旋转与全等三角形
全等三角形——旋转问题
G F E D C BA全等三角形——旋转问题一、知识梳理:把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件相对集中,以便于诸条件的综合与推演.二、典型例题:例1、如图,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是_____________.及时练习:如图,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的, 其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心_____________。
A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到例2、如图,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE ,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有___________。
A .1对B .2对C .3对D .4对KGFEDC BA及时练习:如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.NMEDCBAP DC B A 例3、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FE DCBA及时练习:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.M DNECBA例4、如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA及时练习:如图,D 是等边ABC ∆内的一点,且BD AD =,BP AB =,DBP DBC ∠=∠,问BPD ∠的度数是否一定,若一定,求它的度数;若不一定,说明理由.例5、如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值. OB ECF A及时练习:如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DK G CFA例6、E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H为垂足,求证:AH AB =.CHF E D B A及时练习:如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BA例7、请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; ⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1ABCDE图2AB CDE及时练习:(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90︒,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD .求证:EF =BE +FD;FED CBA(2) 如图,在四边形ABCD 中,AB =AD ,∠B+∠D =180︒,E 、F 分别是边BC 、CD上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明.FEDCB A三、课堂练习:1. 如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点MPM BC DEA PD CB A 分别是线段BE 和AD 的中点,则CPM ∆是_____________。
“旋转型”全等三角形
“旋转型”全等三角形摘要:北师大版八年级下册第一章“三角形的证明”专题复习。
课本已经设置学生学习了三角形全等的判定方法及三角形全等的性质、等腰三角形性质。
“旋转型”全等是全等中的一个重要模型,也是中考的重要考点,掌握该模型也为相似奠定基础。
关键词:教学目标;教学设计;专题探究1重难点理解并掌握“旋转型”三角形全等模型;利用旋转型全等模型,能够灵活解决旋转型全等问题。
2教学目标经历从特殊到一般的探究过程,利用“有公共顶角顶点且顶角相等的两个等腰三角形”模型,掌握旋转型全等三角形的证明,提高学生的归纳总结能力,培养学生举一反三的能力。
3教学设计环节1:问题引入,复习回顾以PPT的形式展示两个三角形△ABC、△A'B'C',要使得△ABC≌△A'B'C':问题1若AB=A'B',BC=B'C',则需添加什么条件?若AB=A'B',∠B=∠B',又需要添加什么条件?(学生独立思考后回答,教师分别在PPT上展示出学生的不同答案,针对展示的结果让学生说出添加的依据。
师生共同点评,理清判定三角形全等的一般方法,为本节课探究活动做铺垫.)环节2专题探究,总结模型(1)探究一问题2如图2,点A、B、C在一条直线上,分别以AB、BC为边在AC同侧作等边△ABD和等边△BCE,连接AE、DC,则线段AE、DC满足什么数量关系?(学生独立思考后,学生口述展示探究过程,针对展示的过程让其他同学提出证明∠ABE=∠DBC的不同解法。
师生共同点评,总结该问题中证明全等的方法是SAS)追问1如果点A,B,C三点共线,其他条件不变,线段AE,DC还相等吗?(证明思路和上一题思路一样,以等边三角形入手,从“特殊”逐步向“一般”过渡。
需要注意的是,教师在此和学生一起辨析,在证明∠ABE=∠DBC时,不能“∠ABE=∠DBC=180°-60°)追问2若将等边△BCE绕点B旋转到与△ABD有重合部分,那么AE与DC相等吗?(教师几何画板展示动画,学生独立思考,教师点一名同学上讲台进行板演。
初中数学全等三角形旋转模型知识归纳总结含答案
初中数学全等三角形旋转模型知识归纳总结含答案一、全等三角形旋转模型1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =,AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______.问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ ,①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒,∴ABC ∆是等腰直角三角形,∴45ABC ACB ∠=∠=︒,∵30DBC ∠=︒,∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=,∴60BCD '∠=︒,∴BCD '∆是等边三角形,∴60BD C '∠=︒,BD CD ''=∵AB AC =,AD AD ''=,∴ABD '∆≌ACD '∆,∴30AD B AD C ''∠=∠=︒,∴30ADB AD C '∠=∠=︒;(2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠,BAC α∠=, ()111809022ABC αα︒︒∴∠=-=-, 1902ABD ABC DBC αβ︒∴∠=∠-∠=--, 119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+. 120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形,D B D C ''∴=,AD B AD C ''∴≌,AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=, 30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==, 3DE ∴=.BCD '是等边三角形,7BD BC '∴==,7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.3.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==得出结论.【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=,21CD ∴=;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中,OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号,OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.4.如图1所示,在Rt ABC △中90BAC ∠=︒,AB AC =,2BC =,以BC 所在直线为x 轴,边BC 的垂直平分线为y 轴建立平面直角坐标系,将ABC 绕P 点0,1顺时针旋转.(1)填空:当点B 旋转到y 轴正半轴时,则旋转后点A 坐标为______;(2)如图2所示,若边AB 与y 轴交点为E ,边AC 与直线1y x =-的交点为F ,求证:AEF 的周长为定值;(3)在(2)的条件下,求AEF 内切圆半径的最大值.解析:(1)2,21;(2)见解析;(3)324【分析】 (1)作出图形,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,根据2BC =,y 轴垂直平分BC , AB AC =,()0,1P -可证得四边形ABPC 是正方形,则有 '''2BP B PAB A B ,'0'21B B P PO ,可得点 A 坐标; (2)作BPQ CPF ∠=∠,交AB 延长线于Q 点,根据四边形ABPC 是正方形,得到90QBP FCP ∠=∠=︒,BP CP =,可证BPQ CPF ASA ≌△△,得BQ CF =,QP FP =,利用ASA 再可证得QPE FPE ≌△△,得QE FE =则AEF 的周长22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为r ,由(2)可得22AF m n =-则2AE AF EF r +-=222n m n m +--=2m =,当m 最小时,r 最大.得到22222n m n m 整理得:2224220nm n m ,关于n 的一元二次方程有解,即22244220m m 化简得24280m m +-≥,利用二次函数图像可得422m ≥-422m ≤--(不合题意,舍去)可得m 的最小值为42-r 2422324,则有AEF 内切圆半径的最大值为324.【详解】解:(1)如图示,'''A B C 是ABC 绕 P 点0,1顺时针旋转,点B 旋转到y 轴正半轴时得到的图形,连接 BP ,CP ,∵2BC =,y 轴垂直平分BC∴1BO CO ==又∵Rt ABC △中,AB AC =∴1AO =,2AB AC ==∵()0,1P -∴1PO =∴AO BO CO PO ===∴四边形ABPC 是正方形 ∴'''2BPB P AB A B ∴'0'21B B P PO ∴点A 坐标为2,21(2)如图2所示,作BPQ CPF ∠=∠,交AB 延长线于Q 点 ∵四边形ABPC 是正方形∴90QBP FCP ∠=∠=︒, BP CP = ∴BPQ CPF ASA ≌△△∴ BQ CF =,QP FP = ∵点F 在直线1y x =-∴45FPE ∠=︒∴ 45BPE FPC ∠+∠=︒ ∴45BPE BPQ ∠+∠=︒∴45QPE FPE ∠=∠=︒ ∵EP EP =∴QPE FPE ASA ≌△△∴ QE FE = ∴AEF 的周长AE EF AF AE QE AF =++=++ AE BE BQ AF AE BE FC AF =+++=+++22AB AC =+=(3)设EF m =,AE n =,Rt AEF 的内切圆半径为 r ,由(2)可得22AF m n =--则2AE AF EF r +-= 222n m n m +---= 2m =-∴当m 最小时,r 最大.