新八年级数学上期中试卷含答案
山西省太原市2023-2024学年八年级上学期期中数学试题(含答案)
2023~2024学年第一学期八年级期中学业诊断数学试卷(考试时间:上午8:00-9:30)说明:本试卷为闭卷笔答,不允许携带计算器.答题时间90分钟.一、选择题(本大题共10个小题.在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置)1.有理数16的算术平方根是()A.8B.±8C.4D.±42.下列各点,位于第三象限的是()A. B. C. D.3.如图,用两个边长为1的小正方形拼成一个大正方形,则下列关于大正方形边长的说法正确的是()A.是整数B.满足C.是分数D.是无理数4.现有长度为4cm ,5cm ,8cm ,12cm ,13cm 的五根细木条,若选择其中的三根首尾顺次相接,恰好能摆成直角三角形的是()A.4cm ,5cm ,8cmB.5cm ,8cm ,12cmC.5cm ,12cm ,13cmD.8cm ,12cm ,13cm5.下列运算正确的是()C.6.在学习勾股定理时,小明利用右图验证了勾股定理.若图中,,则阴影部分直角三角形的面积为()A.5B.25C.D.7.A. B. C. D.8.将所有满足关系式的,的值作为点的坐标,这些点在平面直角坐标系中组成的图形可()3,2-()3,2--()3,0-()0,2-a a a 24a =a a ==2==3a =4b =52252±23y x =+x y (),x y能是()A. B. C. D.9.如图的数轴上,点,对应的实数分别为1,3,线段于点,且长为1个单位长度.若以点为圆心,长为半径的弧交数轴于0和1之间的点,则点表示的实数为()A.D.10.若点,,在一次函数(是常数)的图象上,则,,的大小关系是()A. B. C. D.二、填空题(本大题共5个小题.把答案写在题中横线上)11._____________.12.如图是杭州第19届亚运会火炬传递路线示意图.若以“杭州站”为原点建立平面直角坐标系,“金华站”的坐标可表示为,则“台州站”的坐标可表示为_____________.13.已知正比例函数的图象经过点,则此正比例函数的表达式为_____________.14.如图,在中,,,,若的平分线交于点,则的长为_____________.A C AB AC ⊥A AB C BC P P 321-3()12,A y -()23,B y ()31,C y 3y x m =-+m 1y 2y 3y 123y y y >>213y y y >>132y y y >>321y y y >>()1,3--()0y kx k =≠()4,2P Rt ABC △90C ∠=o 4AC =3BC =ABC ∠AC D AD15.包装纸箱是我们生活中常见的物品.如图1,创意DIY 小组的同学将一个的长方体纸箱裁去一部分(虚线为裁剪线),得到图2所示的简易书架.若一只蜘蛛从该书架的顶点出发,沿书架内壁爬行到顶点处,则它爬行的最短距离为_____________cm.三、解答题(本大题共8个小题.解答应写出必要的文字说明、演算步骤或推理过程)16.计算下列各题:(1);(2;(3)(417.在如图所示的平面直角坐标系中,线段的两个端点,的坐标分别为,,点在轴负半轴上,且到轴的距离为2个单位长度.(1)请在图中标出点的位置;(2)将点,的纵坐标分别乘-1,横坐标不变,得到点,,请在图中画出;(3)请在图中画出,使它与(2)中得到的关于轴对称.若点是线段上的任意一点,则点在上的对应点的坐标为___________.18.北京时间10月2日,在杭州亚运会女子撑杆跳高决赛中,李玲刷新了由个人保持的赛会纪录,以4米6310cm 30cm 40cm ⨯⨯A B -+()21-+AB A B ()3,4-()5,1-C x y C A B 1A 1B 11A B C △222A B C △11A B C △y ()2,P m n 22A B 2P 11A B 1P夺冠,实现了个人亚运会三连冠.据研究,撑杆跳高运动员起跳后身体重心提高的高度(米)与其起跳速度(米/秒)之间满足(其中米/秒).若某运动员在训练中要使起跳后身体重心提高4米,则其起跳时的速度应为多少?,结果保留整数)19.如图,已知等边顶点,的坐标分别为,,且顶点在第一象限,求点的坐标.20.清德铺位于清徐县徐沟镇正南5公里,该村种植红薯由来已久,据传从清光绪时就开始享誉龙城,2018年获国家农产品地理标志登记保护.红薯丰收时节,某农户启动线上销售,每千克红薯的定价为3元,当销售量不超过10千克时,每笔订单均收取6元的快递费;当销售量超过10千克时,免快递费.设每笔线上红薯订单的销售量为千克,每笔订单的总收款额为元.(1)当时,与之间的函数关系式为_________________;当时,与之间的函数关系式为_________________________;(2)一笔10千克的线上红薯订单,总收款额为多少元?(3)若一笔订单的总收款额为108元,求这笔订单的销售量.21.校园内有一处池塘,数学实践小组的同学想利用所学知识测量池塘两端,两点之间的距离,他们的操作过程如下:①沿延长线的方向,在池塘边的空地上选点,使米;②在的一侧选点,恰好使米,米;③测得米.请根据他们的操作过程,求出,两点间的距离.h v22v h g=10g =2.24≈ABC △A B ()1,0-()3,0C C x y 010x <≤y x 10x >y x A B AB C 6BC =AC D 8BD =10CD =17AD =A B22.阅读下列材料,解答相应的问题:研究函数的图象一般要研究其形状、位置、图象特征(如对称性).借助图象我们可以直观地得到函数的性质.例如,在研究正比例函数的图象时,通过列表、描点、连线等步骤,得到如下结论:①的图象是经过原点的一条直线;②的图象经过坐标系的第一、三象限.小文借鉴研究正比例函数的经验,对新函数的图象展开探究,过程如下.①根据函数表达式列表:...-3-2-10123......246...②在如图所示的坐标系中描点、连线,画出函数的图象.备用图(1)请你将小文列表、描点、连线的过程补充完整;2y x =2y x =2y x =2y x =2y x =x2y x=(2)请从A ,B 两题中任选一题作答.我选择__________题.A.根据小文的探索过程,类比研究图象时得到的结论,写出函数图象的两个结论.B.小文类比探索函数图象的过程,借助下面的平面直角坐标系,进一步研究函数(为常数,且)的图象.他从特殊到一般选取,,,…等具体情况,通过列表、描点、连线等步骤,画出它们的图象,并归纳出函数图象的一般结论,请你帮他总结得到的结论.(写出任意两条即可)23.如图,在平面直角坐标系中,一次函数的图象分别与轴、轴交于点,,点是线段上的一个动点(不与点,点重合),过点作轴的垂线交直线于点,在射线上取点,使.设点的横坐标为.(1)求,两点的坐标;(2)若点落在直线上,求的值;(3)请从A ,B 两题中任选一题作答.我选择_________题.A.若线段的长等于的一半时,求的值.B.若的面积等于面积的一半,求的值.2023-2024学年第一学期八年级期中学业诊断数学参考答案与等级评定建议一、选择题(本大题含10道小题,每小题3分,共30分)题号12345678910答案CBDCDDABAC二、填空题(本大题含5道小题,每小题3分,共15分)11.-212.13.14.15.50三、解答题(本大题含8道小题,共55分)16.(本题12分,每小题3分)解:(1)原式2分2y x =2y x =2y x =y kx =k 0k ≠3k =2k =-12k =y kx =132y x =-+x y A B C OA O A C x AB D CD E 2CE OC =C m A B E AB m DE OB m ABE △AOB △m ()3,4-12y x =52=+.……………………3分(2)原式.…………………………1分…………………………2分.………………………………3分(3)原式.…………………………2分………………………………3分(4)原式2分.…………………………3分17.(本题4分)解:(1)如图点即为所求;……………………1分(2)如图即为所求;…………………………2分(3)如图即为所求;…………………………3分点的坐标为.………………………………4分18.(本题4分)解:将,代入,得,………………1分即.====201=-++21==-=C 12A B C △122A B C △1P (),m n -4h =10g =22v h g =24210v =⨯280v =由题意,得,所以,………………2分,所以(米/秒).……………………3分答:他起跳时的速度约为9米/秒.……………………4分19.(本题5分)解:过点作轴于点.,,,,.……………………1分是等边三角形,,.……………………2分.……………………3分在中,由勾股定理得,……………………4分点在第一象限,点的坐标为.……………………5分20.(本题7分)解:(1);;…………………………2分(2)当时,,……………………3分答:此笔订单的总收款额是36元……………………4分(3)因为,所以.……………………5分所以把代入,得,……………………6分解,得.答:此笔订单的销售量是36千克.……………………7分21.(本题5分)解:米,米,米,0v >v ==2.24≈4 2.248.969v ≈⨯=≈C CD x ⊥D ()1,0A -Q ()3,0B 1OA ∴=3OB =4AB =ABC Q △4AC AB ∴==122AD AB ==1OD AD OA ∴=-=Rt ACD △CD ===Q C ∴C (1,36y x =+3y x =10x =310636y =⨯+=10836>10x >108y =3y x =3108x =36x =6BC =Q 8BD =10CD =,,………………1分,………………2分是直角三角形,其中………………3分.米,在中,由勾股定理得,米.……………………4分答:,两点间的距离为15米.……………………5分22.(本题6分)解:(1)表中依次填入:-6,-4,-2;………………………………1分描点、连线如图所示;…………………………2分(2)结论如下:(写对一个结论得2分,共4分)…………………………6分A.①的图象是以原点为公共端点的两条射线;②的图象经过坐标系的第一、二象限;③的图象关于轴对称;④的图象的最低点是;B.①的图象是以原点为公共端点的两条射线;②的图象经过坐标系的第一、二象限;③的图象关于轴对称;222268100BC BD ∴+=+=2210100CD ==222BC BD CD ∴+=BCD ∴△90DBC ∠=o 18090ABD DBC ∠∠∴=-=o o 17AD =Q ∴Rt ACD △15AB ===A B 2y x =2y x =2y x =y 2y x =()0,0y kx =y kx =y kx =y④的图象的最低点是;⑤的绝对值越大,的图象越靠近轴.23.(本题12分)解:(1)把代入,,所以,.……………………1分把代入,得,解,得,所以,.……………………2分(2)因为点在线段上,且横坐标为,所以,.……………………3分因为,所以.因为轴,所以.……………………4分因为点在线段上所以把代入,得,……………………5分解,得.……………………6分(3)A.因为轴交直线于点,所以.……………………7分所以.………………8分由(1)得,,所以.因为,所以.………………9分当时,解,得;……………………11分当时,解,得.……………………12分B.因为轴交直线于点,y kx =()0,0k y kx =y 0x =132y x =-+3y =()0,3B -0y =132y x =-+1302x -+=6x =()6,0A C AB m OC m =2CE OC =2CE m =CE x ⊥(),2E m m C AB (),2E m m 132y x =-+1232m m =-+65m =CE x ⊥AB D 1,32D m m ⎛⎫-+⎪⎝⎭1523322DE m m m ⎛⎫=--+=- ⎪⎝⎭()0,3B -3OB =12DE OB =53322m -=53322m -=95m =53322m -=-35m =CE x ⊥AB D所以.………………7分所以.………………8分因为,,所以,,所以.……………………9分因为.因为,所以,即.………………10分所以.当时,解,得;……………………11分当时,解,得.……………………12分【评分说明】以上解答题的其他解法,请参照此标准评分.1,32D m m ⎛⎫-+ ⎪⎝⎭1523322DE m m m ⎛⎫=--+=- ⎪⎝⎭()6,0A ()0,3B 6OA =3OB =1163922AOB S OA OB =⨯⨯=⨯⨯=△1122ABE BDE ADE S S S DE OC DE AC =+=⨯⨯+⨯⨯△△△()12DE OC AC =⨯⨯+132DE OA DE =⨯⨯=12ABE AOB S S =△△1392DE =⨯32DE =53322m -=53322m -=95m =53322m -=-35m =。
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。
辽宁省大连市高新区2023-2024学年八年级上学期期中数学试卷 (含解析)
辽宁省大连市高新区2023-2024学年八年级上学期期中数学试卷(解析版)一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或127.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.610.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= .12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 .13.(3分)一个n边形的每个内角都等于144°,则n= .14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = .15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= °.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 .三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ,b= .四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC于F,CF=2,BH=3,请画出图形,并求AB的长.参考答案与试题解析一、选择题(本题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项正确)1.(2分)剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,不是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【解答】解:选项A、B、D均能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;选项C,不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)正八边形的外角和为( )A.540°B.360°C.720°D.1080°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵任意多边形的外角和等于360°,∴正八边形的外角和等于360°,故选:B.【点评】本题考查了多边形的外角,掌握多边形的外角和等于360°是解题的关键.3.(2分)在下列长度的四根木棒中,能与5cm、9cm长的两根木棒钉成一个三角形的是( )A.3cm B.4cm C.5cm D.14cm【分析】根据三角形的三边关系确定第三边的范围,判断即可.