大一些,则一般取所以,最大输出电压VOM 应根据最大输出功率POM 来计算:考虑晶体管饱和压降等因素,放大器VOM 总是小于电源电压。

令电源电压利用率:一般为:0.6 ~ 0.8考虑功放的供电电源大小,最后选择电源VCC 为15V 。

一、设计步骤(1)前置放大电路设计前置放大电路的作用是对微弱输入信号进行放大,如图所示电路,为一个反相比例放大器,其电压放大倍数为20。

电路的输入信号约为10mV 、20Hz~30kHz 的交流信号。

V R P U L o rsm 4≥=()OOM P P 2~5.1=LOM OM R P V 2=CC OMV V =η3.1382226.01211=⨯⨯⨯===L OM OM CC R P V V ηη音频功率放大器的设计要求电路有足够的带宽,噪声足够小,以及谐波失真足够小,这就要求选择各级电路中合适的运算放大器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学测试答题纸(以论文、报告等形式考核专用)二○○九~二○一零学年度第一学期课程编号2316990502 课程名称实用电子电路设计主讲教师潘飞蹊评分姓名许春光专业年级电子科学和技术2007级学号2007160173教师评语:题目:音频功率放大电路实验实验报告音频功率放大电路实验实验报告一、前言本实验的内容是设计和制备一个可以供多媒体音箱使用的音频功率放大电路,从而了解音频功率放大电路的基本结构和工作原理,同时也进一步加深对模拟电路中所学知识的掌握和认识,并通过单元电路的分析,了解电路系统设计的步骤和组合方法。

实验中重点要求复习和掌握运算放大器的基本使用方法,即运放同相比例放大和反相比例放大器的结构,计算和运用。

同时也要求复习和掌握有源滤波电路的基本结构和原理。

在电路设计中和实验中也需要了解对元器件的选择标准,掌握一些常用元件的性能。

另外,在本实验中还增加了一部分线性直流稳压电源的内容,要求通过实验掌握线性稳压电源的基本结构、工作原理以及三端集成稳压器的使用方法,同时复习和加深对桥式整流电路理解。

二、实验电路原理分析本实验的内容是设计和制备一个可以供多媒体音箱使用的音频功率放大电路,整体功能框图如图1 所示,可以分为音频放大和直流电源两大部分。

其中音频放大电路的功能是将其它电子设备(如MP3,计算机声卡,VCD 机等)的音源信号进行放大,然后再经过功率放大,最后去推动扬声器输出,简单来说,就是一个扩音器,但为了提高声响的品质,内部要求有能够对高音和低音进行调节的均衡电路(即音调电路)。

直流电源部分则负责将220V 的交流电源转换为低压直流电供放大电路使用,同时,为了减小电源电压波动引起的噪声对放大电路的影响,电源部分要求采用线性直流稳压电源。

在音频放大电路中,左右声道的放大结构完全相同,因此以下的分析中不对左右声道单独区分。

三、直流电源的分析良好的直流电源是提高音频放大电路品质的关键因素之一。

一般的多媒体音箱中为了节约成本,都仅仅采用了全桥整流和电容滤波电路产生直流电源提供给音频放大电路使用。

这时的直流电压源含有较高的脉动成分,直接用作音频放大电路的电源时效果欠佳,有可能影响音质,因为电源中的脉动成分会作为干扰信号被逐级放大,甚至在扬声器中产生明显的交流噪声,影响音响系统的保真度。

为了提高直流电源的稳定性,本实验的设计中专门增加了两组线性稳压电路,其中一组设计为具有较大的输出功率,由三端集成稳压器构成,专门提供给音频放大电路中的功率放大部分使用;另外一组则是小功率输出的,由运放、基准源等分立器件构成,专门提供给音频放大电路中的前置放大和均衡电路使用,通过对这一部分电路的学习和了解,可以掌握线性集成稳压电源的基本结构和工作原理:其本质就是运算放大器的同相比例放大或反相比例放大。

1、全桥整流电路从图 1 中可以看到,220V 的交流电源经变压器降压后,由全桥整流电路输出直流,再由稳压电路输出稳定的直流,提供给放大电路使用。

在设计中,音频放大电路部分需要对称的双电源,因此必须选择次级有三端抽头(双绕组)的变压器,如图2(a)所示,经全桥电路整流和电容C1 至C4 滤波后,输出对称的正负电源(图2 中电路节点标记为DC+和DC-)。