∵在Rt AEF 中,222AE AF EF +=∴22222n m n m 整理得: 2224220n m nm ∵关于n 的一元二次方程有解∴22244220m m∴24280m m +-≥ 利用二次函数图像可得422m ≥-或422m ≤--(不合题意,舍去)∴m 的最小值为422-∴r 的最大值为2422324即AEF 内切圆半径的最大值为324-.【点睛】本题主要考查了一次函数的综合应用以及根的判别式、全等三角形的判定与性质、旋转、三角形内切圆等知识,能熟练应用相关性质是解题关键.5.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)27或213.【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB ≌△AEC∴BD=EC ,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF ≌△ECH∴BF=CH∴BF=CF∴点F 是BC 的中点(3)当点P 在△ABC 内部,如图所示,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4∴PP '=23,∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=90°,∴PC=()2223427+=.当点P 在△ABC 外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '3∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+=. 综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.6.如图,直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,过点B,C的抛物线y=﹣x2+bx+c与x轴的另一个交点为A.(1)求抛物线的解析式和点A的坐标;(2)P是直线BC上方抛物线上一动点,PA交BC于D.设t=PDAD,请求出t的最大值和此时点P的坐标;(3)M是x轴上一动点,连接MC,将MC绕点M逆时针旋转90°得线段ME,若点E恰好落在抛物线上,请直接写出此时点M的坐标.答案:A解析:(1)y=﹣x2+2x+3,A(﹣1,0);(2)t的最大值为916,此时P(32,154);(3)M 933-,0933+0).【分析】(1)利用待定系数法解决问题即可;(2)连接AC,PC,PB,过点A作AE⊥BC于E,过等P作PF⊥BC于F.设P(m,﹣m2+2m+3).利用相似三角形的性质构建二次函数解决问题即可;(3)过点E作EH⊥x轴于H.设M(m,0),利用全等三角形的性质求出点E的坐标(用m表示),再利用待定系数法解决问题即可.【详解】解:(1)∵直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,∴0=﹣3+c,解得c=3,∴C(0,3),∵抛物线经过B,C,∴9303b cc-++=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0);(2)如图,连接AC,PC,PB,过点A作AE⊥BC于E,过点P作PF⊥BC于F.设P(m,﹣m2+2m+3).∵AE∥PF,∴△PFD∽△AED,∴PDAD =PFAE,∵S△PBC=12•BC•PF,S△ACB=12•BC•AE,∴PDAD =PBCABCSS∆∆,∵S△ABC=12•AB•OC=12×4×3=6,∴t=PDAD =6PBCS∆=211133(23)332226m m m⨯⨯+⨯⨯-++-⨯⨯=﹣14m2+34m=﹣14(m﹣32)2+916,∵﹣14<0,∴m=32时,t有最大值,最大值为916,此时P(32,154);(3)如图,过点E作EH⊥x轴于H,∵∠COM =∠EHM =∠CME =90°,∴∠EMH +∠CMH =90°,∠EMH +∠MEH =90°,∴∠MEH =∠CMO ,∵MC =ME ,∴△COM ≌△MHE (AAS ),∴OC =MH =3,OM =EH ,设M (m ,0),则E (m ﹣3,﹣m ),把E (m ﹣3,﹣m )代入y =﹣x 2+2x +3,可得﹣(m ﹣3)2+2(m ﹣3)+3=﹣m , 整理得,m 2﹣9m +12=0,解得m =9332-或9332+, ∴M (9332-,0)或(9332+,0). 【点睛】本题考查的是二次函数综合题,涉及全等三角形的性质和判定,相似三角形的性质和判定,解题的关键是利用数形结合的思想,在二次函数图象上构造全等三角形或相似三角形,利用几何的性质进行点坐标的求解.7.如图,BC ⊥CA ,BC =CA ,DC ⊥CE ,DC =CE ,直线BD 与AE 交于点F ,交AC 于点G ,连接CF .(1)求证:△ACE ≌△BCD ;(2)求证:BF ⊥AE ;(3)请判断∠CFE 与∠CAB 的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE =∠CAB ,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI ,∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。
旋转型的全等三角形ppt课件
是△BCD的中线,求证:CM= CM⊥AE
1 2
AE且
变式二:已知△ACD和△CBE都是等边三 角形,AB和DE有什么关系吗?
旋转前后的三角形位置有什么特点?特征?
全等的三角形有什么特点?
探究的两条线段有什么关系?你还有什
位置
大小
么猜想?
两个呢 有兴趣的同学利用几何 画板进一步探索
如图,E、F分别是正方形ABCD的边BC、 CD上的点,且∠EAF= 45° 求证:BE+DF=EF
A EF
D
C
B
猜想DE ⊥AB,DE=AB.请给出证明
延长DE交AB于F
证明:延长DE交AB于F
在DCE和ACB中
DC=AC(已知)
A EF
ECB ACD已知
D
EC=CB(已知)
C
B
DCE ACB(SAS ) DE AB(全等三角形对应边相等 )
A D(全等三角形对应角相等 )
在RtACB中,ACB 90 A B 90
D B 90 (等量代换)
在BDF中,
B D BFD 180 D
BFD 90
即DE AB
A EF
C
B
探究二
A
F E
D
C
B
图中有特殊的直角三角形吗? 连接AB、DE
F G
H
请问:AB、DE有什么关系?
变式一:DE和AB又有怎样的关系呢? F
变式二:已知△ACD和△CBE都是等边三 角形,AB和DE有什么关系吗?
专题探究
旋转型的全等三角形
探究一 E
D
C
(1)已知线段DC ⊥ EC,将∠DCE绕点C 顺时针旋转90°得到∠ACB. 请作出∠ACB
全等三角形的常见类型归纳
全等三角形的常见类型全等三角形是初中平面几何的一个重要内容,也是中考必考的内容之一。
识别两个三角形全等一般有边角边(SAS)、角边角(ASA)、角角边(AAS)、边边边(SSS)四种方法。
全等三角形的题目很多,但不外乎以下四种类型:一、轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称。
把△ABC沿直线L翻折后,能与△A”B”C”重合,则称它们是轴对称型全等三角形。
下图是常见的轴对称型全等三角形,其对称轴L是对称点所连线段的垂直平分线。
识别轴对称三角形全等要注意题中的一些隐含条件,例如有些具有公共边(如图(1)中的AC,图(4)中的AA”),有些具有公共角或对顶角(如图(2)中的∠BAC=∠B”AC”,图(3)中的∠ACB=∠A”CB”)。
例1.如下图,在∠A的两边截取AB=AC,又截取AD=AE,连CD、BE交于F。
试说明:AF平分∠A。
二、平移型全等三角形 把△ABC沿着某一条直线L平行移动,所得△A”B”C”与△ABC称为平移型全等三角形。
有时这条直线就是△ABC的某一条边所在直线。
下图是常见的平移型全等三角形。
图(1)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”。
图(2)中AB∥A”B”,AB=A”B”,AC∥A”C”,AC=A”C”,BC∥B”C”,BC=B”C”。
例2. 如下图,△ABC中,∠A=90°,AD⊥BC于D点,∠C的平分线CE交AB、AD于E、F,过F作FG∥BC交AB于G点。
试说明:AE=BG。
三、旋转型全等三角形 将△ABC绕顶点A旋转角后,到达△AB”C”的位置,则称△ABC和△AB”C”为旋转型全等三角形。
如下图所示,这些是常见的旋转型全等三角形。
识别旋转型全等三角形时,要注意图(1)(2)(3)中以点A、B、B”和点A、C、C”为顶点的三角形都是顶角为的等腰三角形,∠BAC和∠B”AC”隐含着一个等量减(加)等量的条件,通常用边角边(SAS)来识别两个三角形全等。
三角形全等(旋转与截长补短专题)
向量与矩阵是高等数学中的重要概念,它们在解决几何问 题,特别是涉及旋转、平移等变换的问题时具有广泛的应 用。
THANKS FOR WATCHING
感谢您的观看
全等三角形的性质
对应边相等
对应角相等 面积相等
周长相等
判定三角形全等条件
01
02
03
04
SSS(边边边)
三边分别相等的两个三角形全 等。
SAS(边角边)
两边和它们之间的夹角分别相 等的两个三角形全等。
ASA(角边角)
两角和它们之间的夹边分别相 等的两个三角形全等。
AAS(角角边)
两角和一角的对边分别相等的 两个三角形全等。
04 复杂图形中三角形全等问 题解决方法
分析复杂图形中隐藏信息
观察图形特点
挖掘隐藏条件
注意图形的对称性、角的度数、边的 长度等,这些可能是解决问题的关键。
根据已知信息和图形特点,挖掘出可 能对解决问题有帮助的隐藏条件。
寻找潜在的全等三角形
通过观察和分析,尝试找出可能的全 等三角形,以便利用全等三角形的性 质解决问题。
应注意准确理解和运用各种判定定理。
02
旋转操作中的误区
在运用旋转证明三角形全等时,学生可能忽略旋转前后的图形关系,导
致证明失败。应注意保持旋转前后的图形对应关系。
03
截长补短法的使用不当
学生可能在不适当的场合使用截长补短法,或者在使用时未能正确构造
出全等三角形。应注意分析问题的具体条件,合理运用截长补短法。
截取法
通过截取线段,使得两个三角形在对应边上相等。例如,在证明两三角形全等 时,可以截取其中一个三角形的一条边,使得这条边与另一个三角形的一条边 相等。
例谈“旋转法”构造全等三角形,外显解题思路与技巧