【解答】解:设第三边的长为xcm,则9﹣5<x<9+5,即4<x<14,∴四根木棒中,长度为5cm的木棒,能与5cm、9cm长的两根木棒钉成一个三角形,故选:C.【点评】本题考查的是三角形的三边关系,熟记三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.4.(2分)在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标是( )A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:D.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5.(2分)根据下列已知条件,不能画出唯一△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=3【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=60°,∠B=45°,AB=4,符合全等三角形的判定定理ASA,能画出唯一的△ABC,故本选项不符合题意;B.∠A=30°,AB=5,BC=3,不符合全等三角形的判定定理,不能画出唯一的△ABC,故本选项符合题意;C.∠B=60°,AB=6,BC=10,符合全等三角形的判定定理SAS,能画出唯一的△ABC,故本选项不符合题意;D.∠C=90°,AB=5,BC=3,符合全等直角三角形的判定定理HL,能画出唯一的△ABC,故本选项不符合题意;故选:B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6.(2分)若等腰三角形的两边长分别为2和5,则它的周长为( )A.9B.7C.12D.9或12【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.(2分)如图,已知△ABC≌△BDE,∠ABC=∠ACB=70°,则∠ABE的度数为( )A.25°B.30°C.35°D.40°【分析】先根据三角形内角和计算出∠A=40°,再根据全等三角形的性质得到∠DBE=∠A=40°,然后计算∠ABC﹣∠DBE即可.【解答】解:∵∠ABC=∠ACB=70∴∠A=180°﹣70°﹣70°=40°,∵△ABC≌△BDE,∴∠DBE=∠A=40°,∴∠ABE=∠ABC﹣∠DBE=70°﹣40°=30°.故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应角相等.8.(2分)如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为( )A.2cm B.cm C.cm D.3cm【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,然后根据△ABC的面积列出方程求解即可得到DE.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵S△ABC=36cm2,AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,解得:DE=(cm).故选:C.【点评】此题考查了角平分线的性质,三角形的面积公式,正确作出辅助线是解题的关键.9.(2分)如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心;大于的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为( )A.3B.4C.5D.6【分析】直接利用基本作图方法得出DE垂直平分AB,AF=AH,再利用等腰三角形的性质、线段垂直平分线的性质得出AF+FC=BF+FC=BC,即可得出答案.【解答】解:由基本作图方法得出:DE垂直平分AB,则AF=BF,∴AF+FC=BF+FC=BC=3,而AF=AH,AC⊥FH,∴FC=CH,∴AF+FC=AH+HC=BC=3,∴△AFH的周长为:AF+FC+CH+AH=2BC=6.故选:D.【点评】此题主要考查了基本作图以及等腰三角形的性质、线段垂直平分线的性质等知识,正确得出AF+FC=BF+FC=BC是解题关键.10.(2分)如图,△ABC≌△DEF,FH⊥BC,垂足为E.若∠A=α,∠CHE=β,则∠BED 的大小为( )A.α﹣βB.90°+α﹣βC.β﹣αD.90°﹣α+β【分析】根据直角三角形两锐角互余求出∠C=90°﹣∠CHE=90°﹣β,由三角形内角和定理得出∠B=180°﹣∠A﹣∠C=90°﹣α+β.根据全等三角形对应角相等求出∠DEF=∠C=90°﹣α+β,根据∠BED=∠BEF﹣∠DEF即可得出答案.【解答】解:∵FH⊥BC,垂足为E,∴∠CEH=∠BEF=90°,∴∠C=90°﹣∠CHE=90°﹣β,∴∠B=180°﹣∠A﹣∠C=180°﹣α﹣(90°﹣β)=90°﹣α+β.∵△ABC≌△DEF,∴∠DEF=∠B=90°﹣α+β,∴∠BED=∠BEF﹣∠DEF=90°﹣(90°﹣α+β)=α﹣β.故选:A.【点评】本题考查了全等三角形的性质,垂直的定义,直角三角形的性质,三角形内角和定理.掌握相关性质与定理是解题的关键.二、填空题(本题共6小题,每小题3分,共18分)11.(3分)如图,△ABC中,∠B=35°,∠ACD=120°,则∠A= 85° .【分析】根据三角形外角的性质,得∠ACD=∠B+∠A,那么∠A=∠ACD﹣∠B=85°.【解答】解:∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°.故答案为:85°.【点评】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解决本题的关键.12.(3分)如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=65°,∠B=50°,则∠BCD的大小为 130° .【分析】直接利用轴对称图形的性质得出∠DAC=∠BAC=65°,∠D=∠B=50°,再结合三角形内角的定理得出答案.【解答】解:∵四边形ABCD是轴对称图形,直线AC是它的对称轴,∴∠DAC=∠BAC=65°,∠D=∠B=50°,∴∠BCA=∠DCA=180°﹣65°﹣50°=65°,∴∠BCD的大小为:65°×2=130°.故答案为:130°.【点评】此题主要考查了轴对称图形的性质,正确得出对应角度数是解题关键.13.(3分)一个n边形的每个内角都等于144°,则n= 10 .【分析】根据多边形的内角和定理:(n﹣2)180°求解即可.【解答】解:由题意可得:(n﹣2)180°=n×144°,解得n=10.故答案为:10.【点评】本题主要考查了多边形的内角和定理.熟练掌握n边形的内角和为:(n﹣2)180°是关键.14.(3分)如图,在△ABC中,∠B=∠C=30°,AD⊥AB交BC于点D,BC=6,则AD = 2 .【分析】由三角形的内角和定理可求∠BAC=120°,结合垂直的定义可求得∠CAD=30°,BD=2AD,进而可求得AD=BC=2,即可求解.【解答】解:∵∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵AD⊥AB,∴∠BAD=90°,∴∠CAD=∠C=30°,BD=2AD,∴AD=CD,∴AD=BC=2.故答案为:2.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,含30°角的直角三角形的性质,证明AD=CD是解题的关键.15.(3分)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.若∠BAD=140°,则∠ACD= 70 °.【分析】根据平行线的性质以及角平分线的性质得出AB=AD,进而得出AC=AD,进而得出∠DAC=∠ACB=40°,根据三角形内角和定理即可求解.【解答】解:∵∠BAD=140°,AD∥BC,∴∠ABC=40°,∵AB=AC,∴∠ACB=∠ABC=40°,∵AD∥BC,∴∠DAC=∠ACB=40°,∵BD是∠ABC的角平分线,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC=20°,∴∠ABD=∠ADB=20°,∴AB=AD,∴AC=AD,∴∠ACD=×(180°−∠CAD)=×(180°−40°)=70°.故答案为:70.【点评】本题考查了三角形内角和定理,三角形角平分线的定义,平行线的性质,等腰三角形的性质与判定,证明AC=AD是解题的关键.16.(3分)如图,在等边△ABC中,BF是AC上中线且BF=4,点D在线段BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则AE+EF的最小值为 +4 .【分析】根据等边三角形的性质可得AB=AC,AD=AE,∠BAC=∠DAE=60°,据此得出∠ABD=∠ACE,作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF 的值最小,此时AE+EF=FM,证明△ACM是等边三角形,得出FM=FB=4,于是得到结论.【解答】解:∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF,∴∠ABD=∠CBD=∠ACE=30°,∴点E在射线CE上运动(∠ACE=30°),作点A关于CE的对称点M,连接FM交CE于E′,此时AE+EF的值最小,此时AE+EF=FM,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴△ACM≌△ACB,∴FM=FB=4,∴AB=,∴AE+EF的最小值是AF+FM=+4,故答案为:+4.【点评】本题考查的是轴对称的性质﹣最短路径问题,掌握轴对称的性质、等边三角形的判定和性质是解题的关键.三、解答题(本题共4小题,其中17题6分,18、19、20题各8分,共30分)17.(6分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.18.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,AD=BD,AC=DC.求∠BAC 的度数.【分析】设∠B=α,根据等腰三角形的性质得∠B=∠C=α,∠B=∠BAD=α,进而得∠CDA=∠B+∠BAD=2α,则∠CAD=∠CDA=2α,∠BAC=3α,进而根据∠C+∠CAD+∠CDA=180°可解得α=36°,据此可得∠BAC的度数.【解答】解:设∠B=α,∵AB=AC,∴∠B=∠C=α,∵AD=BD,∴∠B=∠BAD=α,∴∠CDA=∠B+∠BAD=2α,∵AC=CD,∴∠CAD=∠CDA=2α,∴∠BAC=∠BAD+∠CAD=3α,在△CAD中,∠C+∠CAD+∠CDA=180°,∴α+2α+2α=180°,解得:α=36°,∴∠BAC=3α=3×36°=108°.【点评】此题主要考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形的性质,灵活三角形内角和定理进行角度计算是解决问题的关键19.(8分)如图为某单摆装置示意图,摆线长OA=OB=OC,当摆线位于OB位置时,过点B作BD⊥OA于点D,测得OD=15cm,当摆线位于OC位置时,OB与OC恰好垂直,求此时摆球到OA的水平距离CE的长(CE⊥OA).【分析】利用AAS证明△COE≌△OBD,得CE=OD=15cm.【解答】解:∵OB⊥OC,∴∠BOD+∠COE=90°,∵CE⊥OA,BD⊥OA,∴∠CEO=∠ODB=90°,∴∠BOD+∠B=90°,∴∠COE=∠B,在△COE和△OBD中,,∴△COE≌△OBD(AAS),∴CE=OD=15cm,∴摆球到OA的水平距离CE的长为15cm.【点评】本题主要考查了全等三角形的判定与性质,证明△COE≌△OBD是解题的关键.20.(8分)如答题卡中的图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以x轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)点P(a+1,b﹣2)与点C关于y轴对称,则a= ﹣5 ,b= 1 .【分析】(1)根据轴对称的性质作图,即可得出答案.(2)关于y轴对称的点的横坐标互为相反数,纵坐标相等,由此可得a+1=﹣4,b﹣2=﹣1,求出a,b的值即可.【解答】解:(1)如图,ΔA1B1C1即为所求.点A1(1,4),B1(5,4),C1(4,1).(2)∵点P与点C关于y轴对称,C(4,﹣1),∴点P的坐标为(﹣4,﹣1),∴a+1=﹣4,b﹣2=﹣1,解得a=﹣5,b=1.故答案为:﹣5;1.【点评】本题考查作图﹣轴对称变换,熟练掌握轴对称的性质是解答本题的关键.四、解答题(本题共2小题,其中21题8分,22题10分,共18分)21.(8分)如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC 边的垂线,垂足N,过点E作AB延长线的垂线,垂足为M.(1)求证:BM=CN;(2)若AB=2,AC=8,求BM的长.【分析】(1)连接BE,CE,根据角平分线的性质得到EM=EN,根据线段垂直平分线的性质得到BE=CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到AM=AN,设BM=CN=x,列方程即可得到结论.【解答】(1)证明:连接BE,CE,∵AE平分∠BAC,EM⊥AB,EN⊥AC,∴EM=EN,∵DE垂直平分BC,∴BE=CE,∴Rt△BEM≌Rt△CEN(HL),∴BM=CN;(2)解:∵∠M=∠ANE=90°,∴Rt△AME≌Rt△ANE(HL),∴AM=AN,设BM=CN=x,∵AB=2,AC=8,∴x+2=8﹣x,∴x=3,∴BM=3.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形是解题的关键.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹,(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.【分析】(1)①根据要求作出图形即可;②根据要求作出图形即可;(2)证明AE=AF=AB,再利用等腰三角形的性质以及三角形内角和定理证明即可.【解答】解:(1)①如图,射线BE即为所求;②如图,线段AE,EF即为所求;(2)△BEF是直角三角形.理由:∵BE平分∠ABC,∴∠ABE=∠EBD,∵AC∥BD,∴∠AEB=∠EBD,∴∠ABE=∠AEB,∴AB=AE,∵AB=AF,∴AE=AF=AB,∴∠AFE=∠AEF,∠ABE=∠AEB,∵∠ABE+∠AFE+∠BEF=180°,∴2∠AEF+2∠AEB=180°,∴∠AEF+∠AEB=90°,∴∠BEF=90°,∴△BEF是直角三角形.【点评】本题考查作图﹣复杂作图,直角三角形的判定,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.五、解答题(本题共2小题,其中23题10分,24题12分,共22分)23.(10分)如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=3时,BP= 2 cm;(2)当t为何值时,连接CP,DP,△CDP是等腰三角形;(3)Q为AD边上的点,且DQ=5,当t为何值时,以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.【分析】(1)当t=3时,点P运动到线段BC上,即可得到BP的长度;(2)分三种情况讨论,①当点P在AB上时,②当点P在BC上时,③当点P在AD 上时,根据全等三角形的判定与性质、等腰三角形的性质即可得到答案;(3)根据题意,要使一个三角形与△DCQ全等,则点P的位置可以有四个,根据点P 运动的位置,即可计算出时间.