2、三端集成稳压器构成的大功率线性直流稳压电源要构成线性直流稳压电源,最简单的方法就是采用三端集成稳压器。

这种集成电路块内部完整地集成了采样电路、比较放大、调整电路、保护电路和启动电路等功能,但是外部引脚只有三个端口,分别接输入电源(Vin),地(GND),另一个端口输出,其使用十分简单,只要将三个端口按规定接入电路就可以使用。

典型和常用的三端集成稳压器有78XX / 79XX 系列。

其中78XX 系列用于产生正电源,79XX 系列用于产生负电源,标号XX 则代表输出电压。

如图2(b)所示,分别采用一只7812 和一只7912 集成块,按规定连接,就可以产生+12V 和-12V的稳压电源输出。

3、线性直流稳压电源的基本结构所有线性直流稳压电源的基本结构都可以理解为一个运算放大器构成的同相比例放大电路(或反相比例放大电路)。

图3(a)是一个三端集成稳压器的典型结构框图,由启动、偏置和保护等电路共七个部分组成。

其中偏置电路为集成电路内部所有模块的工作提供适当的静态偏置;启动电路则仅仅是在开始工作的时候激励偏置电路正常工作;保护电路则提供过温和过流保护,防止工作时温度太高或输出电流太大而烧毁电路。

其余四个部分:基准电压,比较放大,调整电路和采样反馈放大是理解稳压电源的关键,其本质就是一个运放的同相比例放大器,如图3(b)所示。

其中基准电压的作用就是产生一个不随外部电压,不随温度变化的标准电压,在集成电路中这一电压通常采用带隙式基准源,其原理在此不具体介绍。

比较放大器本质上就是一个运算放大器,基准电压输入比较放大器的同相端。

而调整电路的本质则是一只晶体管,也叫做调整管,在集成电路中通常采用复合管来增强电流输出能力和β值。

在电路中,调整管和比较放大器复合在一起可以简单地看成一只具有大电流输出能力的运算放大器。

电阻R1 和R2 构成的采样电路,其本质就是同相比例放大器中的反馈电阻。

这样,整体电路就可以看成是由一个具有大电流输出能力的运算放大器构成的一个同相比例放大器,有:当外部的输入电压发生变化时,只要基准电压不发生变化,则输出的电压也不会发生变化,调整电阻R1 和R2 的取值,则可以调整输出电压。

这就是线性直流稳压电源的基本原理。

另外,从以上对于线性直流稳压电源的简单分析和介绍中,还可以看到这种电路的几个重要特点:1、线性直流稳压电源只能实现降压处理,即输出电压一定低于输入电压。

2、调整管必须工作在线性放大区,电路才能正常工作。

这也是这种电路叫做线性稳压电路的原因。

3、如果不考虑控制部分的电流,调整管的集电极电流和发射极电流相等,亦即输入和输出电流相等,则:当输入输出电压差值较大时,电源的效率较低,功耗都损失在调整管的集电极上。

因此,在功耗较大时,调整管应该加装合适的散热器。

4、对电源部分反思1.假如我们要改变PVCC和PVEE电压,只要选择电压符合的三端稳压管芯片即可。

如假如要把PVCC 和PVEE的电压值变为正负18V,那么用7818和7918两个三端稳压芯片组合在一起就可也。

2.假如我们要把SVCC和SVEE的电压值改变,由于线性直流稳压电源为一个用输入电压为其电源的,其输输出端的电压为电压的反相或同相放大器(主要利用了运放对电源抑制的特性,把纹波大的输入电压,变为纹波小的输出电压)。