例谈“旋转法”构造全等三角形,外显解题思路与技巧证明三角形全等是解决线段与角相等或和、差、倍、分关系的重要方法,应用“全等三角形”来解题时,通常需要添加辅助线,而很多同学在寻找辅助线的添法时往往感到无从下手,这也是很多学生认为几何比较难的重要原因.平移、旋转和翻折是图形运动中的三种全等变换,经过全等变换后的图形与原图形是全等的. 因此,我们可以借助全等变换的方法帮助我们识别复杂图形中的全等图形,同时我们还可以利用全等变换将分散的条件集中,从而寻求添加辅助线的方法. 本文主要从图形旋转的角度,通过几个具体的例题分析来谈谈什么时候构造旋转,怎样构造旋转,同时如何从学生的角度探索辅助线的叙述方法,从而帮助我们有效的解决问题,现呈现出来,希望得到指正.1. 旋转对应线段例1 已知如图1(1),以△ABC的AB,AC为边向三角形外作等边△ABD,△ACE,连接CD,BE相交于点O.求证:OA平分∠DOE.解析本题是旋转的基本模型,要证OA平分∠DOE,即证∠DOA = ∠EOA.可证∠DOA与∠EOA所在的三角形全等,或者证明∠DOA与∠EOA和同角(或等角)相等.由题目条件易知:AD = AB,∠DAC = ∠BAE,AC = AE,所以△DAC ≌△BAE.即△DAC绕点A逆时针旋转60°与△BAE重合.所以可旋转三角形的重要线段(或对应线段),从而构造三角形全等.方法1 (构造对应高相等)如图1(2),过点A作AP ⊥CD于点P,AQ⊥BE于点Q,则∠APD = ∠AQB = 90°. 因为△DAC ≌△BAE,所以∠ADP = ∠ABQ,AD = AB,所以△ADP ≌△ABQ,所以AP = AQ,又AO = AO,所以△APO ≌△AQO(HL). 所以∠DOA = ∠EOA,即OA 平分∠DOE.方法2 (构造一般对应线段)如图1(3),在线段BE 上截取BF = DO,因为△DAC ≌△BAE,所以∠ADO = ∠ABF,AD = AB,所以△ADO ≌△ABF,所以∠DOA = ∠BFA,AO = BF,所以∠EOA = ∠BFA. 所以∠DOA = ∠EOA,即OA 平分∠DOE.说明:△DAC绕点A逆时针旋转60°与△BAE重合,在旋转过程中,两个三角形的对应元素始终相等,线段AO 作为△DAC中的线段,在旋转过程中必有某线段AF与之对应,因此可构造△ADO ≌△ABF. 但是我们在叙述辅助线的时候,不易在BE上取点F,使得AF = AO,所以要变换辅助线的叙述方法,在线段BE上截取BF = DO.拓展:如图2,以△ABC的AB、AC为边向三角形外正方形ABDE、ACFG,连接CE交AB于点H,连接BG交CE于点O.求证:(1)BG⊥CE;(2)OA平分∠EOG .说明:还可以向外构造正五边形得到类似的结论.2. 旋转等腰三角形的顶角例2 如图3(1),△ABC是正三角形,△BDC是等腰三角形,且∠BDC = 120°,以点D为顶点作∠MDN = 60°,分别交AB、AC于M、N,连接MN.(1)探索线段BM、CN、MN的数量关系,并加以证明;(2)当M、N分别在边AB、CA的延长线上时,其他条件不变,如图3(2),探索BM、CN、MN之间的数量关系,并给出证明.分析(1)如图3(2),从△BDC是等腰三角形入手,可以将△BDM绕点D旋转120°,则点B落在点C,点M 落在点E,点N、C、E共线,然后证明△MDN ≌△EDN 即可.(2)如图3(4),同理将△BDM绕点D旋转120°,则点B落在点C,点M落在点F,点A、F、C,在共线,然后证明△MDN ≌△FDN即可.解析(1)MN = BM + CN. 如图3(2),延长NC到E,使得CE = BM . 因为△BDC是等腰三角形,且∠BDC = 120°,所以BD = CD,∠DBC = ∠DCB = 30°.又因为△ABC是正三角形,所以∠ABC = ∠ACB = 60°,所以∠MBD = ∠ECD = 90°,所以△BMD ≌△CED (SAS),所以DM = DE,∠BDM = ∠CDE. 因为∠MDN = 60°,∠BDC = 120°,所以∠MDN = ∠EDN = 60°,所以△MDN ≌△EDN(SAS),所以MN = EN. 所以MN = CE + CN,即MN = BM + CN.(2)MN = CN - BM. 如图3(4),在CN上截取CF = BM,由(1)可知∠MBD = ∠FCD = 90°,BD = CD,所以△BMD ≌△CFD(SAS). 所以DM = DF,∠BDM = ∠CDF,所以∠MDN = ∠FDN = 60°,所以△MDN ≌△FDN(SAS),所以MN = FN. 所以MN = CN - CF,即MN = CN - BM.说明:△BDM绕点D旋转120°,则点B落在点C,点M落在点E,因为∠NCD + ∠ECD = 180°,因此点N、C、E共线. 本题说明点共线比较容易,而当我们在旋转后,证明共线问题较困难时,我们可借鉴本题解析中的方法,转变角度,变换辅助线的叙述方法,来回避共线问题的证明.总结当然,利用“旋转法”添加辅助线的题型还很多,例如旋转30°、60°、90°、120°、150°、180°等. 只要我们心中有“旋转”的思想,在具体问题中注意变换辅助线的方法,通常都会使问题迎刃而解.。
三角形旋转全等常见模型
1、绕点型(手拉手模型)(1)自旋转:自旋转构造放方法:①遇60°旋60°,构造等边三角形;②遇90°旋90°,构造等腰直角三角形;③遇等腰旋转顶角,构造旋转全等;④遇中点180°,构造中心对称。
(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。
(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。
(4) AE 与DC 的交点设为H,BH 平分∠AHC变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:Array(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。
(4)AE与DC的交点设为H,BH平分∠AHC(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D在边BC上时,求证:① BD=CF ‚②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。
从旋转型全等三角形到旋转型相似三角形
从旋转型全等三角形到旋转型相似三角形旋转型全等三角形AB=AD,AC=AE,∠BAD=∠CAE=> △ABC≌△ADE,∠ABD=∠ACE,∠ADB=∠AEC将△ABC绕三角形的顶点A旋转一个角度成为△ADE,这两个三角形就是一对旋转型全等三角形。
而由AB=AD,这是两条具有公共端点的相等线段,所以它们可以组成一个等腰三角形,同样,由AC=AE,它们也可以组成一个等腰三角形,而这两个等腰三角形的顶角是相等的,所以这两个等腰三角形一定相似,而由∠ABD=∠ACE和∠ADB=∠AEC,如果延长BD与CE相交,则可得两个圆内接四边形。
所以,一对绕三角形的顶点旋转得到的旋转型全等三角形的基本图形中,一定同时出现一对相似的等腰三角形和两个圆内接四边形。
由于这是旋转型全等三角形的基本图形的本质属性,所以只有在整体上进行教学,才能将这个基本图形的特征、性质、应用条件和应用方法讲清楚。
然而,按照通常的教学进度,在进行全等三角形的教学时,显然还不可能进行相似三角形和圆周角这两部分内容的教学,而在进行相似三角形和圆周角的教学时,又不可能再回过来进行全等三角形的教学,也就是本质上是完整的内容被割裂开来进行教学了,所以老师就很难讲清楚,讲清楚问题的本质,将清楚思想方法的规律性,这也就是旋转型全等三角形在教学中出现的困难所在。
解决的方法:一是在进行旋转型全等三角形的教学时,可适当地进行拓展,让学生较早地接触、知道并形成一定的概念、性质,到进入相似三角形和圆周角的教学时再进行强化;二是在进行旋转型全等三角形的教学时,如果没有拓展的话,则可在进入相似三角形和圆周角的教学时,尤其是在总复习阶段可安排专题性的教学。
在进行全等三角形的教学时,由于在相似的等腰三角形中,有两类特殊的等腰三角形,它们是必定相似的,这就是等边三角形和等腰直角三角形,所以在给出等边三角形或等腰直角三角形的条件时,就可以实质上出现相似的等腰三角形而又可以避免出现相似三角形的概念,成为旋转型全等三角形的可实施的教学内容。
旋转法构造全等三角形
旋转法构造全等三角形在我们生活中,几何形状随处可见,三角形更是其中的“老大”。
今天咱们聊聊旋转法构造全等三角形。
想象一下,咱们手里有一个三角形,就像拿着一个切好的水果拼盘。
旋转这个三角形就像在舞会上转圈圈,让它变得更加迷人,仿佛随时要跳起舞来。
这样转一圈,嘿,原来的形状没变,只是位置换了,太神奇了吧?就好比你换了个发型,结果还是那个你,真是让人忍俊不禁。
你看,这个旋转法其实是个挺简单的操作。
先把一个三角形固定在一个点上,这个点就像是咱们舞会的中心。
然后轻轻一转,就能看到另一个全新的三角形就此诞生。
想象一下,原来的三角形就像个古灵精怪的小孩,而旋转出来的那个三角形就像是它的双胞胎,简直是一个模子里刻出来的,毫无二致,真是“如出一辙”呢。
每个边的长度、每个角的大小都保持不变,简直完美!有趣的是,旋转的角度也可以随意选择,像你在舞池里想怎么转就怎么转。
可能是30度、60度,甚至是360度。
说到360度,那简直就是个圈啊,转完后你会发现自己又回到了原点,哈哈,就像过山车一样刺激。
不过不管怎么转,三角形的形状和大小都没变化。
试想一下,生活中有多少事情都是这样的,经过一番折腾,结果却还是老样子,真是让人哭笑不得。
你知道吗,旋转法不仅在数学上好玩,在生活中也是处处可见。
比如说,咱们在厨房里切菜时,把刀从一个角度旋转到另一个角度,最终切出的菜肴依然是原来的那些食材,只不过形状变了。
这就像我们的日常生活,有时候改变一下角度,事情可能会变得截然不同,但核心却依然不变,真是有趣。
再说说这些全等三角形,它们就像是朋友间的相互理解,虽然在不同的地方,却能保持着同样的默契。
想想那些打篮球的小伙伴们,虽然在场上跑来跑去,但每个人的配合都那么自然,简直像是天生的一对。
这种相互之间的联系,跟全等三角形的性质如出一辙,真是让人感慨万千。
在课堂上,老师常常给我们讲这个旋转法,其实更深层的含义在于它教会我们如何去看待事物。
有时候换个角度,事情就会豁然开朗。
全等的证明(旋转位置关系)
专题:具有旋转位置关系的全等三角形的证明班级:姓名:授课教师:郎红霞课型:复习课课时:1【学习目标】1.会从旋转变换的角度,认识两个可能全等的三角形;2.能熟练使用三角形全等的判定方法证明两个三角形全等;3.经历探索的过程,从中体会旋转变换与三角形全等的关系,培养学生的探究能力和合作精神.一.知识回顾1.前面我们学过哪些全等三角形的判定方法?你能用语言叙述出来吗?如图,已知∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加一个条件为;(2)若以“ASA”为依据,还需添加一个条件为;(3)若以“AAS”为依据,还需添加一个条件为;二.探索发现观察下面的图形:问题1这些图形有哪些共同点?他们是通过怎样的变换得到?问题2这些图形中通过变换后的两个三角形之间具有怎样的关系?总结:三.典例分析1.如图,已知AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE问题1观察图形,△ABC和△ADE具有怎样的位置关系?通过怎样变换得到?问题2要证明△ABC和△ADE全等,题目中已知和未知条件是什么?采取哪种判定方法?变式如图,已知AC=AE,∠1=∠2=∠3,求证:DE=BC2.已知,∠ABC=∠DBE=90°,DB=EB,AB=CB,D点在三角形的内部,求证:AD=CE,AD⊥CE问题1观察图形中哪两个三角形具有特殊的位置关系?问题2要证明AD=CE,AD⊥CE,需要先证什么?总结:具有旋转位置关系的全等三角形的证明,我们该怎样做?四.类题演练1.如图,AB∥CD,E是CD上的一点,BE交AD于点F,EF=BF.求证AF=DF2.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,求∠AOB= 度3.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于M,AE与BC交于点N.求证:AE=CD ,AE⊥CD。
专题6 类比探究—图形旋转中三角形全等题型(学生版)
专题6类比探究—图形旋转中三角形全等题型知识归纳几何类比探究题是近几年中招考试的必考题型,目前位于解答题的最后一题,分值为11分或12分.主要考查方式有求线段长,求角度,判断图形形状,判断两条线段的数量关系和位置关系并证明,考查知识点主要涉及特殊三角形,勾股定理,四边形的判定与性质,全等、相似三角形的判定及性质,二次函数等,综合性较强。