【解答】解:(1)当t=3时,点P走过的路程为:2×3=6,∵AB=4,∴点P运动到线段BC上,∴BP=6﹣4=2,故答案为:2;(2)①当点P在AB上时,△CDP是等腰三角形,∴PD=CP,在矩形ABCD中,AD=BC,∠A=∠B=90°,∴△DAP≌△CBP(HL),∴AP=BP,∴AP==2,∴t==1,②当点P在BC上时,△CDP是等腰三角形,∵∠C=90°,∴CD=CP=4,∴BP=CB﹣CD=2,∴t==3,③当点P在AD上时,△CDP是等腰三角形,∵∠D=90°,∴DP=CD=4,∴t==9,综上所述,t=1或3或9时,△CDP是等腰三角形;(3)根据题意,如图,连接CQ,则AB=CD=4,∠A=∠B=∠C=∠D=90o,DQ=5,∴要使一个三角形与△DCQ全等,则另一条直角边必须等于DQ,①当点P运动到P1时,CP1=DQ=5,此时△DCQ≌△CDP1,∴点P的路程为:AB+BP1=4+1=5,∴t=5÷2=2.5,②当点P运动到P2时,BP2=DQ=5,此时△CDQ≌△ABP2,∴点P的路程为:AB+BP2=4+5=9,∴t=9÷2=4.5,③当点P运动到P3时,AP3=DQ=5,此时△CDQ≌△ABP3,∴点P的路程为:AB+BC+CD+DP3=4+6+4+1=15,∴t=15÷2=7.5,④当点P运动到P4时,即P与Q重合时,DP4=DQ=5,此时△CDQ≌△CDP4,∴点P的路程为:AB+BC+CD+DP4=4+6+4+5=19,∴t=19÷2=9.5,综上所述,时间的值可以是:t=2.5,4.5,7.5或9.5,故答案为:2.5或4.5或7.5或9.5.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,矩形的性质,线段的动点问题,解题的关键是掌握全等三角形的判定与性质及动点的运动状态,从而进行分类讨论.24.(12分)在△ABC中,AB=AC,∠BAC=α,射线AD,AE的夹角为,过点B作BF ⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC内部.①若α=120°,∠CAE=20°,则∠CBG= 20 °;②作点B关于直线AD的对称点H,在图1中找出与线段GH相等的线段,并证明.(2)如图2,射线AD在∠BAC的内部,射线AE在∠BAC的外部,其它条件不变,探究线段BF,BG,CG之间的数量关系,并证明.【分析】(1)①先根据角的运算得出∠BAD的度数,根据三角形内角和求出∠ABC的度数;再根据直角三角形两锐角互余可得出∠ABG的度数,作差可得结论;②连接AH,可得出AB=AH=AC,再根据∠BAC=α,∠DAE=α,可得出∠BAF+∠CAE=α,∠HAF+∠HAG=α,所以∠CAE=∠HAG;进而可得△AGH≌△AGC (SAS),再由全等三角形的性质可得结论;(2)在BG延长线上取点H,使HF=BF.连结AH.由垂直平分线的性质可得AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,所以∠DAE=x+y,由此表达∠BAC,∠BAF,∠HAF,由∠HAE=∠DAE+∠HAE,可得x+2y=x+y+∠HAE,所以∠HAE=y,即∠HAE=∠CAE;由此可得△ACG≌△AHG(SAS),所以CG=HG,由此可得结论.【解答】解:(1)①∵∠BAC=α=120°,∠DAE=α=60°,∠CAE=20°,∴∠BAD=120°﹣60°﹣20°=40°,∵BF⊥AD,∴∠AFB=90°,∴∠ABF=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=30°,∴∠CBG=∠ABF﹣∠ABC=50°﹣30°=20°;故答案为:20.②GH=GC,理由如下:证明:如图1,连结AH,∵点B与点H关于直线AD对称,AF⊥BH,∴BF=HF,∴AD是BH的垂直平分线,∴AB=AH,∠BAF=∠HAF,∵AB=AC,∴AH=AC,∵∠BAC=α,∠DAE=α,∴∠BAF+∠CAE=α,∠HAF+∠HAG=α,∴∠CAE=∠HAG;∵AG=AG,∴△AGH≌△AGC(SAS).∴GH=GC;(2)BG=2BF﹣CG;证明:如图2,在BG延长线上取点H,使HF=BF.连结AH.∵AF⊥BH,BF=HF,∴AB=AH,∠BAF=∠HAF;设∠CAD=x,∠CAE=y,∴∠DAE=x+y,∵∠DAE=∠BAC.∴∠BAC=2x+2y,∴∠BAF=∠BAC﹣∠CAD=2x+2y﹣x=x+2y.∴∠HAF=∠BAF=x+2y,∵∠HAE=∠DAE+∠HAE,∴x+2y=x+y+∠HAE,∴∠HAE=y,即∠HAE=∠CAE;∵AB=AC,AB=AH,∴AC=AH,∵AG=AG.∴△ACG≌△AHG(SAS).∴CG=HG;∵BG=BH﹣GH,BH=2BF,∴BG=2BF﹣CG.【点评】本题在三角形背景下考查旋转的相关知识,属于三角形的综合应用,熟练掌握三角形全等的判定及性质,轴对称的性质是解题的关键.六、解答题(本题12分)25.(12分)综合与实践阅读材料:材料1:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,以C为圆心,CA长为半径画弧,交AB边于点D,连结CD,则△ACD是等边三角形,△BCD是等腰三角形.材料2:如图2,△ABC是等边三角形,D为直线BD上一点,以AD为边在AD右侧作等边△ADE,连结CE,随着D点位置的改变,始终有△ABD≌△ACE.根据上述阅读材料,解决下面的问题.已知,在△ABC中,∠ACB=90°,∠A=60°,D为AB边上一点,以CD为边在CD 右侧作等边△CDE.特例探究:(1)如图3,当点E在AB边上时,求证:DE=BE.感悟应用:(2)如图4,当点E在△ABC内部时,连结BE,求证:DE=BE.拓展延伸:(3)当点E在△ABC的外部时,过点E作EH⊥AB于H,EF∥AB交射线AC 于F,CF=2,BH=3,请画出图形,并求AB的长.【分析】(1)根据题意可得∠B=30°,结合△CDE是等边三角形即可求出∠BDE=∠B,从而得证.(2)以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM=CA,即可得出△ACM是等边三角形,然后证明△ACD≌△MCE,△MCE≌△MBE即可得证;(3)分两种情况进行讨论,当点F在线段AC上时和点F在AC延长线上时,分别计算即可.【解答】(1)证明:在△ABC中,∠ACB=90°,∠A=60°,∴∠B=30°,∵△CDE是等边三角形,∴∠CED=60°,∵∠CED=∠B+∠BDE,∴∠BDE=60°﹣30°=30°,∴∠BDE=∠B,∴DE=BE.(2)解:如图,以C为圆心,CA长为半径画弧交AB边于点M,连接CM,EM,则CM =CA,∵∠A=60°,∴△ACM是等边三角形,∴∠ACM=∠AMC=60°,又∵△CDE是等边三角形,∴CD=CE,∠DCE=60°,∴∠ACM=∠DCE,∴∠ACM﹣∠DCM=∠DCE﹣∠DCM,即∠ACD=∠MCE,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∵∠AMC=60°,∴∠BME=180°﹣∠AMC﹣∠CME=180°﹣60°﹣60=60°,∴∠CME=∠BME,∵∠BCM=∠ACB﹣∠ACM=90°﹣60°=30°,∴∠BCM=∠ABC,∴MC=MB,又∵ME=ME,∴△MCE≌△MBE(SAS),∴CE=BE,又∵△CDE是等边三角形,∴CE=DE,∴DE=BE.(3)解:如图,当点F在线段AC上时,以C为圆心,CA长为半径画弧,交AB边于M,连结ME,BE,CM,则△ACM为等边三角形,∴△ACD≌△MCE(SAS),∴∠CME=∠A=60°,∠EMB=60°=∠CME,又∵CM=BM,∴△CME≌△BME(SAS),∴BE=CE,∵CE=DE,∴BE=DE,∵EH⊥BD,∴BD=2BH,∵BH=3,∴BD=6,∵EF∥AB,∴∠CFE=∠A=60°,∴∠CFE=∠CMA.∵∠ECF=∠ECD+∠ACD=60°+∠ACD,∠CDM=∠A+∠ACD=60°+∠ACD,∴∠ECF=∠CDM,又∵∠ECF=∠CDM,∴△ECF≌△CDM(SAS),∴DM=CF=2,∴BM=BD﹣DM=6﹣2=4,∵CM=AM,CM=BM,∴AM=BM,∴AB=2BM=8;如图,当点F在AC延长线上时,同理可得BD=2BH=6.∵EF∥AB,∴∠F+∠A=180°,∴∠F=120°,∵∠AMC=60°,∴∠CMD=120°,∴∠F=∠CMD.∵∠ACM=∠DCE=60°,∴∠FCE+∠MCD=180°﹣120°=60°,∠MCD+∠MDC=∠AMC=60°.∴∠FCE=∠MDC.又∵CD=CE,∴△FCE≌△MDC(AAS),∴MD=FC=2,∴MB=BD+MD=8.同理AM=BM=8,∴AB=2AM=16.综上所述,AB的长为8或16.【点评】本题考查等边三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线是解题关键.。
2023-2024学年安徽省合肥市第四十二中学八年级(上)期中数学试卷+答案解析
2023-2024学年安徽省合肥市第四十二中学八年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.平面直角坐标系中,点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标是()A. B. C. D.3.若一个三角形的两边长分别为5和8,则第三边长可能是()A.14B.10C.3D.24.函数中自变量x的取值范围是()A. B. C. D.且5.在平面直角坐标系中,已知函数的图象过点,则该函数的图象可能是()A. B.C. D.6.函数图象向上平移3个单位后,对应函数为()A. B. C. D.7.在一个三角形中,若三个内角的度数之比是,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.已知下列命题:①同位角相等;②有一个内角是直角的三角形是直角三角形;③若,,则,其中逆命题属于假命题的有()A.0个B.1个C.2个D.3个9.已知直线与x轴的交点在,之间包括A,B两点,则的a取值范围()A. B. C. D.10.如图,点A、B的坐标分别为、,点P是第一象限内直线上一个动点,当点P 的横坐标逐渐增大时,四边形OAPB的面积()A.逐渐增大B.逐渐减少C.先减少后增大D.不变二、填空题:本题共4小题,每小题5分,共20分。
11.若点在y轴上,则点P的坐标是__________.12.已知点在直线上,则的值为__________.13.对于一次函数,当时,,则一次函数的解析式为__________.14.如图,三角形ABC的面积为1,,E是AC的中点,AD与BE相交于点P,那么:三角形ADC的面积__________.四边形EPDC的面积为__________.三、解答题:本题共9小题,共90分。
解答应写出文字说明,证明过程或演算步骤。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
江苏省常州市2023-2024学年八年级上学期期中数学试题(含答案解析)
江苏省常州市2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是()A .B .C .D .2.全等图形是指两个图形()A .面积相等B .形状一样C .能完全重合D .周长相同3.下列各组线段中,能组成直角三角形的是()A .3a =,4b =,6c =B .7a =,24b =,25c =C .6a =,8b =,9c =D .5a =,6b =,7c =4.如图,已知12∠=∠,若用“SAS ”证明BDA ACB ≌,还需加上条件()A .AD BC =B .DC ∠=∠C .BD AC =D .OA OB=5.如图,在由4个相同的小正方形拼成的网格中,21∠-∠=()A .60︒B .75︒C .90︒D .105︒6.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为()A.3B.4C.5D.67.已知直角三角形的面积为15,两直角边的和为11,则它的斜边长的平方为()A.61B.62C.63D.648.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.二、填空题△10.如图,已知ABC≌则CF的长为的高,11.如图,CD是ABC12.等腰三角形的一边长12cm,另一边长13.如图,点E在正方形ABCD的边面积为.14.一个三角形的三边为2、5、x,另一个三角形的三边为全等,则x+y=.15.如图,在△ABC中,AB=AC,∠中,AB=17.在ABC三、计算题19.如图,ABC 中,10,6,8AB BC AC ===,求ABC 的面积.四、解答题20.小明在做数学作业时,遇到这样一个问题:如图,AB CD =,AC BD =,请说明BAC CDB =∠∠的道理.小明动手测量一下,发现确实相等,但不能说明道理,请你帮助说明其中的理由.21.如图,在△ABC 中,AB AC =,AD 为BC 边上的中线,E 为AC 上一点,且AE AD =,50BAD ∠=︒,求∠CDE 的度数.22.已知:如图,点C 、D 、B 、F 在一条直线上,且AB ⊥BD ,DE ⊥BD ,AB =CD ,CE =AF .求证:(1)△ABF≌△CDE;(2)CE⊥AF.五、证明题24.证明“直角三角形中,30A∠=︒.求证:12CB AB=.六、作图题25.如图,已知P是直线l外一点,用两种不同的方法求作一点Q,使得点Q到点P 的距离和点Q到直线l的距离相等.(要求:用直尺和圆规作图,保留作图痕迹.)七、解答题26.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)在Rt ABC △中,90C ∠=︒,8AC =,6BC =.①如图1,若O 为AB 的中点,则射线OC _____ABC 的等腰分割线(填“是”或“不是”)②如图2,已知ABC 的一条等腰分割线BP 交AC 边于点P ,且PB PA =,请求出CP 的长度.(2)如图3,ABC 中,CD 为AB 边上的高,F 为AC 的中点,过点F 的直线l 交AD 于点E ,作CM l ⊥,DN l ⊥,垂足为M ,N ,3BD =,5AC =,且45A ∠<︒.若射线CD 为ABC 的“等腰分割线”,求CM DN +的最大值.参考答案:1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .2.C【分析】利用全等图形的定义可得答案.【详解】解:全等图形是指两个图形能完全重合.故选:C .【点睛】本题考查全等图形的概念,理解概念是解答的关键.3.B【分析】根据勾股定理的逆定理依次判断即可.【详解】A 、222346+≠,不能组成直角三角形;B 、22272425+=,能组成直角三角形;C 、222689+≠,不能组成直角三角形;D 、222567+≠,不能组成直角三角形;故选:B .【点睛】本题考查的是勾股定理的逆定理,若一个三角形中两个较短边的平方和等于最长边的平方,则这个三角形是直角三角形.4.C【分析】根据已知12∠=∠,AB BA =,添加条件BD AC =,即可用“SAS ”证明ACB BDA △≌△,即可求解.【详解】解:补充条件BD AC =,在ACB △与BDA △中21BD AC AB BA =⎧⎪∠=∠⎨⎪=⎩∴ACB BDA △≌△()SAS ,故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.C【分析】利用全等三角形的性质解答即可.【详解】解:如图所示,连接AD ,在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴ ≌,1ACD ∴∠=∠,290ACD DCE ∠-∠=∠=︒ ,2190∴∠-∠=︒.故选:C .