所以加入我们要改变SVCC和SVEE的电压值,我们只要改变其放大倍数即可。

例如图三所示的电路,只要调节R1和R2的值就能改变SVCCS和VEE的电压值。

四、音频放大电路的分析1、前置放大前置放大器的作用简单说来就是“缓冲”,将外部输入的音源信号进行放大并输出。

外部音源信号由较长的导线输入,并且信号源可能存在较高的内阻,电流输出能力不强,因此需要“缓冲”来将其转换为低内阻的信号源,以便驱动后级电路。

所以前置放大电路是个输入阻抗大,输出阻抗小的放大电路。

其起到了一个阻抗匹配和预放大作用。

2.均衡电路(音调电路)均衡电路是由低通、高通、带通等滤波器组成的,可以对音调进行控制的电路,听者可以根据具体需求,对声音信号中某些频率段的增益(放大倍数)进行调整。

常用的均衡电路只是对高频段或低频段的增益进行提升或衰减,而中频段的增益保持不变。

均衡电路可以用无源的RC 滤波网络来构成,也可以用运算放大器组成的有源滤波网络来构成,图7(a)是本实验设计的电路中采用的均衡电路,由运算放大器构成,可以对高频段和低频段的增益分别进行提升/衰减。

首先对图7(a)的均衡电路功能和部分元件取值作一简要说明。

RP1 和RP2是两只可调电位器,其中RP1 对低频音调进行控制,而RP2 则对高频音调进行调节:当电位器从右滑旋向左时,相应的低频/高频音量提升;反之,当电位器从左滑旋向右时,相应的低频/高频音量衰减。

一般来说,均衡电路设计时要求音调的提升/衰减量大约为±20DB(分贝),即放大倍数有0.1∼10 倍的调节能力。

3、功率放大电路外部音源信号经过前置放大、均衡放大后,输入最后的功率放大级,然后就可以输出去驱动扬声器,发出声音。

本实验中的功率放大器采用TDA2030 集成块,其本质就是一个运算放大器,和其它小信号放大用的运放相比,有较大电流输出能力,可以输出较大的功率。

本实验电路设计中采用的是双电源下工作的OCL 电路,具体如图10 所示:下面对其做一简介。

RP3 是一只电位器,作用是进行音量(Volume)调节。

输入信号(均衡电路的输出信号)通过耦合电容C1 后,再由RP3 进行分压调节,连接到TDA2030 的同相端。

电阻R1、R2 组成反馈回路,和TDA2030 构成了一个同相比例放大电路,这一部分就是整个功率放大电路的核心,本质和普通运放完全一致。

需要说明的是电容C2 同样是一只耦合电容,作用同样是“隔直通交”,使功率放大器仅仅对交流信号产生放大作用,而对直流信号不产生任何放大:1、对于直流信号,电容C2 相当于“开路”,此时电阻R2 不起作用,功率放大器和电阻R1 构成的是一个电压跟随器。

由于电位器RP3 是通过电容C1 和前级电路耦合,因此RP3 上的直流电位一定为零,同时可以保证功率放大器的输出也一定为零,即有“零输入,零输出”的性质。

2、对于交流信号,电容C2 相当于“短路”,此时电阻R1 和R2 组成同相比例放大器反馈回路,功率放大器的交流电压放大倍数为:3.D1、D2 是两只起保护作用的二极管,反向并联在功率放大器的输出端和电源之间,虽然对电路的理论分析和理解没有作用,但在实际电路中则必不可少,原因在于扬声器。

扬声器并不是简单的纯阻性负载,而是线圈和永磁体复合组成的,当扬声器的线圈振动时,切割磁力线会产生感生电动势,这种感生电动势反过来加在功率放大器的输出端口,太大的话有可能造成功率放大器的损坏。

二极管D1、D2 在电路正常工作时处于反向,是不导通的,对电路工作没有影响,而如果感生电动势过大,超过了电源电压的范围,则开始导通,将输出端的感生电动势进行钳位,保护功率放大器不会损坏。

4.电阻R3 和电容C3 串接在电路的输出端,和扬声器一起可以看成功率放大器的负载,其作用是对扬声器的频响特性进行补偿,使功率放大器输出端的总负载趋近于纯阻性。

它们的补偿作用可以用以下简单的分析来做一个定性理解。

五、数据测量和分析1.输入阻抗: 27.8 (欧姆)2.静音输出噪声电平(V): 3mv由测得的数据可知,在没有信号输入时,整个电路的输出噪声信号非常小,因此该电路在没信号时非常“静”。

相关文档
最新文档