本专题主要对类比探究—图形旋转中三角形全等题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
解题思路总结图形的类比探究常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等。
解决此类问题要善于将复杂图象分解为几个基本图形,通过添加副主席补全或构造基本图形,借助转化、方程、数形结合、分类讨论等数学思想解决几何证明问题,计算则把几何与代数知识综合起来,渗透数形结合思想,考查学生分析问题的能力、逻辑思维和推理能力.常考题型专练一、解答题1.如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD 的长.2.在△ABC中,∠BAC=90°,点O是斜边BC上的一点,连接AO,点D是AO上一点,过点D分别作DE AB∥,DF AC∥,交BC于点E、F.(1)如图1,若点O为斜边BC的中点,求证:点O是线段EF的中点.(2)如图2,在(1)的条件下,将△DEF绕点O顺时针旋转任意一个角度,连接AD,CF,请写出线段AD和线段CF的数量关系,并说明理由.(3)如图3,若点O是斜边BC的三等分点,且靠近点B,当∠ABC=30°时,将△DEF绕点O顺时针旋转任意一个角度,连接AD、BE、CF,请求出BEAD的值.3.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点O顺时针旋转角度α(0∘<α<45∘).如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出写出线段MN的长;(3)图3,旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN 的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是__________.4.(1)问题发现:如图1,在等边ABC ∆中,点D 为BC 边上一动点,//DE AB 交AC 于点E ,将AD 绕点D 顺时针旋转60︒得到DF ,连接CF .则AE 与FC 的数量关系是_____,ACF ∠的度数为______.(2)拓展探究:如图2,在 Rt ABC ∆中,90ABC ∠=︒,60ACB ∠=︒,点D 为BC 边上一动点,//DE AB 交AC 于点E ,当∠ADF=∠ACF=90°时,求AE FC 的值.(3)解决问题:如图3,在ABC ∆中,:BC AB m =,点D 为BC 的延长线上一点,过点D 作//DE AB 交AC 的延长线于点E ,直接写出当ADF ACF ABC ∠=∠=∠时AE FC 的值.5.在等边△ABC 中,点D 是BC 边上一点,点E 是直线AB 上一动点,连接DE,将射线DE 绕点D 顺时针旋转120°,与直线AC 相交于点F .(1)若点D 为BC 边中点.①如图1,当点E 在AB 边上,且DE AB ⊥时,请直接写出线段DE 与DF 的数量关系________;②如图2,当点E 落在AB 边上,点F 落在AC 边的延长线上时,①中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D 为BC 边上靠近点C 的三等分点.当:3:2AE BE =时,直接写出CF AF 的值.6.在ABCD 中,BAD ∠=α,以点D 为圆心,适当的长度为半径画弧,分别交边AD 、CD 于点M 、N ,再分别以M 、N 为圆心,大于 MN 的长为半径画弧,两弧交于点K ,作射线DK ,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转α得线段EP .(1)如图1,当120α=︒时,连接AP ,线段AP 和线段AC 的数量关系为;(2)如图2,当90α=︒时,过点B 作BF EP ⊥于点F ,连接AF ,请求出∠FAC 的度数,以及AF ,AB ,AD 之间的数量关系,并说明理由;(3)当120α=︒时,连接AP ,若13BE AB =,请直接写出线段AP 与线段DG 的比值.7.在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图(1)所示.则CF的长为.(直接写出结果,不说明理由)(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图(2)所示.在点E从点C到点A的运动过程中,求点F所经过的路径长.思路梳理并填空:当点E不与点A重合时,如图,连结CF,∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴①∠ABE+=∠CBF+;∴∠ABE=∠CBF∴△ABE≌△CBF∴∠BAE=∠BCF=60°又∠ABC=60°∴∠BCF=∠ABC∴②______∥______;当点E在点A处时,点F与点C重合.当点E在点C处时,CF=CA.∴③点F所经过的路径长为.(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图(3)所示.在点M从点C到点D的运动过程中,求点N所经过的路径长.(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F,G都在直线AE上,如图(4).当点E到达点B时,点F,G,H与点B重合.则点H所经过的路径长为.(直接写出结果,不说明理由)8.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.。
三角形全等类型---旋转类型
证明三角形全等常作的辅助线在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”“SAS ”“ASA ”“AAS ”“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。
如果找到了一组对应边,再找第二组条件,若又找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”.上述结论可归纳为:S (S S S )S A (S A S )S S (S A S )A A (A A S A S A )⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考.1.截长补短法例1 如图,已知:在正方形ABCD 中,∠BAC 的平分线交BC 于E . 求证:AB +BE =AC .解法1:(补短法或补全法)延长AB 至F 使AF =AC , 由已知△AEF ≌△AEC ,∴∠F =∠ACE =45°,∴BF =BE ,∴AB +BE =AB +BF =AF =AC . 解法2:(截长法或分割法)在AC 上截取AG =AB ,由已知△ABE≌△AGE ,∴EG =BE , ∠AGE =∠ABE . ∵∠ACE =45°, ∴CG =EG ,∴AB +BE =AG +CG =AC .2.平行线法(或平移法)若题设中含有中点可以过中点作平行线或中位线,对直角三角形,有时可作出斜边上的 中线.例2 在△ABC 中,∠BAC =60°,∠C =40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB +BP =BQ +AQ .证明:如图,过O 作OD ∥BC 交AB 于D ,∴∠ADO =∠ABC =180°-60°-40°=80°.∵∠AQO =∠C +∠QBC =80°,∴∠ADO =∠AQO.∵∠DAO =∠QAO ,OA =OA ,∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ .∵OD ∥BP ,∴∠PBO =∠DOB .D F∵∠PBO =∠DBO ,∴∠DBO =∠DOB ,∴BD=OD .∵∠BPO =∠P AC +∠PCA =30°+40°=70°,∠BOP = ∠BAO +∠ABO =30°+40°=70°,∴BP=BO.∴AB+BP =AD +DB +BP =AQ+OQ+BO=AQ+BQ .3.旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
旋转背景下三角形全等的相关问题
旋转背景下三角形全等的相关问题全等三角形是两个三角形最简单、最常见的关系。
它不仅是学习相似三角形、平行四边形、圆等知识的基础,并且是证明线段相等、角相等的常用方法,也是证明两线互相垂直、平行的重要依据。
平移、旋转、翻折是图形运动中的全等变换,经过全等变换后的图形与原图形是全等的,经过旋转得到的图形与原图形全等。
因此我们可以借助全等变换的方法帮助我们在复杂的图形中找到全等的三角形,同时还可以利用全等变换将分散的条件集中,从而寻求利用三角形全等解决问题的方法。
1、线的旋转例1、如图1(1),在△ABC 中,AB=AC ,∠BAC=90°,AN 是过点A 的任一直线,BD ⊥AN 于D ,CE ⊥AN 于E.求证:BD=AE(2)若将直线AN 绕点A 沿顺时针方向旋转,使它经过△ABC 内部,再作BD ⊥AN D ,CE ⊥AN 于E ,如图1(2)、图1(3),原结论是否不变,请说明理由。
分析:本题为图形旋转证明三角形全等的基本题型,在直线AN 旋转的过程中,∠BAD=∠ACE 与∠ABD=∠CAE 的结论始终是成立的,由同角的余角相等及三角形内角和等于180°的定理可证明(证明方法不唯一)。
由已知条件AB=AC ,可证明△ABD ≌△CAE(A.A.S),从而证明BD=AE 。
该结论对图(2)、图(3)仍然成立。
说明:此题为直线旋转,条件不变得到全等,△ABD ≌△CAE 始终成立,求证线段BD=AE 与线段AD=CE 方法相同,是需要掌握的基本题型。
图1(1)NEDCBA图1(2)NEDCBAA图1(3)NEDCB拓展:条件不变,求证线段DE 、BD 、CE 之间的等量关系,说明:结论虽然会因为直线AN 位置的不同而不同,但证明方法都是由证△ABD ≌△CAE 入手。
2、图形的旋转例2、如2(1)中,△AOB 与△COD 均是等腰直角三角形,∠AOB=∠COD=90°.(1) 在图2(1)中,AC 与BD 相等吗,有怎样的位置关系?请说明理由。
初中数学 全等三角形中的旋转