【点睛】本题考查了全等图形,主要利用了网格结构以及全等三角形的判定与性质,准确识图并确定出全等三角形是解题的关键.6.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE =CD ,然后利用△ABD 的面积列式计算即可得解.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C =90°,AD 平分∠BAC ,【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,是解题的关键.7.A9.140【分析】先根据三角形的内角和定理可得70ACB ∠=︒,再根据轴对称的性质可得70ACD ACB ∠=∠=︒,由此即可得.【详解】解:60BAC ∠=︒ ,50B ∠=︒,18070ACB BAC B ∴∠=︒-∠-∠=︒,∵四边形ABCD 是轴对称图形,直线AC 是它的对称轴,70ACD ACB ∴∠=∠=︒,140BCD ACD ACB ∴∠=∠+∠=︒,故答案为:140.【点睛】本题考查了三角形的内角和定理、轴对称的性质,熟练掌握轴对称的性质是解题关键.10.3【分析】利用全等三角形的性质求解即可.【详解】解:由全等三角形的性质得:8EF BC ==,∴853CF EF CE =-=-=,故答案为:3.【点睛】本题考查全等三角形性质,熟练掌握全等三角形的性质是解答的关键.11.35︒/35度【分析】根据题意,得CD AB ⊥,则90ADC ∠=︒,根据三角形的内角和,则180A ADC ACD ∠+∠+∠=︒,求出ACD ∠的角度,再根据90ACB ACD BCD ∠=∠+∠=︒,即可.【详解】∵CD 是ABC 的高,∴CD AB ⊥,∴90ADC ∠=︒,∵在ACD 中,180A ADC ACD ∠+∠+∠=︒,35A ∠=︒,90ACB ∠=︒,∴55ACD ∠=︒在ABC 和DCB △中,AB CD AC BD BC BC =⎧⎪=⎨⎪=⎩∴()SSS ABC DCB ≌△△,∴BAC CDB =∠∠.【点睛】本题考查全等三角形的判定与性质,添加辅助线证明三角形全等是解答的关键.21.25°【分析】由题意知AD BC ⊥出ADE ∠的值,进而可求出【详解】解:∵AB AC =,∴AD BC ⊥,CAD BAD ∠=∠∵AE AD=∴18050652ADE ︒-︒∠==︒∴CDE ADC ADE ∠=∠-∠∴CDE ∠的值为25°.【点睛】本题考查了等腰三角形的性质,腰三角形的性质.22.(1)见解析;(2)见解析【分析】(1)根据题意由题干条件直接利用(2)由全等三角形的性质可求得∠=90°,即可证得结论.【详解】解:(1)证明:∵ABC 中,90C ∠=60B ∴∠=︒,BCD ∴△是等边三角形,,CB CD BDC ∴=∠=ACD BDC ∴∠=∠-∠ACD A ∴∠=∠,AD CD ∴=,CB AD ∴=,又AB AD BD =+ ,12∴=CB AB .【点睛】本题考查了等边三角形的判定与性质、三角形的判定与性质是解题关键.25.见详解【分析】方法一:过垂足为Q 点;方法二:在直线l 上任意取点BC 于点Q .【详解】如图,点Q 即为所作.证明:方法一:根据作图可知:直线l PA ⊥,PQ QA =,又有:点Q 到直线l 的距离为QA ,点Q 到点P 的距离为PQ ,∴点Q 满足要求;方法二:连接PQ ,如图,根据作图可知:直线l BQ ⊥,PQ QB =,又有:点Q 到直线l 的距离为QB ,点Q 到点P 的距离为PQ ,∴点Q 满足要求.【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离.。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
2023-2024学年广东省广州市增城区八年级上学期期中考数学试卷含答案精选全文
2023学年第一学期期中质量检测问卷八年级数学一、选择题(共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A. B. C. D.2.下面四个图形中,线段BE 是ABC △的高的图是()A.B.C.D.3.ABC △中,D 是BC 延长线上一点,40B ∠=︒,120ACD ∠=︒,则A ∠等于()A.60︒B.70︒C.80︒D.90︒4.如图,用直尺和圆规作已知角的平分线的示意图,则说明CAD DAB ∠=∠的依据()A.SSSB.SASC.ASAD.AAS5.如图,CD ,CE ,CF 分别是ABC △的高、角平分线、中线,则下列各式中错误的是()A.2AB BF =B.12ACE ACB ∠=∠C.AE BE= D.CD BE⊥6.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下条件仍不能判定ABE ACD ≌△△的是()A.B C ∠=∠B.AD AE =C.BD CE= D.BE CD =7.等腰三角形的一个角是80︒,则它的底角是()A.50︒B.80︒C.20︒或80︒D.50︒或80︒8.如图,ABC AED ≌△△,点E 在线段BC 上,140∠=︒,则AED ∠的度数是()A.70︒B.68︒C.65︒D.60︒9.如图,在ABC △中,90C ∠=︒,15A ∠=︒,60DBC ∠=︒,1BC =,则AD 的长为()A.1.5B.2C.3D.410.如图,已知ABC △中,24cm AB AC ==,B C ∠=∠,16cm BC =,点D 为AB 的中点,如果点P 在线段BC 上以4cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,当点Q 的运动速度为()cm /s 时,能够在某一时刻使BPD △与CQP △全等.A.4B.3C.4或3D.4或6二、填空题(共6小题,每小题3分,满分18分)11.已知点(3,2)P -与点Q 关于x 轴对称,则点Q 的坐标为__________.12.已知一个三角形的三边长为3,8,a ,则a 的取值范围是__________.13.一个多边形的内角和等于1080︒,这个多边形的边数为__________.14.如图,在ABC △中,AB AC =,D 为BC 中点,35BAD ∠=︒,则B ∠的大小为__________度.15.如图,AO 、BO 分别平分CAB ∠、CBA ∠.点O 到AB 的距离4OD =,若ABC △的周长为28,则ABC △的面积为__________.16.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E 、F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM △周长的最小值为__________.三、解答题:(本题有8个小题,共72分,解答要求写出文字说明、证明过程或计算步骤.)17.(满分4分)如图,已知//AB CD ,42B ∠=︒,64ACD ∠=︒,求ACB ∠的度数.18.(满分4分)如图,点E 、F 在BC 上,BE FC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.19.(满分6分)如图,在平面直角坐标系中,ABC △的三个顶点均在格点上.(1)在网格中作出ABC △关于y 轴对称的图形111A B C △;(2)若网格的单位长度为1,求111A B C △的面积.20.(满分6分)如图,在ABC △中,AD BC ⊥于点D ,ABC △的角平分线BE 交AD 于点O ,已知40ABC ∠=︒,求AOB ∠度数.21.(满分8分)如图,在ABC △,AB AC =.(1)作AB 垂直平分线DE ,交AC 于点D ,交AB 于点E (保留作图痕迹,不写作法);(2)连接BD ,若5AE =,BCD △的周长是17,求ABC △的周长.22.(满分10分)如图,ABC △中,90ACB ∠=︒,DC AE =,AE 是BC 边上的中线,过点C 作CF AE ⊥,垂足为点F ,过点B 作BD BC ⊥交CF 的延长线于点D .(1)求证:AC CB =.(2)若12cm AC =,求BD 的长.23.(满分10分)如图,在四边形ABDC 中,90D B ∠=∠=︒,O 为BD 的中点,且AO 平分BAC ∠.求证:(1)CO 平分ACD ∠.(2)AB CD AC +=.24.(满分12分)如图1,点A 、D 在y 轴正半轴上,点B 、C 在x 轴上,CD 平分ACB ∠与y 轴交于D 点,90CAO BDO ∠=︒-∠.图1图2图3(1)求证:AC BC =;(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且AD DE =,求BC EC +的长;(3)在(1)中,过D 作DF AC ⊥于F 点,点H 为FC 上一动点,点G 为OC 上一动点,(如图3),当H 在FC 上移动、点G 点在OC 上移动时,始终满足GDH GDO FDH ∠=∠+∠,试判断FH 、GH 、OG 这三者之间的数量关系,写出你的结论并加以证明.25.(满分12分)如图,在等边ABC △中,线段AM 为边BC 上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE △,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:CAM CBE ∠=∠;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.2023学年第一学期期中质量检测八年级数学评分标准一、选择题(本大题满分30分,每题3分)题号12345678910答案DBCACDDABD二、填空题(本大题满分18分,每题3分)题号111213141516答案(3,2)511a <<8555610三、解答题(本大题有8小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分4分)解://AB CD ,64ACD ∠=︒,64ACD A ∴∠=∠=︒,在ABC △中,180A B ACB ∠+∠+∠=︒,42B ∠=︒,18074ACB A B ∴∠=︒-∠-∠=︒.18.(本题满分4分)证明:BE CF = ,BE EF EF CF ∴+=+,BF EC ∴=,在ABF △和DCE △中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF DCE ∴≌△△,A D ∴∠=∠.19.(本题满分6分)解:(1)如图所示,111A B C △即为所求(2)111111432322145222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△.20.(本题满分6分)解:AD BC ⊥ ,90ADB ∴∠=︒,9050BAD ABC ∴∠=︒-∠=︒,40ABC ∠=︒ ,BE 平分ABC ∠,1202ABO ABC ∴∠=∠=︒.180110AOB ABO BAD ∴∠=︒-∠-∠=︒.21.(本题满分8分)解:(1)如图所示,DE 为所求.(2)DE 是AB 的垂直平分线,5AB BE ∴==,AD BD =,10AB AE BE ∴=+=.17BCD C BD DC BC =++= △,17AD DC BC ∴++=,17AC BC ∴+=,101727ABC C AB AC BC ∴=++=+=△.22.(本题满分10分)(1)AF DC ⊥ ,90ACF FAC ∴∠+∠=︒,90ACF FCB ∠+∠=︒ ,EAC FCB ∴∠=∠.BD BC ⊥ ,90ACB ∠=︒,90CBD ACB ∴∠=∠=︒.在DBC △和ECA △中EAC FCBACE CBD DC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DBC ECA ∴≌△△,AC BC ∴=.(2)DBC ECA ≌△△,12cm AC =,BD CE ∴=,12cm AC BC ==.E 是BC 的中点,11126cm 22EC BC ∴==⨯=.6cm BD CE ∴==.23.(本题满分10分)解:(1)证明:过点O 作OE AC ⊥于E ,90B ∠=︒ ,OA 平分BAC ∠,OB OE ∴=.点O 为BD 的中点,OB OD ∴=,OE OD ∴=,又90D ∠=︒ ,OC ∴平分ACD ∠.(2)证明:由(1)得OB OE OD ==,在Rt ABO △和Rt AEO △中,AO AOOB OE =⎧⎨=⎩,Rt Rt ABO AEO ∴≌△△,AB AE ∴=.在Rt CEO △和Rt CDO △中,CO COOE OD=⎧⎨=⎩,Rt Rt CEO CDO ≌△△,CD CE ∴=,AE CE AC += ,AB CD AC ∴+=.24.(本题满分12分)(1)解:(1)CD 平分ACB ∠,ACD BCD ∴∠=∠.90AOB AOC ∠=∠=︒ ,90CAO BDO ∠=︒-∠,90DBO BDO ∠=︒-∠ ,CAO DBO ∴∠=∠.在ACD △和BCD △中,CAO DBOACD BCD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACD BCD ∴≌△△,AC BC ∴=.(2)解:如图2,过点D 作DM AC ⊥于M ,CD 平分ACB ∠,OD BC ⊥,DO DM ∴=.在BOD △和AMD △中,90DBO DAM BOD AMD DO DM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,(AAS)BOD AMD ∴≌△△,OB AM ∴=.在Rt DOC △和Rt DMC △中,DO DMDC DC=⎧⎨=⎩,Rt Rt (HL)DOC DMC ∴≌△△,OC MC ∴=.CAO DBO ∠=∠ ,DEA DBO ∠=∠,DAE DEA ∴∠=∠,DM AC ⊥ ,AM EM ∴=,OB EM ∴=.(4,0)C ,4OC ∴=,28BC CE OB OC MC EM OC ∴+=++-==.图2(3)解:GH OG FH=+证明:如图3,在GO 的延长线上取一点N ,使ON FH =,CD 平分ACO ∠,DF AC ⊥,OD OC ⊥,DO DF ∴=.在DON △和DFH △中,90DO DF DON DFH ON FH =⎧⎪∠=∠=︒⎨⎪=⎩,(SAS)DON DFH ∴≌△△,DN DH ∴=,ODN FDH ∠=∠,GDH GDO FDH ∠=∠+∠ ,GDH GDO ODN GDN ∴∠=∠+∠=∠,在DGN △和DGH △中,DN DH GDN GDH DG DG =⎧⎪∠=∠⎨⎪=⎩,(SAS)DGN DGH ∴≌△,GH GN ∴=,ON FH = ,GH GN OG ON OG FH ∴==+=+.图325.(本题满分12分)解:(1)ABC △是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠,30CAM ∴∠=︒.(2)ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠.在ADC △和BEC △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ADC BEC ∴≌△△,MAC MBE ∴∠=.(3)AOB ∠是定值,60AOB ∠=︒.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≌△△,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC △是等边三角形,线段AM 为BC 边上的中线,AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒,903060BOA ∴∠=︒-︒=︒.图1②当点D 在线段AM 的延长线上时,如图2,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴≌△△,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.图2③当点D 在线段MA 的延长线上时,如图3,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴△△,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒,150CBE CAD ∴∠=∠=︒,30CBO ∴∠=︒,30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.图3。