内容 基本要求略高要求较高要求全等三角形了解全等三角形的概念,了解相似三角形和全等三角形之间的关系掌握两个三角形全等的条件和性质;会应用三角形全等的性质和判定解决简单问题会利用全等三角形的知识解释或证明经过图形变换后得到的图形与原图形对应元素间的关系把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.【例 1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【巩固】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .图6DECBA中考要求例题精讲全等三角形中的旋转【巩固】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.EDCBA【例 2】 如图,D 是等边ABC ∆内的一点,且BD AD =,BP AB =,DBP DBC ∠=∠,问BPD ∠的度数是否一定,若一定,求它的度数;若不一定,说明理由.PDC BA【例 3】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化M N CBA【例 4】 (2005年四川省中考题)如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OBECF A【巩固】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.APMCQ B【巩固】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.OBE CFA【例 5】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .【巩固】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DKG CF A【例 6】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.D CBEFA【巩固】(湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【巩固】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FEDCBA【巩固】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDCBA【例 7】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.CHF ED BA【巩固】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BA【巩固】如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .⑴求证:CE =CF ;⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? ⑶运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD 中,AD ∥BC(BC >AD),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.【例 8】 (北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA【巩固】如图所示,在四边形ABCD 中,AB=BC ,∠A=∠C=90°,∠B=135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.N K DCB A【巩固】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBAB CA DEB C【例 9】 在等边AB C ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为AB C ∆外一点,且︒=∠60MDN ,︒=∠120BDC ,CD BD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边AB C ∆的周长L 的关系.⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN=x ,则Q=_________(用x ,L 表示)【巩固】(1)如图25-1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD .求证:EF =BE +FD;(2) 如图25-2在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明.FEDCB A(3) 如图25-3在四边形ABCD 中,AB =AD ,∠B+∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【例10】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.M D NEC BFA【巩固】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.NMEDCBA【巩固】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.M D NEC BFA【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.请你证明: ⑴AN BM =; ⑵DE AB ∥;⑶CF 平分AFB ∠.M D NEC BFA【例11】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【巩固】(2008年全国初中数学竞赛海南区初赛)如下图,在线段AE 同侧作两个等边三角形ABC ∆和CDE ∆(120ACE ∠<°),点P 与点M 分别是线段BE 和AD 的中点,则CPM ∆是( )PMBC DEAA .钝角三角形B .直角三角形C .等边三角形D .非等腰三角形【巩固】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆的高.求证:CG CH =.HG NM CBA【例12】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 平分.FEDBCA【例13】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD∆也是等边三角形.EKHCDBA【例14】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =【巩固】(2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.G FE DCBA【巩固】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE=BG ,且CE ⊥BG .OGFEDCBA【例15】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.EDCBA【巩固】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2.求该五边形的面积.EDCBA【巩固】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.EDCBA【例16】 (2008山东)在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.ABCDE【例17】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.图1ABCDE图2AB CDE。
数学人教版八年级上册全等三角形与旋转问题
课题概述八年级学生虽然已经在七年级学习了平行线与相交线,但是平行线与相交线的证明很简单,本学期学习连续学习《三角形》,《全等三角形》,《轴对称》三章,图形变化较多,学生在寻找图形边角关系上还存在问题,证明也有一定难度,只能见一个图形硬性记一个图形,所以本节课设计意图就是将看似分隔的图形通过几何画板的演示整合到一起,形成一个图形的不同变换形式,而实质是不变的,从而帮助学生理解图形的内在联系。
对于以后学习旋转规律图形也会有相当大的帮助。
学习目标阐述(1)通过观察图形的变化过程,探究发现图形变化的实质,从而抓住本质规律,找到证明全等的条件.(2)通过观察几何画板的图形变换的演示,将看似分割的图形整合到一起,抓住事物本质.完成目标(1)的标志是:学生能用旋转的角度理解两个三角形能重合,所以全等,进而理解边角关系,找到证明条件。
完成目标(2)的标志是:学生发挥想象力和创意移动点C,B位置,发现不同图形式可以整合到一起,从而将图形统一,抓住图形本质。
学习者特征分析学生在八年级上学期刚刚学习了《三角形》,《全等三角形》和《轴对称》三章,三大章几何连在一起学习,学生的几何体系还没有建立起来,还不能熟练辨析图形之间的关系,对于图形的变换还比较陌生,对于判定两个三角形全等方法的选择以及利用等边三角形证明两个三角形全等也还有一定难度。
教学策略选择与教学活动设计教学策略:八年级学生好奇心强,对新鲜事物感到新奇,创意无限,喜欢探索。
几何画板的动态演示过程,能激发学生的学习兴趣,帮助学生发现并理解图形的变化过程及变换的实质,让学生能够更积极主动地探索新知。
教学活动设计教师创设背景,由学生发挥想象和创意改变图形,发现图形规律和内在联系,并由学生尝试总结规律,给出证明。
教学资源与工具的设计和使用八年级上册数学课本几何画板V5.05演示正方形旋转过程,通过观察发现题目本质,引导学生观察P点的变化范围,其轨迹像在荡秋千,引导学生观察P在AE’上,P标最大,需使直线AE’倾斜程度最大,那么倾斜NMD ECBA 教学评价与反馈设计1.如图,四边形ACDE,BCMN 为正方形,AM_____BD, ∠MAC_____∠BDC(填<,=,>)第1题 第2题2.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形,(1)DE______AB ,(2)∠EDB=_________°3. 如图,已知△ABC 是等边三角形,E 是AC 延长线上任一点,选择一点D ,使得△CDE 是等边三角形,如 果M 是线段AD 的中点,N 是线段BE 的中点.则∠CMN=_____________°第3题 第4题4.已知:如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形. 求证:BD=CE 且BD ⊥CE总结与帮助放飞学生的心灵,尊重学生独特的体验探究学习是一种发现学习,具有深刻的问题性、广泛的参与性、丰富的实践性和开放性。
初中数学全等三角形旋转模型知识点-+典型题及答案
初中数学全等三角形旋转模型知识点-+典型题及答案一、全等三角形旋转模型1.定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…A n 的边得A1′,A2′,…,A n′,若多边形A1′A2′…A n′与多边形A1A2…An相似,则多边形A1′A2′…A n′就是A1A2…A n的螺旋相似图形.(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)答案:A解析:(1)见解析;(2)AB:BC=1;(3)BB′2k,CC′=k.【分析】(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形,证明△DEF是等边三角形即可解决问题.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD=a,BC=AD=b,BE=DG=x,CF=AH=y.分两种情形,利用相似三角形的性质以及相似矩形的性质,构建关系式证明a=b即可解决问题.(3)如图4中,作B′T⊥CB交CB的延长线于T.设TB=TB′=m,证明△A′CC′≌△A′TB′(ASA),推出A′C=TC′,CC′=TB′=BT,构建关系式推出m=k即可解决问题.【详解】解:(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形.理由:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB,∴∠DAE=∠FCD=∠EBF=120°,∵BE=CF=AD,∴CD=AE=BF,∴△FCD≌△DAE≌△EBF(SAS),∴DF=DE=EF,∴△DEF是等边三角形,∴△DEF∽△ABC,∴△DEF是△ABC的一个螺旋相似图形.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD=a,BC=AD=b,BE=DG=x,CF=AH=y.由题意:△BEF∽△AHE,∴EFEH =BEAH=BFAE,∴xy=b ya x++,当EFHE=BCAB=ba时,ba=xy=b ya x++,∴x=ba•y,ax+x2=by+y2,∴by +22b a •y 2=by +y 2, ∴a 2=b 2,∴a =b ,即AB :BC =1.