江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)
南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
山东省滨州市滨城区2023-2024学年八年级上学期期中考试数学试题(含答案)
2023-2024学年度第一学期教学质量抽测八年级数学试题(A )温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试用时120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分.1.2023年9.23-10.8日,19届亚运会在杭州如火如荼地进行,运动健儿们摘金夺银,全国人民感受到一波强烈的民族自豪感.下列图案表示的运动项日标志中,是轴对称图形的是( )A .B .C .D .2.如图,在中,平分交于点,则的度数为()A .B .C .D .3.已知三角形的两边长分别为3、7,则第三边的取值范围是( )A .B .C .D .4.下列选项中,不能判断是等边三角形的是( )A .B .C .D .,且5.如图,长方形沿着折叠,使点落在边上的点处.如果,,则长方形的面积是()ABC △60,48,A B CD ∠=︒∠=︒ACB ∠AB D BDC ∠72︒90︒96︒108︒a 410a <<410a ≤≤4a >10a <ABC △A B C∠=∠=∠,60AB AC B =∠=︒60,60A B ∠=︒∠=︒AB AC =B C ∠=∠ABCD AE D BC F 60BAF ∠=︒3AB =ABCDA .12B .16C .18D .206.在下列条件:①;②;③;④中,能确定为直角三角形的条件有( ).A .4个B .3个C .2个D .1个7.下列说法中,正确的有()个①两个全等的三角形一定关于某直线对称;②关于某条直线对称的两个图形,对称点所连线段被对称轴垂直平分;③等腰三角形的高、中线、角平分线互相重合;④到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点;⑤的三边为,且满足关系,则为等边三角形.A .1个B .2个C .3个D .4个8.如图所示,是直线上任意两点,,则下列结论错误的是()A .B .平分但不垂直C .垂直平分D .9.如图,在平面直角坐标系中,点在轴的负半轴上,点在第三象限,是等边三角形,点在线段上,且,点是线段上的动点,点是轴负半轴上的动点,当的值最小时,,则点的坐标是()::1:2:3A B C ∠∠∠=2A B C ∠=∠=∠90A B ∠+∠=︒1123A B C ∠=∠=∠ABC △ABC △a b c 、、222()()()0a b b c c a -+-+-=ABC △,C D l ,AC BC AD BD ==ACD BCD∠=∠CD AB AB CD AB ACD BCDS S =△△A x B ABO △E OA 2AE =F AB P y EP FP +7AF =AA .B .C .D .10.如图,在中,,点分别是的边的中点,边分别与相交于点,且,连接,现在下列四个结论;①,②平分,③,④,⑤.则其中正确的结论有( )A .①②③④⑤B .②③④C .①②③⑤D .①②④第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,满分18分)11.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的______性.12.点关于轴的对称点的坐标是______.13.在中,若,则______.14.如图,在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为______个()8,0-()9,0-()10,0-()7,0-ABC △120BAC ∠=︒,E F ABC △AB AC 、BC DE DF 、,H G ,DE AB DF AC ⊥⊥AD AG AH 、、60EDF ∠=︒AD GAH ∠B ADF ∠=∠GD GH =60EDF ∠=︒()3,4P -x P 'ABC △20,50B A C ∠=∠+︒∠=︒B ∠=Rt ABC △90B ∠=︒ABC △ABC △15.如图,中,是的角平分线,则______.16.如图,已知点是边上的动点(不与重合),在的同侧作等边和等边,连接,下列结论正确是______(填序号)①;②;③;④是等边三角形;⑤平分;⑥;⑦;⑧;⑨;⑩图中共有2对全等三角形.三、解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)17.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,不用红色笔,作图时必须用铅笔和绘图工具.18.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点(即三角形的顶点都在格点上).ABC △3,2,AB AC AD ==ABC △:BD DC =B AC ,A C AC ABD △BCE △,AE CD ABE DBC △≌△60CHE ∠=︒//GF AC BFG △HB AHC ∠AH DH BH =+CH BH EH =+HGF HBF ∠=∠HFG GBH ∠=∠ABC △(1)的面积为______.(2)在图中作出关于直线的对称图形.(3)在上找一点,使得的距离最短,在图中作出点的位置.19.(8分)如图,.求证:(1);(2).20.(7分)(1)一个多边形的内角和比它的外角和的3倍少,求这个多边形的边数;(2)下面是证明三角形内角和定理推论1的方法,选择其中一种,完成证明.三角形内角和定理推论1:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,,点是延长线上一点.求证:.方法一:利用三角形的内角和定理进行证明证明:方法二:构造平行线进行证明证明:21.(6分)如图,在中,与是的高.ABC △ABC △MN A B C '''△MN P PB PC +P ,12,AB AE C D =∠=∠∠=∠ABC AED △≌△1DEC ∠=∠180︒ABC △D BC ACD A B ∠=∠+∠ABC △AD CE ABC △(1)若,求;(2)若的高与的比是多小?22.(8分)如图所示,将两个含角的三角尺摆放在一起,可以证得是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半,交换命题的条件和结论,会得到一个新命题:在直角三角形中,______.请判断此命题的真假,若为真命题,请给出证明:若为假命题,请说明理由.23.(4分)如图,已知直角请用尺规作图法,在边上求作一点,使.(保留作图痕迹,不写作法)24.(8分)如图,在中,,点在上,且,7cm,10cm,8cm AB BC CE ===AD 2,3,AB BC ABC ==△AD CE 30︒ABD △30︒,90,ABC B AB BC ∠=︒<△AC P BP AC ⊥ABC △AB AC =D AC BD BC AD ==求(1)图中有哪些等腰三角形?(2)各角的度数.25.(8分)如图,在中,是的垂直平分线,交于点连接.求证:(1)是等边三角形;(2)点在线段的垂直平分线上.26.(10分)在平面直角坐标系中,点满足,点在第一象限,,且 图1 图2 图3(1)如图1,点的坐标为(2)如图2,若点运动到位置,点运动到位置,保持,求的值;(3)如图3,若是线段上一点,为中点,作,连,判定线段与的关系,并加以证明.27.(3分)在人教版八年级上册第十二章、第十三章学习了角平分线以及线段垂直平分线的相关内容,在以后得学习中还将学习一类图形——平行四边形,类比角平分线以及线段垂直平分线的研究思路(路径),我们将从哪些方面学习平行四边形?2023-2024学年度第一学期教学质量抽测八年级数学试题(A )参考答案与试题解析一、选择题(共10小题,满分30分,每小题3分)题号12345678910答案B C A D C B C B A C二、填空题(共6小题,满分18分,每小题3分)11.稳定;12.(3,4); 13.75°; 14.7; 15.3∶2; 16.①②③④⑤⑥⑦⑧⑨三.解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)7.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,ABC △Rt ABC △90,30,ACB B DE ∠=︒∠=︒AB AB BC 、D E 、CD AE 、ADC △E CD ()()0,,,0,,A a B b a b 2(2)40a b -+-=P PA PB =PA PB⊥P A 1A B 1B PA PB ⊥11OB OA -Q AB C AQ ,PR PQ PR PQ =⊥BR BR PC不用红色笔,作图时必须用铅笔和绘图工具.18.解:(1).(2)如图,即为所求;(3)如图,点即为所求.19.证明:(1),,即,在和中,,;(2),,,.20.解:(1)设这个多边形的边数是,依题意得,,.这个多边形的边数是7.(2)证明:方法一:,.又,.,.方法二:过点作.,111343214131232 1.55222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=△A B C '''△P 12∠=∠ 12EAC EAC ∴∠+∠=∠+∠BAC EAD ∠=∠ABC △AED △C D BAC EAD AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AED ∴△≌△ABC AED △≌△B AED ∴∠=∠1B AEC DEC AED ∠+∠=∠=∠+∠ 1DEC ∴∠=∠n ()21803360180n -⨯︒=⨯︒-︒()261n -=-7n =∴180A B ACB ∠+∠+∠=︒ ()180ACB A B ∴∠=︒-∠+∠180ACB ACD ∠+∠=︒ 180ACB ACD ∴∠=︒-∠()180180A B ACD ∴︒-∠+∠=︒-∠ACD A B ∴∠=∠+∠C //CE AB ,ACE A ECD B ∴∠=∠∠=∠.21.(1)解:,,;(2)解:,,.22.解:在直角三角形中,一条直角边等于斜边的一半,那么这条直角边所对的角是,此命题是真命题,理由如下:已知:在中,,求证:.证明:延长至点,使,连接,,是线段的垂直平分线,,,,是等边三角形,,,.23.以点为圆心长度为半径画弧交于点,以为圆心,大于为半径画弧交于点,连接交于,点即为所作.24.解:(1)(2)设.,;ACD ACE ECD A B ∴∠=∠+∠=∠+∠1122ABC S AB CE BC AD =⋅=⋅ △11781022AD ∴⨯⨯=⨯⨯28cm 5AD ∴=1122ABC S AB CE BC AD =⋅=⋅ △112322CE AD ∴⨯⨯=⨯⨯23AD CE ∴=30︒ABC △190,2C BC AB ∠=︒=30A ∠=︒BC D CD BC =AD 90,ACB CD BC ∠=︒= AC ∴BD AB AD ∴=12BC AB = BD AB ∴=ABD ∴△60BAD ∴∠=︒AC BD ⊥ 1302BAC BAD ∴∠=∠=︒B AB AC D A D 、12AD E BE AC P P ,,ABC ABD BCD△△△A x ∠=AD BD = ABD A x ∴∠=∠=,;,,;,,.25.(1)证明:在中,,,是的垂直平分线,,,是等边三角形;(2)证明:是的垂直平分线,,,则,,平分,,,是等边三角形,,点在线段的垂直平分线上.26.(1)解:,,,,,过点作,过点作,则:,,,,,又,,,,即:,,,;(2),,,,又,,,;(3),理由如下:BD BC = 2BCD BDC ABD A x ∴∠=∠=∠+∠=AB AC = 2ABC BCD x ∴∠=∠=DBC x ∴∠=22180x x x ++=︒ 36x ∴=︒36,72A ABC ACB ∴∠=︒∠=∠=︒Rt ABC △90,30ACB B ∠=︒∠=︒160,2BAC AC AB ∴∠=︒=DE AB 12AD DB AB ∴==AD AC ∴=ADC ∴△DE AB ,AE BE DE AB ∴=⊥30EAB B ∴∠=∠=︒30EAC BAC EAB ∠=∠-∠=︒BAE CAE ∴∠=∠AE ∴BAC ∠,DE AB AC BC ⊥⊥ DE EC ∴=ADC △AD AC ∴=∴E CD 2(2)40a b -+-= 20,40a b ∴-=-=2,4a b ∴==()()0,2,4,0A B ∴2,4OA OB ∴==P PN OA ⊥B BM PN ⊥90PNA PMB ∠=∠=︒90APN NAP ∴∠+∠=︒PA PB ⊥ 90APN BPM ∴∠+∠=︒BPM NAP ∴∠=∠PA PB =PNA BMP ∴△≌△,PN BM AN PM ∴==OA AN PM OB ∴++=24AN AN ++=1AN ∴=3ON PN OA AN ∴==+=()3,3P ∴11,PA PB PA PB ⊥⊥ 1111APA A PB A PB B PB ∴∠+∠=∠+∠11APA B PB ∴∠=∠1360180,180PAO PBO AOB APB PBB PBO ∠+∠=︒-∠-∠=︒∠+∠=︒ 1PAO PBB ∴∠=∠PA PB =11PAA PBB ∴△≌△11AA BB ∴=()1111426OB OA OB BB AA OA OB OA ∴-=+--=+=+=2,BR PC BR BC =⊥延长至点,使,连接,为的中点,,,,,,,,,,,,,,,.27.答:平行四边形的定义、性质、判定及应用.(答出3点即可得满分).PC S PC CS =AS C AQ AC CQ ∴=PCQ SCA ∠=∠ PCQ SCA ∴△≌△,AS PQ ASC CPQ ∴=∠=∠//AS PQ ∴180SAP APQ ∴∠+∠=︒,PR PQ PA PB ⊥⊥ 180BPR APQ APB APR APQ APB RPQ ∴∠+∠=∠+∠+∠=∠+∠=︒SAP BPR ∴∠=∠,AS PQ PR PA PB === PRB ASP ∴△≌△2,BR PS PC APS PBR ∴==∠=∠90APS BPS ∠+∠=︒ 90BPS PBR ∴∠+∠=︒BR PC ∴⊥。
2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)
2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。
河南省新乡市辉县市2023-2024学年八年级上学期期中数学试题(含解析)
A .B .7.已知一个长方形的长为A .30B .AC BD =A .410.如图,在F ,交AC 的延长线于点A .①②③B .①②④二、填空题(每小题3分,共11.写出一个大于且小于12.若,则ABC 3-2340m n +-=4⨯m20.探究a如图①,边长为的大正方形中有一个边长为②___________,(用含,的等式表示)应用请应用这个公式完成下列各题:(1)已知,,则的值为___________.(2)计算:.拓展(3)计算:.21.如图,在等腰中,,点在线段上运动(不与、重合),连接,作,交线段于点.(1)若,证明:;(2)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数;若不可以,请说明理由.22.在学习完全平方公式:(a ±b )2=a 2±2ab +b 2后,我们对公式的运用进一步探讨.(1)若ab =30,a +b =10,则a 2+b 2的值为________.(2)“若y 满足(40﹣y )(y ﹣20)=50,求(40﹣y )2+(y ﹣20)2的值”.阅读以下解法,并解决相应问题.解:设40﹣y =a ,y ﹣20=b则a +b =(40﹣y )+(y ﹣20)=20ab =(40﹣y )(y ﹣20)=50a b 22412m n =+24m n +=2m n -2202220232021-⨯222222221009998974321-+-+⋯+-+-ABC ∆36B C ∠=∠=︒D BC D B C AD 36ADE ∠=︒DE AC E AB CD =ABD DCE ∆≅∆D ADE ∆BDA ∠这样就可以利用(1)的方法进行求值了.若x 满足(40﹣x )(x ﹣20)=﹣10,求(40﹣x )2+(x ﹣20)2的值.(3)若x 满足(30+x )(20+x )=10,求(30+x )2+(20+x )2的值.23.八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA,OB 之间,移动角尺使角尺两边相同的刻度与M,N 重合,即PM=PN,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(Ⅱ)∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,将角尺的直角顶点P 介于射线OA,OB 之间,移动角尺使角尺两边相同的刻度与M,N 重合,即PM=PN,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA,PN ⊥OB.此方案是否可行?请说明理由.答案与解析1.B 【分析】根据平方根的定义:如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根,据此判断即可.【详解】解:∵,∴的平方根是:,故选:B .2(9)81±=819±A不符合题意,C 选项错误;D 选项,若两个三角形全等,则对应边所对的角是对应角,故原命题正确,是真命题,符合题意,D 选项正确.故选:D .5.A【分析】先用多项式乘以多项式的法则展开,然后合并同类项,不含x 的一次项,就让x 的一次项的系数等于0.【详解】解:(3x +2)(3x +a )=9x 2+3ax +6x +2a=9x 2+(3a +6)x +2a ,∵不含x 的一次项,∴3a +6=0,∴a =﹣2,故选:A .【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式的乘积中不含某一项,就是该项的系数等于0是解题的关键.6.A【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解:,,,条件为边边角,不能证明,故A 符合题意;,,,条件为边角边,能证明,故B 不符合题意;,,,条件为角角边,能证明,故C 不符合题意;,,,条件为边角边,能证明,故D 不符合题意,故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:.注意:不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. ABC BAD ∠=∠AB BA =AC BD =∴ABC BAD ≌ ABC BAD ∠=∠AB BA =CAB DBA ∠=∠∴ABC BAD ≌ ABC BAD ∠=∠AB BA =C D ∠=∠ABC BAD ≌ ABC BAD ∠=∠AB BA =BC AD =ABC BAD ≌SSS SAS ASA AAS HL 、、、、AAA SSA 、7.B【分析】由长方形的周长及面积可得出,,代入中即可求出结论.【详解】解:根据题意得:,,∴.故选:B .【点睛】本题考查了完全平方公式的几何背景、长方形的周长以及长方形的面积,利用长方形的周长及面积公式找出,是解题的关键.8.B【分析】先证明AD =BD ,再证明∠C =∠BFD ,从而利用AAS 证明△BDF ≌△ADC ,利用全等三角形对应边相等就可得到答案【详解】解:∵AD ⊥BC ,∴∠ADB =90°,∵∠ABC =45°,∴∠ABD =∠DAB ,∴BD =AD ,∵∠CAD +∠AFE =90°,∠CAD +∠C =90°,∠AFE =∠BFD ,∴∠AFE =∠C ,∵∠AFE =∠BFD∴∠C =∠BFD在△BDF 和△ADC 中,,∴△BDF ≌△ADC (AAS ),∴DF =CD =4,AF =6-4=2故选:B .【点睛】本题考查全等三角形的判定及全等三角形对应边相等的性质,解题关键在于正确寻6ab =6a b +=()2222a b a b ab +=+-6ab =6a b +=()222224a b a b ab +=+-=6ab =6a b +=C BFD AD BDBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩故答案为:;(2);(3).【点睛】本题考查了平方差公式与几何图形,根据平方差公式进行计算,掌握平方差公式是解题的关键.21.(1)见解析;(2)或【分析】(1)由条件可得∠EDC=∠DAB ,∠B=∠C ,DC=AB ,根据ASA 即可证明结论;(2)若△ADE 是等腰三角形,分为三种情况:①当AD=AE 时,∠ADE=∠AED=36°,根据∠AED>∠C ,得出此时不符合;②当DA=DE 时,求出∠DAE=∠DEA=72°,求出∠BAC 的度数,根据三角形的内角和定理求出∠BAD ,根据三角形的内角和定理求出∠BDA 即可;③当EA=ED 时,求出∠DAC ,求出∠BAD 的度数,根据三角形的内角和定理求出∠BDA 的度数.【详解】解:(1)证明:∵,,∴,,∵,∴.在和中,,32201920202018-⨯()()220192019120191=-+⨯-()22201920191=--22201920191=-+1=222222221009998974321-+-+⋯+-+-()()()()()()()()10099100999897989743432121=+⨯-++⨯-+++⨯-++⨯- 1009998974321=++++⋯++++5050=80︒116︒180EDC ADE ADB ∠+∠+∠=︒180ABD BAD BDA ∠+∠+∠=︒180BAD ABD BDA ∠=︒-∠-∠180CDE ADE BDA ∠=︒-∠-∠ABD ADE ∠=∠BAD CDE ∠=∠ABD ∆DCE ∆BDA CDE AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴(40-x )2+(x -20)2=a 2+b 2=(a +b )2-2ab=202-2×(-10)=420.(3)设30+x =a ,20+x =b ,则 (30+x )(20+x )=ab =10,∵a -b =(30+x )-(20+x )=10,∴(30+x )2+(20+x )2=a 2+b 2=(a -b )2+2ab=102+2×10=120.【点睛】本题考查了完全平方公式,涉及到整体思想,解决本题的关键是熟记完全平方公式,进行转化应用.23.(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件;当∠AOB 是直角时,此方案可行.【分析】(1)方案(Ⅰ)中判定并不能判断就是的角平分线,关键是缺少的条件,只有“边边”的条件;(2)可行.此时和都是直角三角形,可以利用证明它们全等,然后利用全等三角形的性质即可证明为的角平分线.【详解】(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件.∵只有OP=OP,PM=PN 不能判断△OPM ≌△OPN;∴就不能判定OP 就是∠AOB 的平分线.方案(Ⅱ)可行.证明:在△OPM 和△OPN 中,∴△OPM ≌△OPN(SSS),∴∠AOP=∠BOP.(2)当∠AOB 是直角时,此方案可行.∵PM ⊥OA,PN ⊥OB,PM PN =P AOB ∠OPM OPN ≅ OPM OPN HL OP AOB ∠,,.OM ON PM PN OP OP =⎧⎪=⎨⎪=⎩∴∠OMP=∠ONP=90°.∵∠MPN=90°,∴∠AOB=360°―∠OMP―∠ONP―∠MPN=90°.∵PM⊥OA,PN⊥OB,且PM=PN,∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的平分线上).当∠AOB不为直角时,此方案不可行.【点睛】此题主要考查了全等三角形的判定与性质,是一个开放性试题,可以提高学生解决实际的能力.。
2023-2024学年沪科新版八年级上册数学期中复习试卷(含解析)
2023-2024学年沪科新版八年级上册数学期中复习试卷一.选择题(共10小题,满分40分,每小题4分)1.若m是任意实数,则点M(m2+2,﹣2)在第( )象限.A.一B.二C.三D.四2.一本笔记本5元,买x本共付y元,则常量和变量分别是( )A.常量:5;变量:x B.常量:5;变量:yC.常量:5;变量:x,y D.常量:x,y;变量:53.点P是平面直角坐标系中的一点,将点P向左平移3个单位长度,再向下平移4个单位长度,得到点P′的坐标是(﹣2,1),则点P的坐标是( )A.(1,5)B.(﹣1,﹣3)C.(﹣5,﹣3)D.(﹣1,5)4.对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是( )x……﹣10123y……﹣214810……A.1B.4C.8D.105.三角形两边长2、3,则最短边x的取值范围是( )A.1<x<5B.2<x<3C.1<x≤2D.3≤x<56.如图,将一个三角形剪去一个角后,∠1+∠2=240°,则∠A等于( )A.45°B.60°C.75°D.80°7.下列语句中是命题的是( )A.作线段AB=CD B.两直线平行C.对顶角相等D.连接AB8.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A.B.1C.D.29.如图所示,一次函数y=kx+b(k,b是常数,k≠0)与正比例函数y=mx(m是常数,m ≠0)的图象相交于点M(1,2),下列判断错误的是( )A.关于x的方程mx=kx+b的解是x=1B.关于x的不等式mx<kx+b的解集是x>1C.当x<0时,函数y=kx+b的值比函数y=mx的值大D.关于x,y的方程组的解是10.如图,已知直线AB分别交坐标轴于A(2,0)、B(0,﹣6)两点直线上任意一点P (x,y),设点P到x轴和y轴的距离分别是m和n,则m+n的最小值为( )A.2B.3C.5D.6二.填空题(共4小题,满分20分,每小题5分)11.若实数x、y满足:y=++,则xy= .12.将点P(﹣3,2)向上平移4个单位,向左平移1个单位后得到点的坐标是( , ).13.一次函数y=2x+3和y=x﹣的图象交于点A( , ),则方程组的解是 .14.在△ABC中,∠C=90°,∠A=45°,c2=18,则a= .三.解答题(共9小题,满分90分)15.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+5,b﹣2).(1)在平面直角坐标系内描出点A、B、C,并画出△ABC;(2)直接写出点A1,B1,C1的坐标;(3)在图中画出△A1B1C1.16.如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C(﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.17.已知函数y=(2﹣m)x+2n﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?18.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值;(3)求该直线上到x轴距离为3的点的坐标.19.在同一平面直角坐标系内作出一次函数和的图象,直线与直线的交点坐标是多少?你能据此求出方程组的解吗?20.如图,已知点O是△ABC的两条角平分线的交点.(1)若∠A=30°,则∠BOC的大小是 ;(2)若∠A=60°,则∠BOC=的大小是 ;(3)若∠A=80°,则∠BOC的大小是 ;(4)若∠A=n°,猜想∠BOC的大小,并用所学过的知识说明理由.21.如图,P为△ABC内一点,说明AB+AC>PB+PC的理由.22.(1)如图(1)所示,在三角形ABC中,∠ABC,∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数;(2)如图(2)所示,∠A′B′C′和∠A′C′B′的邻补角的平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)由(1)(2)两题可知∠BOC与∠B′O′C′有怎样的数量关系?若∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的关系?请说明理由.23.已知一次函数y1=kx+2k﹣4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax﹣a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵m2≥0,∴m2+2≥2,∴点M(m2+2,﹣2)在第四象限.故选:D.2.解:一本笔记本5元,买x本共付y元,则5是常量,x、y是变量.故选:C.3.解:设点P的坐标是(x,y),∵将点P向左平移3个单位长度,再向下平移4个单位长度,可得P的对应点坐标为(x ﹣3,y﹣4),∵得到点P′的坐标是(﹣2,1),∴x﹣3=﹣2,y﹣4=1,∴x=1,y=5,∴P的坐标是(1,5),故选:A.4.解:∵(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,当x=2时,y=7≠8∴这个计算有误的函数值是8,故选:C.5.解:∵三角形的两边长分别为2、3,且x是最短边,∴3﹣2<x≤2,即1<x≤2.故选:C.6.解:∵∠1+∠2=240°,∴∠B+∠C=360°﹣(∠1+∠2)=120°,∴∠A=180°﹣(∠B+∠C)=60°,故选:B.7.解:A、作线段AB=CD,没有做出判断,不是命题;B、两直线平行,没有做出判断,不是命题;C、对顶角相等,是命题;D、连接AB,没有做出判断,不是命题;故选:C.8.解:∵BE=CE,∴BE=BC,∵S△ABC=9,∴S△ABE=S△ABC=×9=4.5.∵AD=2BD,S△ABC=9,∴S△BCD=S△ABC=×9=3,∵S△ABE﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+SS四边形BEFD)=S△ADF﹣S△CEF,即S△ADF﹣S△CEF=S△ABE﹣S△BCD=4.5﹣3=1.5.故选:C.9.解:∵一次函数y=kx+b(k,b是常数,k≠0)与正比例函数y=mx(m是常数,m≠0)的图象相交于点M(1,2),∴关于x的方程mx=kx+b的解是x=1,选项A判断正确,不符合题意;关于x的不等式mx<kx+b的解集是x<1,选项B判断错误,符合题意;当x<0时,函数y=kx+b的值比函数y=mx的值大,选项C判断正确,不符合题意;关于x,y的方程组的解是,选项D判断正确,不符合题意;故选:B.10.