当EF EH =AB BC =a b 时.a b =x y =b y a x++, ∴x =a b•y ,ax +x 2=by +y 2, ∴2a b •y +22a b•y 2=by +y 2, ∴22a b b -•y (1+y b)=0, ∵y ≠0,1+y b≠0, ∴a 2=b 2, ∴a =b ,即AB :BC =1,综上所述,AB :BC =1.(3)如图4中,作B ′T ⊥CB 交CB 的延长线于T .∵AC =BC =2,∠ACB =90°,∴∠ABC =∠CAB =45°,∴∠TBB ′=∠ABC =45°,∴∠TB ′B =∠TBB ′=45°,∴TB =TB ′,设TB =TB ′=m ,∵△A ′B ′C ′是△ABC 的螺旋相似三角形,∴A ′C ′=B ′C ′,∠A ′C ′B ′=90°,∵∠A ′C ′C +∠B ′C ′=90°,∠A ′CC +∠C ′A ′C =90°,∴∠C ′A ′C =∠B ′C ′T ,∵∠A ′CC ′=∠T =90°,∴△A ′CC ′≌△A ′TB ′(ASA ),∴A ′C =TC ′,CC ′=TB ′=BT ,∴2+2k =2+2m ,∴m =k ,∴BB ′=2k ,CC ′=k .【点睛】本题属于相似形综合题,考查了等边三角形的性质,矩形的性质,等腰直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.如图1,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =6,过点B 作BD ⊥AC 交AC 于点D ,点E 、F 分别是线段AB 、BC 上两点,且BE =BF ,连接AF 交BD 于点Q ,过点E 作EH ⊥AF 交AF 于点P ,交AC 于点H .(1)若BF =4,求△ADQ 的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3326335102. 【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQBFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴355AQ AF ==,∴5QD ===,∴1 1.82ADQ S ∆==, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线, ∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌, ∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得13222BM EF ==, ∴322NH =, ∴N 点在以H 32为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小, 为322NR HR HN HR =-=-, ∵∠BAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=,∴HR AR ===,∴22NR HR =-=, ∵AC == ∴CR AC AR =-=∴CN AN === ∵∠MAN =90°,AM =AN ,∴MN ==∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=,∴MC ==∴2MC MN CN ++=+∴△CMN+.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等. 3.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BC PA AB ==,解决问题; (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , ∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC ,∴∠BPA =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下:∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3,∴BC BD BA BP=3∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP , ∴3CD BC PA AB ==, ∴CD =3PA ; (3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG =23×sin60°=3,AG = AB ×cos ∠BAG =3. 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN , ∴BGP CNP ∽,∴13GP NP BP CP ==, 设GP =x ,则AP =3-x ,BP =3x ,∴()22233x x +=,解得:x =324, ∴BP =924,AP =3-324, ∴CP =AC +AP =23+3-324=33-324, ∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N . 4.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论; (3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC中,AC =AB ∴=,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.5.矩形ABCD 中,6,8AB BC ==,点,M N 分别在边,BC AD 上,且3,2BM DN ==,连接MN 并延长,交CD 的延长线于点E ,点Q 为射线MN 上一动点,过点Q 作AQ 的垂线,交CD 于点P .(1)特例发现,如图,若点P 恰好与点D 重合,填空:①DE =________;②QA 与QP 的等量关系为_________.(2)拓展探究如图,若点Q 在MN 的延长线上,QA 与QP 能否相等?若能,求出DP 的长;若不能,请说明理由.(3)思维延伸如图,点G 是线段CD 上异于点D 一点,连接AG ,过点G 作直线GI AG ⊥,交直线MN 于点I ,是否存在点G ,使,AG GI 相等?若存在,请直接写出DG 的长;若不存在,请说明理由.答案:E解析:(1)①4; ②QA QP =;(2)QA 与QP 能够相等,理由详见解析;(3)(3),AG GI 能够相等,43DG =【分析】(1)①根据END EMC ,利用对应边成比例列式求出ED 长;②过点Q 作//HG BC ,交AB 于点H ,交DC 于点G ,设QG x =,利用AHQ QGD ,对应边成比例列式求出x ,得到这两个三角形其实是全等的,所以QA QP =;(2)过点Q 作QF AB ⊥,交BA 的延长线于点F ,延长FQ 交CE 于点G ,构造“k”字型全等三角形,设AF x =,再利用相似三角形的性质列式求解;(3)过点G 作GK AB ⊥于点K ,过点I 作IS KG ⊥,交KG 的延长线于点S ,延长AD 交IS 于点T ,同(2)构造“k”字型全等三角形,DG y =,再利用相似三角形的性质列式求解.【详解】(1)①∵//ND MC ,∴END EMC ,∴ED ND EC MC=, 835MC BC BM =-=-=,6DC =,265ED ED =+,解得4ED =, 故答案是:4;②如图,过点Q 作//HG BC ,交AB 于点H ,交DC 于点G ,可得HG AB ⊥,HG DC ⊥,∴90AHQ QGD ∠=∠=︒,∵AQ QD ⊥,∴90AQH DQG ∠+∠=︒,∵90QAH AQH ∠+∠=︒,∴QAH DQG ∠=∠,∴AHQ QGD ,∴AH HQ QG GD=,设QG x =,8HQ x =-,∵//QG MC ,∴EQG EMC , ∴QG EG MC EC =,4510x DG +=,得24DG x =-, ∴24AH x =-,根据AH HQ QG GD =,得24824x x x x --=-,解得4x =, ∴4AH HQ QG GD ====,∴AHQ QGD ≅,∴AQ QD QP ==,故答案是:QA QP =;(2)QA 与QP 能够相等,163PD =, 如图,过点Q 作QF AB ⊥,交BA 的延长线于点F ,延长FQ 交CE 于点G , 90,90,AQF PQG GPQ PQG AQF GPQ ∠+∠=︒∠+∠=︒∴∠=∠,又90,,,,AFQ PGQ AQ PQ FAQ GDP AF QG FQ PG ∠=∠=︒=∆≅∆∴==, 设AF x =,则,,4QG x DG x EG x ===-,42,2EG ED x QG ND x -==∴=,解得43x =, 经检验,43x =是该分式方程的根, 42020204168,,333333FQ PG PD ∴=-=∴==-=;(3),AG GI 能够相等,43DG =,如图,过点G 作GK AB ⊥于点K ,过点I 作IS KG ⊥,交KG 的延长线于点S ,延长AD 交IS 于点T ,根据“k ”字型全等得,,8AKG GSI AK GS IS KG ∆≅∆∴===, 设DG y =,则,8,2AK TS GS DT y IT y NT y ====∴=-=+, 84tan ,22IT ED y INT NT ND y -∠==∴=+,解得43y =,故DG 的长为43.【点睛】本题考查“k ”字型全等三角形,相似三角形的性质和判定,解题的关键是作辅助线构造“k ”字型全等,再利用相似三角形对应边成比例列式求解.6.在ABC 中,AB =AC ,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连结NB .(感知)如图①,若M 是线段BC 上的任意一点,易证ABN ACM △≌△,可知∠NAB =∠MAC ,BN =MC .(探究)(1)如图②,点E 是AB 延长线上的点,若点M 是∠CBE 内部射线BD 上任意一点,连结MC ,(感知)中的结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(拓展)(2)如图③,在DEF 中,DE =8,∠DEF =60°,∠EDF =75°,P 是EF 上的任意点,连结DP ,将DP 绕点D 按顺时针方向旋转75°,得到线段DQ ,连结EQ ,则EQ 的最小值为 .解析:(1)成立,见解析;(2)4342【分析】(1)根据SAS 证明NAB MAC ∆≅∆即可.(2)如图3中,在DF 上截取DN DE =,连接PN ,作 NH EF ⊥于H ,作DM EF⊥于M .理由全等三角形的性质证明EQ PN =,推出当 PN 的值最小时,QE 的值最小,求出HN 的值即可解决问题.【详解】(1)结论仍然成立.理由:MAN CAB ∠=∠,NAB BAM BAM MAC ∠+∠=∠+∠∴,NAB MAC ∠=∠∴,AB AC =,AN AM =,()NAB MAC SAS ∴∆≅∆,BN CM ∴=.(2)如图3中,在DF 上截取DN DE =,连接PN ,作NH EF ⊥于H ,作DM EF ⊥于M .FDE PDQ ∠=∠,QDE PDN ∴∠=∠,DQ DP =,DE DN =,∴()QDE PDN SAS ≅,EQ PN ∴=,∴当PN 的值最小时,QE 的值最小,在Rt DEM △中,60DEM ∠=︒,8DE =,sin 6043DM DE ∴=︒=,753045MDF EDF EDM ∠=∠-∠=︒-︒=︒,46DF ∴=,468NF DF DN ∴=-=,在Rt NHF ∆,45F ∠=︒,342NH ∴=根据垂线段最短可知,当点P 与H 重合时,PN 的值最小,QE ∴的最小值为4342-.