解:设直线AB的解析式为:y=kx+b将A(2,0)、B(0,﹣6)代入得:解得:∴直线AB的解析式为y=3x﹣6∵P(x,y)是直线AB上任意一点∴m=|3x﹣6|,n=|x|∴m+n=|3x﹣6|+|x|∴①当点P(x,y)满足x≥2时,m+n=4x﹣6≥2;②当点P(x,y)满足0<x<2时,m+n=6﹣2x,此时2<m+n<6;③当点P(x,y)满足x≤0时,m+n=6﹣4x≥6;综上,m+n≥2∴m+n的最小值为2故选:A.二.填空题(共4小题,满分20分,每小题5分)11.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.12.解:P(﹣3,2)向上平移4个单位,向左平移1个单位后,∴﹣3﹣1=﹣4,2+4=6,∴得到点的坐标是(﹣4,6),故答案为:(﹣4,6).13.解:如图,一次函数y=2x+3和y=x﹣的图象交于点A(﹣3,﹣3),则方程组的解是.故答案为﹣3,﹣3,.14.解:在△ABC中,∠C=90°,∠A=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣45°﹣90°=45°=∠A,∴△ABC为等腰直角三角形,∴a=b.又∵a2+b2=c2,即2a2=18,解得:a1=3,a2=﹣3(不符合题意,舍去),∴a的值为3.故答案为:3.三.解答题(共9小题,满分90分)15.解:(1)如图所示,△ABC即为所求.(2)A1的坐标为(2,1),B1的坐标为(0,﹣1),C1的坐标为(3,﹣2);(3)如图所示,△A1B1C1即为所求.16.解:在中,当y=0时,,∴x=6,∴点A的坐标为(6,0),∴OA=6,当x=0时,y=﹣3,∴点B的坐标为(0,﹣3),把点C(﹣4,n)代入得,∴点C的坐标为(﹣4,﹣5),过点C作CD⊥x轴于点D,则CD=5,∴.17.解:(1)由题意得,2﹣m≠0,解得m≠2;(2)由题意得,2﹣m≠0且2n﹣3=0,解得m≠2且n=.18.解:(1)设y﹣3=k(4x﹣2),把x=1,y=5代入得5﹣3=k(4×1﹣2),解得k=1,所以y﹣3=4x﹣2,所以y与x的函数关系式为y=4x+1;(2)当x=﹣2时,y=4×(﹣2)+1=﹣7;(3)当y=3时,4x+1=3,解得x=;当y=﹣3时,4x+1=﹣3,解得x=﹣1,所以直线y=4x+1到x轴距离为3的点的坐标为(,3)或(﹣1,﹣3).19.解:由图知:两函数图象的交点为(,﹣),所以待求方程组的解为.20.解:∠BOC=∠A+90°.∵如图,在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,∵BO,CO分别是∠ABC和∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠BOC+∠ABC+∠ACB=180°,又∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴∠BOC=∠A+90°,∴若∠A=n°,∠BOC=n°+90°,由此可得问题(1),(2),(3),(4)的答案,故答案为:105°,120°,130°.21.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.22.解:(1)∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°;∵∠ABC,∠ACB的平分线相交于点O,∴∠1+∠2=(∠ABC+∠ACB)=70°,∴∠BOC=180°﹣70°=110°.(2)∵∠A'=40°,∠D'B'C'=∠A'+∠A'C'B',∠E'C'B'=∠A'+∠A'B'C',∴∠D'B'C'+∠E'C'B'=∠A'+∠A'C'B'+∠A'+∠A'B'C'=180°+40°=220°;∵∠ABC,∠ACB的平分线相交于点O,∴∠1+∠2=(∠D'B'C'+∠E'C'B')=110°,∴∠B'O'C'=180°﹣110°=70°.(3)由(1)(2)两题可知∠BOC与∠B′O′C′的数量关系为,∠BOC+∠B'O'C'=180°,当∠A=∠A′=n°时,∠BOC+∠B'O'C'=180°,理由如下:由(1)知,∠BOC=180°﹣(∠1+∠2),∠1+∠2=(∠ABC+∠ACB),∴∠BOC=180°﹣(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠BOC=180°﹣(180°﹣∠A)=90°+∠A=90°+n°,由(1)知,∠B'O'C'=180°﹣(∠1+∠2),∠1+∠2=(∠D'B'C'+∠E'C'B'),∴∠B'O'C'=180°﹣(∠D'B'C'+∠E'C'B'),又∵∠D'B'C'+∠E'C'B'=∠A'+∠A'C'B'+∠A'+∠A'B'C'=180°+∠A',∴∠B'O'C'=180°﹣(180°+∠A')=90°﹣∠A'=90°﹣n°,∴∠BOC+∠B'O'C'=90°+n°+90°﹣n°=180°,∴当∠A=∠A′=n°时,∠BOC+∠B′O′C′=180°.23.解:(1)由题意得,解得0<k<2,∴k的取值范围是0<k<2;(2)依题意,得k=a,∴y2=kx﹣k+1,∵对任意实数x,y1<y2都成立,∴2k﹣4<﹣k+1,解得k<,∵0<k<2,∴k的取值范围是0<k.。
河南省南阳市邓州市2023-2024学年八年级上学期期中数学试题(含答案)
邓州市2023~2024学年第一学期期中质量评估八年级数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一.选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.有理数16的平方根是() A .4± B .4C .8±D .8 2.下列各数的立方根是-2的数是()A .4B .-4C .8D .-83.在《九章算术》一书中,对开方开不尽的数起了一个名字,叫做“面”,这是中国传统数学对无理数的最早记载,下面符合“面”的描述的数是()ABCD 4.下列运算正确的是() A .3362a a a ⋅=B .3362a a a +=C .()236aa =D .623a a a ÷=5.在电子显微镜下测得一个圆球体细胞的直径是2510⨯纳米,则3210⨯个这样的细胞排成的细胞链的长是() A .107纳米 B .106纳米C .105纳米D .104纳米6.计算:(14a 3b 2-7ab 2)÷7ab 2的结果是()A .2a 2B .2a 2-1C .2a 2-bD .2a 2b -17.如图,△ABC 绕点O 旋转180°得到A B C '''△,则下列结论不成立的是()A .点A 与点A '是对应点B .AB A B ''=C .ACB C A B '''∠=∠D .BO B O '=8.如下图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A .(ab )2=a 2b 2B .(a +b )(a -b )=a 2-b 2C .(a -b )2=a 2-2ab +b 2D .(a +b )2=a 2+2ab +b 29.小明不慎将一块三角形玻璃摔碎成如图所示的四块(即图中标1,2,3,4的四块),你认为将其中的哪一块带到五金店,就能配成一块与原来一样大小的三角形()A .1B .2C .3D .410.观察:(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1……据此规律,当(x -1)(x 5+x 4+x 3+x 2+x +1)=0时,x 2023的结果是() A .1B .-1C .1或-1D .1或-2二、填空(每小题3分,共15分)11.在实数-2,0,1中,最小的实数是______. 12.计算()()7422a a ÷=______.13.若(x +a )(x -4)的积中不含有x 的一次项,则a 的值为______. 14.如图在3×3的方格图中,每个小方格的边长都为1,则12∠+∠=______.第14题图15.如图,两个全等的直角三角板重叠在一起,将其中的一个三角板ABC 沿着BC 方向平移到△DEF 的位置,AC 与DE 交于点O .若AB =10,DO =2,CF =3,则四边形CFDO 的面积为______.第15题图三、解答题(本大题共8个小题,满分75分)16.(9分)(1()31-(2)化简:()()()()22224x y x y x y x y x ++-+-- 17.(9分)因式分解 (1)2am 2-8a (2)(x -y )2+4xy 18.(9分)(1)发现:任意五个连续整数的平方和能被5整除. 验证:(-1)2+02+12+22+32的结果是5的几倍?(2)探索:设五个连续整数的中间一个数为m ,写出它们的平方和,并说明能被5整除.19.(9分)如图,点D ,E 分别在AB ,AC 上,∠ADC =∠AEB =90°,BE ,CD 相交于点O ,∠1=∠2,求证:OB =OC ,小聪同学的证明过程如下:任务:(1)小聪同学的证明过程中依据①是______,依据②是______; (2)按小聪同学的思路将证明过程补充完整; (3)图中共有______对全等三角形,它们是______.20.(9分)如图①,有一个长为4a ,宽为b 的长方形,沿图中虚线剪开可平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图②).请观察分析后完成下列问题:(1)图②中,阴影部分的面积可表示为()A .4abB .(a +b )2C .(b -a )2D .4(b -a )(2)观察图②,请你归纳出(a +b )2,(a -b )2,ab 之间的一个等量关系______; (3)运用(2)中归纳的结论:当137,4x y xy +==时,求x -y 的值. 21.(9分)在综合实践课上,王老师要求同学们用所学知识测量池塘宽,如图,池塘两端A 、B 之间的距离无法直接测量,请同学们设计测量A 、B 之间距离的方案.(1)小明设计的方案如图①:他先在平地上选取一个可以直接到达A 、B 的点O ,然后连接AO 和BO ,接着分别延长AO 和BO 并且使CO =AO ,DO =BO ,最后连接CD ,测出CD 的长即可.(2)小红设计的方案如图②:先确定直线AB ,过点B 作AB 的垂线BE ,在BE 上选取一个可以直接到达点A 的点D ,连接AD ,在线段AB 的延长线上找一点C ,使DC =DA ,测BC 的长即可. 你认为以上两种方案可以吗?请说明理由.22.(10分)阅读材料;杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,西方人帕斯卡发现时,已比宋代杨辉要迟393年.如图,根据你观察的杨辉三角的排列规律,完成下列问题.(1)判断(a +b )5的展开式共有______项;写出(a +b )6的第三项的系数是______; (2)计算与猜想:①计算:5432252102102521-⨯+⨯-⨯+⨯- ②猜想:()621x -的展开式中含x 3项的系数是______.(3)运用:若今天是星期五,过7天仍是星期五,那么再过86天是星期______.23.(11分)已知∠ABC =90°,D 是直线AB 上的点,AD =BC ,作F A ⊥AB 于点A ,且AF =BD ,连结DC 、DF .(1)自主探究:如图1,当点D在线段AB上,点F在点A右侧时,DF与DC的数量关系为______,位置关系为______;(2)思考拓展:如图2,当点D在线段AB的延长线上,点F在点A的左侧时,(1)中的结论还成立吗?请说明理由;(3)能力提升:当点D在线段BA的延长线上,点F在点A的______侧时,(1)中的两个..结论依然成立,若此时BC=2,AB=1,则AF的长度为______.2023年秋期八年级数学期中试题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.-212.8a 313.414.180°15.27三、解答题(本大题共8个小题,共75分)16.(9分)第(1)小题4分,第(2)小题5分 (1()313212-=-+=.(2)解:()()()()2222222222444443x y x y x y x y x x xy y x y xy x x ++-+--=+++--+=.17.(9分)(1)()()()222222824am a a m a m m -=-=+-(2)()()2222224242x y xy x xy y xy x xy y x y -+=-++=++=+18.(9分)(1)验证:()22222101231014915-++++=++++=1553÷=∴()2222210123-++++的结果是5的3倍(2)五个连续整数的平方和是:()()()()222221221m m m m m -+-+++++∵()()()()222221221m m m m m -+-+++++()22222224421214451052m m m m m m m m m m m =-++-++++++++=+=+∵m 是整数∴22m +是整数∴()252m +能被5整除 即:五个连续整数的平方和能被5整除 19.(9分)(1)依据①是AAS (语言表述正确也可) 依据②是全等三角形的对应边相等(2)∵∠ADC =∠AEB =90°∴∠BDO =∠CEO =90°在△BDO 和△CEO 中BDO CEOOD OE BOD COE ∠=∠=∠=∠⎧⎪⎨⎪⎩∴BDO CEO ≌△△(字母不对应扣1分)∴OB =OC .(3)4.△ADO 和△AEO ,△BDO 和△CEO ,△ADC 和△AEB ,△AOB 和△AOC20.(9分) (1)C .(2)(a +b )2-(a -b )2=4ab (答案不唯一,恒等变形正确都给分) (3)由(2)可知(a -b )2=(a +b )2-4ab ∴()()22213474364x y x y xy -=+-=-⨯=∴6x y -=±.(少写一个扣1分) 21.(9分)以上两种方案都可以 小明的方案:在△COD 和△AOB 中CO AO COD AOB DO BO =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB ∴CD =AB . 小红的方案:∵BE ⊥AB ∴∠ABD =∠CBD =90° 在Rt △ABD 和Rt △CBD 中DC DABD BD =⎧⎨=⎩∴Rt △ABD ≌Rt △CBD ∴BC =BA .(本题字母不对应只扣1分)22.(10分) (1)615(2)①()55432252102102521211-⨯+⨯-⨯+⨯-=-=.②-160(3)六. 23.(11分)(1)DF =DCDF ⊥DC (2)(1)中的结论还成立. 理由如下:∵∠ABC =90°,F A ⊥AB ∴∠F AD =∠DBC在△F AD 和△DBC 中AF BD FAD DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△F AD ≌△DBC ∴FD =DC ∠FDA =∠DCB又∵∠DCB +∠BDC =90°∴∠FDA +∠BDC =90°∴FD ⊥DC . (3)左3.。
2023-2024学年青岛新版八年级上册数学期中复习试卷(含解析)
=k.
7.解:由题意可得
,
解得:x=﹣3, 故选:B. 8.解:丁的平均成绩为
=97(分),
丁的方差为 ×[3×(97﹣97)2+(96﹣97)2+(98﹣97)2]=0.4, ∵丙、丁的平均成绩大于甲、乙,且丁的方差最小, ∴丁的成绩好且发挥稳定, 故选:D. 二.填空题(共 6 小题,满分 18 分,每小题 3 分) 9.解:∵共有 2+8+7+10+3=30 个数据, ∴其中位数是第 15、16 个数据的平均数,而第 15、16 个数据均为 1.3 万步, 则中位数是 1.3 万步, 故答案为:1.3. 10.解:去括号得:﹣3x+4x﹣5x=13, 移项合并得:﹣4x=13, 解得:x=﹣ ,
甲 乙 (1)写出表格中 a,b,c,d 的值.
7 7 c d a b 8 4.2
(2)哪个队员的成绩更稳定? (3)若选派其中一名参赛,从冲击奖牌的角度考虑,你认为应选哪名队员? 22.甲、乙两人加工某种零件,甲的加工任务为 480 件,乙的加工任务是 400 件;已知甲每 小时比乙每小时多加工 8 件. (1)如果甲、乙完成任务的时间比是 4:5,问乙每小时加工多少个零件? (2)如果乙每小时加工的零件数不少于 20 个,那么甲、乙谁先完成任务,说明理由.
C.不变
D.缩小为原来的
6.已知 = = =k(k≠0),则
( )
A.2k
B.k
C.3k
D.﹣k
7.当分式
的值为 0 时,x 的值为( )
A.2
B.﹣3
C.﹣2
D.±2
8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列结论正确的是()A .有两个锐角相等的两个直角三角形全等B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等D .两个等边三角形全等.3.已知一个正多边形的内角是140︒,则这个正多边形的边数是()A .6B .7C .8D .94.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠AEF =110°,则∠1=()A .50°B .35°C .30°D .40°5.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为()A .40°B .45°C .60°D .70°6.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对7.如图,在ABC 中,9035C BC BAC ∠=︒=∠,,的平分线AD 交BC 于点.D 若:2:5,DC DB =则点D 到AB 的距离是()A .10B .15C .25D .208.如图,在ABC 中,2,75,60AC BAC ACB =∠=︒∠=︒,高BE 与AD 相交于点从,则DH 的长为()A .4B .3C .2D .19.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为()A .15°B .225°C .30°D .45°10.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是A .CB CD=B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒二、填空题11.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.12.如图,在ABC 中,6, 4.5,AB AC BC ===分别以,A B 为圆心,4为半径画弧交于两点,过这两点的直线交AC 于点,连接BD ,则△BCD 的周长是__________.13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.14.如图,△ABC 中,AB=AC ,∠BAC=120°,AC 的垂直平分线交BC 于点D ,垂足为E ,若DE=2cm ,则BD 的长为_______.15.已知点P 的坐标为(-3,4),作出点P 关于x 轴对称的点P 1,称为第1次变换;再作出点P 1关于y 轴对称的点P 2,称为第2次变换;再作点P 2关于x 轴对称的点P 3,称为第3次变换,…,依次类推,则第2019次变换得到的点P 2019的坐标为____________.16.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠1=40°,∠2=110°,则∠A=_____.三、解答题17.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示)。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
人教版八年级(上)数学期中试卷(含答案)
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新八年级数学上期中试卷含答案一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为()A.6B.8C.10D.8或102.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°3.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④4.若分式11xx-+的值为零,则x的值是( )A.1B.1-C.1±D.25.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.2B.4C.32D.427.已知x2+mx+25是完全平方式,则m的值为()A .10B .±10C .20D .±20 8.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 9.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 10.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 211.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .12.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上二、填空题13.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.已知x 2+mx-6=(x-3)(x+n),则m n =______.16.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____.17.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 18.如图,在等边ABC V 中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60o 得到线段OD .要使点D 恰好落在BC 上,则AP 的长是 .19.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.20.若分式67x--的值为正数,则x 的取值范围_____. 三、解答题21.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠B 的度数;(2)求线段DE 的长.22.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).23.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =. 24.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.25.如图,在ABC n 中,AB AC =,点D 在ABC n 内,BD BC =,DBC 60∠︒=,点E 在ABC n 外,BCE 150∠︒=,ABE 60∠︒=.(1)求ADB ∠的度数;(2)判断ABE n 的形状并加以证明;(3)连接DE ,若DE BD ⊥,DE 8=,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C.【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.3.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.7.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.8.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.C解析:C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q 多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.10.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.11.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系. 12.D解析:D【解析】【分析】根据轴对称的性质即可解答.【详解】∵△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任意一点,∴△A A 1P 是等腰三角形,MN 垂直平分AA 1、CC 1,△ABC 与△A 1B 1C 1面积相等, ∴选项A 、B 、C 选项正确;∵直线AB ,A 1B 1关于直线MN 对称,因此交点一定在MN 上.∴选项D 错误.故选D .【点睛】本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.二、填空题13.0【解析】【分析】根据题意先解出方程的根为x=4-2m 由题意可知x=2即可得4-2m=2解出m 即可【详解】解:方程两边同时乘以x-2得解得:∵分式方程有增根∴x=2∴∴故答案为:0【点睛】本题考查分解析:0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.【详解】解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键. 14.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 15.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx -6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值,即可得出m n 的值.【详解】∵x 2+mx-6=(x-3)(x+n )=x 2+nx-3x-3n=x 2+(n-3)x-3n ,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n =1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.16.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.17.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k 的值【详解】方程两边都乘(x+1)(x ﹣1)得2(x+1)+kx =3(x ﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】方程两边都乘(x +1)(x ﹣1),得2(x +1)+kx =3(x ﹣1),即(k ﹣1)x =﹣5,∵最简公分母为(x +1)(x ﹣1),∴原方程增根为x =±1, ∴把x =1代入整式方程,得k =﹣4.把x =﹣1代入整式方程,得k =6.综上可知k =﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18.6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD∠A=∠POD=60°∴∠APO=∠COD 在△APO 和△COD 中∠A=∠CAPO=∠CODP=OD∴△APO≌△COD(AAS )∴A解析:6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°,∴∠APO=∠COD .在△APO 和△COD 中,∠A=∠C ,APO=∠COD ,P=OD ,∴△APO ≌△COD (AAS ),∴AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为:6.19.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB ∥CD ∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC ﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB ∥CD ,∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°. 20.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.三、解答题21.(1)40︒;(2)4【解析】【分析】(1)根据等腰三角形的性质∠B=∠C 可推导求出;(2)根据等腰三角形的性质,确定点D 是BC 的中点,从而得出DE 是△ABC 的中位线,从而得出DE 的长.【详解】(1)∵AB =AC ,∴∠B =∠C , ∴∠180100402B ︒-︒==︒; (2)∵AB =AC ,AD 平分∠BAC , ∴AD 是等腰△ABC 底边BC 上的高,即∠ADB =90°在直角三角形ABD 中,点E 是AB 的中点,∴DE 为斜边AB 边上的中线,∴DE 142AB ==. 【点睛】 本题考查等腰三角形的性质,等腰三角形常用到的性质为:底边上的“三线合一”. 22.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.22x -,12-. 【解析】 分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式()()()22228222x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦()2228422x x x x -+=÷--()28242x x -=⋅- =22x -. ∵2x =,∴2x =±,舍去2x =,当2x =-时,原式21222==---. 点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键.25.(1) 150°;(2) △ABE 是等边三角形,理由见解析;(3)4【解析】【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC=60°,再证明△ADB ≌△ADC ,推出∠ADB=∠ADC 即可解决问题.(2)结论:△ABE 是等边三角形.只要证明△ABD ≌△EBC 即可.(3)首先证明△DEC 是含有30度角的直角三角形,求出EC 的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形,∴DB=DC ,∠BDC=∠DBC=∠DCB=60°,在△ADB 和△ADC 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴△ADB ≌△ADC ,∴∠ADB=∠ADC ,∴∠ADB=12(360°﹣60°)=150°. (2)解:结论:△ABE 是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE ,在△ABD 和△EBC 中, 150AB EB ADB BCE ABD CBE =⎧⎪∠=∠=︒⎨⎪∠=∠⎩,∴△ABD ≌△EBC ,∴AB=BE ,∵∠ABE=60°,∴△ABE 是等边三角形.(3)解:连接DE .∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=12DE=4,∵△ABD ≌△EBC ,∴AD=EC=4. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.。