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题.7.如图,抛物线y =﹣x 2+bx+c 与x 轴交于A ,B 两点,其中A (3,0),B (﹣1,0),与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,直线y =kx+b 1经过点A ,C ,连接CD . (1)求抛物线和直线AC 的解析式:(2)若抛物线上存在一点P ,使△ACP 的面积是△ACD 面积的2倍,求点P 的坐标; (3)在抛物线的对称轴上是否存在一点Q ,使线段AQ 绕Q 点顺时针旋转90°得到线段QA 1,且A 1好落在抛物线上?若存在,求出点Q 的坐标;若不存在,请说明理由.答案:A解析:(1)2y x 2x 3=-++;3y x =-+ ;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD =AD ,进而判断出△ABC 的面积和△ACP 的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A (3,0),B (﹣1,0)代入y =﹣x 2+bc+c 中,得93010b c b c -++=⎧⎨--+=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+3,当x =0时,y =3,∴点C 的坐标是(0,3),把A (3,0)和C (0,3)代入y =kx+b 1中,得11303k b b +=⎧⎨=⎩, ∴113k b =-⎧⎨=⎩ ∴直线AC 的解析式为y =﹣x+3;(2)如图,连接BC ,∵点D 是抛物线与x 轴的交点,∴AD =BD ,∴S △ABC =2S △ACD ,∵S △ACP =2S △ACD ,∴S △ACP =S △ABC ,此时,点P 与点B 重合,即:P (﹣1,0),过B 点作PB ∥AC 交抛物线于点P ,则直线BP 的解析式为y =﹣x ﹣1①,∵抛物线的解析式为y =﹣x 2+2x+3②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩, ∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q 在x 轴上方时,设AC 与对称轴交点为Q',由(1)知,直线AC 的解析式为y =﹣x+3,当x =1时,y =2,∴Q'坐标为(1,2),∵Q'D =AD =BD =2,∴∠Q'AB =∠Q'BA =45°,∴∠AQ'B =90°,∴点Q'为所求,②当点Q 在x 轴下方时,设点Q (1,m ),过点A 1'作A 1'E ⊥DQ 于E ,∴∠A 1'EQ =∠QDA =90°,∴∠DAQ+∠AQD =90°,由旋转知,AQ =A 1'Q ,∠AQA 1'=90°,∴∠AQD+∠A 1'QE =90°,∴∠DAQ =∠A 1'QE ,∴△ADQ ≌△QEA 1'(AAS ),∴AD =QE =2,DQ =A 1'E =﹣m ,∴点A 1'的坐标为(﹣m+1,m ﹣2),代入y =﹣x 2+2x+3中,解得,m =﹣3或m =2(舍),∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.8.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)213【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(3)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC ,AD=AF ,∴∠BAD=∠CAF ,∵△ABC 是等边三角形,∴AB=AC ,∴△BAD ≌△CAF (SAS ),∴∠ADB=∠AFC ,BD=CF ,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C 、F 、E 在同一直线上,∴AC=BC=BD+CD=CF+CD ,故答案为:CD CF AC +=;(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△EAD (SAS ),∴BM=DE=22EG DG +=2246213+=.故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.9.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,A D 的对应点分别为点,B E ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,52AC =ABEC 面积的最大值______. 解析:(1)1802α-;(2)23AE BE =+;证明见解析;(3)21)2. 【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得3DF EF ==,即可求解; (3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJBEJ ,推出点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CE EB 时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题.【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆ACD BCE ∴∆≅∆,DCE α∠=CD CE ∴= 1802CDE α︒-∴∠=. 故答案为:1802α︒-. (2)233AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE ∆ACD BCE ∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒CDE ∴∆是等边三角形,且CF DE ⊥3DF EF ∴== AE AD DF EF =++ 23AE BE ∴=+. (3)如图3中,过点C 作CWBE 交BE 的延长线于W ,设AE 交BC 于J .CAD ∆绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE ,CAD CBE ∴∠=∠,AJC BJE ,90ACJ BEJ ,∴点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CE EB 时,四边形ABEC 的面积最大,此时EC EB =,CD CE =,90DCE ∠=︒,45CED ∴∠=︒,90AEW AEB ,45CEW ,CF EW ,45WCE CEW ,CW EW ,设CW EW x ,则2EC EB x ==, 在Rt BCW 中,222BC CW BW , 222(2)(52)x x x , 225(22)2x , 21225(21)222BCE S BE CW x , 2521252115252222ABC BCE ABEC S S S 四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键. 10.回答下列问题:(1)(发现)如图1,点A 为线段BC 外一动点,且4BC =,2AB =.填空:线段AC 的最大值为 .图1(2)(应用)点A 为线段BC 外一动点,且3BC =,2AB =,如图2所示,分别以AB ,AC 为边,作等腰直角ABD △和等腰直角ACE ,连接CD ,BE .图2①证明:BE DC =.②求线段BE 的最大值.(3)(拓展)如图3,在平面直角坐标系中,直线l ;4y x =+与坐标轴交于点A 、B 两点,点C 为线段AB 外一动点,且2CB =,以AC 为边作等边ACD △,连接BD ,求线段BD 长的最大值并直接写出此时点C 的横坐标.图3答案:A解析:(1)6(2)①证明见解析. ②322+(3)42226-26+ 【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2) ①由“SAS” 可证△DAC ≌△BAE ,可得BE=DC ;②由于线段长BE 的最大值=线段DC 的最大值,根据(1)中的结论即可得到结果,(3)以BC 为边作等边三角形BCE ,可以证明△ACE ≌△DCB(SAS) ,从而得到BD=AE ,BE=BC ,由AE≤AB+BE ,当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值,当BD 取得最大值时,①当C 在直线AB 的上方时,过C 作CH ⊥y 轴于H ,作BC 的垂直平分线交BH 于N ,求出CH 的长度,即可求出点C 的横坐标,②当C 在直线AB 的下方时,按同①的方法也可以求出点C 的横坐标.【详解】(1)当A 在选段BC 的延长线上时,max 6AC AB BC =+=.(2)①∵等腰直角AEC 与等腰直角三角形ABD ,∴AD AB =,AE AC =,90DAB EAC ∠=∠=︒,∴DAB BAC EAC BAC ∠+∠=∠+∠,∴DAC EAB ∠=∠,在DAC △和BAE 中,DA BA DAC BAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS DAC BAE ≌△△, ∴BE CD =.②由①可知,BE DC =,∵线段BE 的最大值即线段DC 的最大值.在等腰直角ABD △中,222BD AB ==,∵CD BC BD ≤+,∴当点D 在CB 的延长线上时, CD 取得最大值为322+.∴线段BE 的最大值为322+.(3)如图,以BC 为边作等边三角形BCE ,则BC CE =,60BCE ∠=︒.∵60ACD ∠=︒,∴ACD ECD BCE ECD ∠-∠=∠-∠,∴ACE DCB ∠=∠.在ACE 与DCB 中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACE DCB ≌△△, ∴BD AE =.对于一次函数4y x =+,令0x =,则4y =,∴()0,4B ,令0y =,则4x =-,∴()4,0A -. ∴224442AB =+=,又∵2BE BC ==,∴AE AB BE ≤+,∴当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值为422+;当BD 取得最大值时,①当C 在直线AB 的上方时过C 作CH y ⊥轴于H ,∵45ABO HBE ∠=∠=︒,60CBE ∠=︒,∴15CBH CBE HBE ∠=∠-∠=︒,作BC 的垂直平分线交BH 于N ,∴CN BN =,15NCB NBC ∠=∠=︒,∴30CNB ∠=︒,2CN x =, ∴2BN x =,∴()32BH HN BN x =+=+, 在Rt BHC △中,22222HC BH BC +==,∴()222322x x ⎡⎤++=⎣⎦, 整理得()227434x x ++=, 223x =-,()12312x =-,()22312x =--(舍), ∴622CH -=, ∴点C 的横坐标为262-. ②当C 在直线AB 的下方时,过C 作CL ⊥y 轴于L ,∵∠ABO=45°,∠CBE=60°,∴∠CBL=180°-∠CBE−∠ABO=75°,∴∠BCL=15°,作BC 的垂直平分线交BL 于M ,∴CM=BM ,∠MCB=∠MBC=15°,∴∠LMB=30°,∴CM=2y , ∴CL=LM+CM=(3+2)y ,在Rt △BLC 中,BL 2+CL 2=BC 2=22,∴()222322y y ⎡⎤++=⎣⎦, 整理得()227434y y ++=, 223y =-,()12312y =-,()22312y =--(舍去), 622BL -=∴CL=()32BL +=262+ 所以点C 的横坐标为:262+ 综合以上可得点C 的横坐标为:262-或 262+ 【点睛】本题是三角形综合题,考查了全等三角形的判.定和性质,等腰直角三角形的性质,最大值问题,旋转的性质正确的作出辅助线构造全等三角形是解题的关键.11.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)将图①中BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).答案:E解析:(1)见解析;(2)依然成立,见解析;(3)依然成立,EG ⊥CG【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG;(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG;(3)结论依然成立,证明方法类似(2).【详解】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法:如图,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG =CG .(3)解:(1)中的结论仍然成立.理由如下:如图,过F 作CD 的平行线并延长CG 交于M 点,连接EM 、EC ,过F 作FN 垂直于AB 于N ,∵G 为FD 中点,∴FG =GD ,∵MF ∥CD ,∴∠FMG =∠DCG ,∠GDC =∠GFM ,∴△CDG ≌△MFG ,∴CD =FM ,∵NF ∥BC ,∴∠NFH +∠NHF =∠EHB +∠EBH ,又∵∠NHF =∠EBH ,∴∠NFH =∠EBH ,∴∠EFM =∠EBC ,又∵BE =EF ,则△EFM ≌△EBC ,∠FEM =∠BEC ,EM =EC∵∠FEC +∠BEC =90°,∴∠FEC +∠FEM =90°,即∠MEC =90°,∴△MEC 是等腰直角三角形,∵G 为CM 中点,∴EG =CG ,EG ⊥CG .【点睛】本题考查全等三角形的判定和性质、矩形的判定与性质,正方形的性质,旋转的性质,解题的关键是掌握相关性质.12.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE 2CE ,(2)存在,证明见解析,(3)25810或16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE 2CE ;故答案为:GE 2CE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB =5,∴AC =52, CE =52-32=22,GE =2EC =4;如图2,E 在CA 延长线上,同理可得,EC =82,GE =2EC =16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M ,∵5,32AB AE ==∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE=DF=1,FG=2,22210=+=;GE FG EF如图4,同图3,BE=DF=7,FG=14,EF=6,22258=+=,GE FG EF综上,GE的长为258210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.13.如图,在等边三角形ABC中,点D是射线CB上一动点,连接DA,将线段DA绕点D 逆时针旋转60°得到线段DE,过点E作EF∥BC交直线AB于点F,连接CF.(1)如图1,若点D为线段BC的中点,则四边形EDCF是;(2)如图2,若点D为线段CB延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D为射线CB上任意一点,当∠DAB=15°,△ABC的边长为2时,请直接写出线段BD的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D 为线段BC 的中点,则AD ⊥BC 且∠BAD =30°,∵∠ADE =60°,∴∠EDB =∠ADB ﹣ADE =90°﹣60°=30°,∵EF ∥BC ,∴∠EFD =∠ABC =60°,∠FED =∠EDO =30°,∴∠ERF =90°,∴DE ⊥AB ,∵AD =ED ,∠BAD =∠EDO =30°,∠ADB =∠DEO =90°,∴△ADB ≌△DEO (AAS ),∴OE =BD =12BC =12AB ,则OB =OD ﹣BD =AB ﹣12AB =12AB , ∴OB =BD =CD ,∵OE ⊥DE ,DE ⊥AB ,∴OE ∥AB ,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A作AH⊥BC,则∠BAH=30°,而∠DAB=15°,BH=12BC=1,即BD是∠BAH的角平分线,过点D作DG⊥AB于点G,设DH=x,则DG=DH=x,BD=BH﹣DH=1﹣x,在△BDG中,∠BDG=30°,则BG=12BD=12x由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.14.如图,△ABC 中,O 是△ABC 内一点,AO 平分∠BAC ,连OB ,OC .(1)如图1,若∠ACB =2∠ABC ,BO 平分∠ABC ,AC =5,OC =3,则AB = ; (2)如图2,若∠CBO +∠ACO =∠BAC =60°,求证:BO 平分∠ABC ;(3)如图3,在(2)的条件下,若BC =3B 绕点O 逆时针旋转60°得点D ,直接写出CD 的最小值为 .答案:A解析:(1)8;(2)见解析;(3)33【分析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC=AB AC .如图1中,延长CO 交AB 于E ,由OA 平分∠EAC ,推出AE AC =OE OC,推出AE EO =AC OC =53,设AE =5k ,OE =3k ,利用相似三角形的性质构建方程求出k 即可解决问题. (2)如图2中,过点O 作EF ⊥OA 交AB 于E ,交AC 于F ,作CG ∥EF 交AB 于G ,连接OG .证明△AGO ≌△ACO (SAS ),推出OG =OC ,推出∠OGC =∠OCG ,证明O ,G ,B ,C 四点共圆,可得结论.(3)如图3中,以BC 为边向上作等边△BCH ,连接OH ,作HM ⊥BC 于M .证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转与全等三角形
问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件) 1.图中有相等的边(等腰三角形、等边三角形、正方形、正多边形)
2.这些相等的边中存在共端点。
3.如果旋转(将一条边和另一条边重合),会出现特殊的角:大角夹半角、手拉手、被分割的特殊角。
问题二:旋转都有哪些模型?
构造旋转辅助线模型:
1.大角夹半角
2.手拉手(寻找旋转)
3.被分割的特殊角
旋转使用技巧
1.题干中出现对图形的旋转——现成的全等
2.图形中隐藏着旋转位置关系的全等形——找到并利用
3.题干中没提到旋转,图形中也没有旋转关系存在——通过作辅助线构造旋转!
典型例题
【例1】如图,P是正△ABC内的一点,若将△PBC绕点B旋转
到△P'BA ,则∠PBP'的度数是( )
A.45°B.60°
C.90°D.120°
【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BD=CF并求出∠DOH的度数。
【例3】如图,正方形ABCD中,∠F AD=∠F AE。
求证:BE+DF=AE。
【例4】已知:如图:正方形ABCD中,∠MAN=45°,∠MAN的两边分别交CB、DC于点M、N。
求证:BM+DN=MN。
【例5】如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,证明:DN2+BM2=MN2
【例6】如图,已知△OAB 和△OCD 是等边三角形,连结AC 和BD ,相交于点E ,AC 和BO 交于点F ,连结BC 。
求∠AEB 的大小。
【例7】如图所示:△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且AP =3,CP =2, BP =1,求∠BPC 的度数。
课后习题
1.如图,P 是正ABC ∆内的一点,且BP 是∠ABC 的角平分线,若将PBC
∆绕点P 旋转到P BA '∆,则PBP '∠的度数是( )
A .45°
B .60°
C .90°
D .120°
2.如图:△ABC 中,AB =AC ,BC 为最大边,点D 、E 分别在BC 、AC 上,BD =CE ,F 为BA 延长线上一点,BF =CD ,则下列正确的是( )
A .DF =DE
B .D
C =DF
C .EC =EA
D .不确定
P '
A
B
C
P
C
B
A
F
D
E
3.如图,四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,则下列正确的是( ) A .BD 2=AB 2+BC 2 B .BD 2<AB 2+BC 2
C .B
D 2>AB 2+BC 2
D .不确定
4.已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,AE 为角平分线交CD 于F ,则图中的直角三角形有( )
A .7个
B .6个
C .5个
D .4个
5.如图,DA ⊥AB ,EA ⊥AC ,AD =AB ,AE =AC ,则下列正确
的是( ) A .ABD ACE △≌△ B .ADF AES △≌△ C .BMF CMS △≌△
D .ADC AB
E △≌△
6.如图,已知P 为正方形ABCD 的对角线AC 上的一点(不与A 、C
重合),PE ⊥BC 与点E ,PF ⊥CD 与点F ,若四边形PECF 绕点C 逆时针旋转,连结BE 、DF ,则下列一定正确的是( )
A .BP =DP
B .BE 2+E
C 2=BC 2
C .BP =DF
D .B
E =DF
7.如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连结BE 、CD ,则下列一定正确的是( )
A .BE =DC
B .AD ∥CE
C .BE ⊥CE
D .B
E =CE
8.如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,则∠EOB 的度数为( )
A .45°
B .60°
C .90°
D .120°
B
D
A
C
F E
D
C B
A
S
F
E
D
C
B
A M
D
C
B
A E
P
F A
B
C
D O E
O
G
F
E
C
B
A
9.如图,在四边形ABCD 中,AB AD =,90B D ==︒∠∠,E 、
F 分别是边BC 、CD 上的点,且1
2
EAF BAD =∠∠。
则下列
一定正确的是( ) A .EF BE FD =+ B .EF BE FD
>+
C .EF BE F
D <+
D .222EF B
E FD =+
10.在正方形ABCD 中,BE =3,EF =5,DF =4,则∠BAE +∠DCF 为( )
A .45°
B .60°
C .90°
D .120°
F
E
D C
B
A
F
E
D
C
B
A。